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ABSTRACT. In 2011, M. Afkhami and K. Khashyarmanesh introduced the
cozero-divisor graph. Let R be a commutative ring with identity and let
W*(R) be the set of all non-zero non-unit elements of R. The cozero-
divisor graph I'V(R) of R is a simple graph with the vertex set W*(R),
and two distinct vertices a and b are adjacent if and only if a ¢ bR and
b ¢ aR. In this paper, we offer a survey of results on cozero-divisor graph

of commutative rings.
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1. INTRODUCTION

Beck (1988) was the pioneer in the field of zero-divisor graphs. For a com-

mutative ring R with identity, the zero-divisor graph of R, denoted I'(R), is
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the graph whose vertices are the non-zero zero-divisors of R with two distinct
vertices joined by an edge when the product of the vertices is zero. He was
mainly interested in coloring and then this investigation of the coloring of a
commutative ring was continued by Anderson and Naseer in [15]. Anderson and
Livingston [13], studied the zero-divisor graph whose vertices are the non-zero
zero-divisors. The zero-divisor graph helps us to study the algebraic properties
of rings using graph theoretical tools. We can translate some algebraic prop-
erties of a ring to graph theory language and then the geometric properties of
graphs help us explore some interesting results in the algebraic structures of
rings. We refer to the reader the papers [10, 11, 13, 14] and [23] for the history
of this topic and the basic properties of zero-divisor graphs. Let G be a graph
with vertex set V(G). A graph G is said to be connected if there is a path
between every two distinct vertices. For a,b € V(G) with a # b, d(a, b) denotes
the length of the shortest path from a to b. If there is no such path, then we
will make the convention d(a,b) = co. For any a € V(G), the degree of a,d(a),
denotes the number of edges incident with a. Also for two distinct vertices x
and y in G, the notation x — y means that « and y are adjacent. A graph G
is complete if each pair of distinct vertices is joined by an edge. For a positive
integer n, we use K, to denote the complete graph with n vertices. Also, we
say G is totally disconnected if no two vertices of G are adjacent. We denote
K, n for the complete bipartite graph, with part sizes m and n. A cycle is a
path that begins and ends at the same vertex in which no edge is repeated and
all vertices other than the starting and ending vertices are distinct. We use C,,
to denote the cycle with n vertices, where n > 3. If a graph G has a cycle,
then the girth of G(notated gr(G)) is defined as the length of the shortest cycle
of G; otherwise, gr(G) = oco. Suppose that H is a nonempty subset of V(G).
The subgraph of a graph G whose vertex set is H and whose edge set is the set
of those edges of G with both ends in H is called the subgraph of G induced
by H and denoted by (H). The disjoint union of graphs G; and Ga, which
is denoted by G; U G5, where G; and G are two vertex-disjoint graphs, is a
graph with V(G1 U Gg) = V(G1) U V(Gz) and E(G1 U GQ) = E(Gl) U E(Gz)
A graph G may be expressed uniquely as a disjoint union of connected graphs.
These graphs are called the connected components, or simply the components,
of G. General references for ring theory [17] and for graph theory [20, 22].

The goal of this survey article is to enclose many of the main results on the
cozero-divisor graph of a commutative ring.

2. COZERO-DIVISOR GRAPH OF A COMMUTATIVE RING

For any element a in R, let f, : R — R be an R-module endomorphism on
R defined by multiplication by a. So the authors in [3] considered the set of
zero-divisors of R as follows:

Z(R) := {z € R : the endomorphism f, is not injective}.
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In a dual manner, set
W(R) := {x € R : the endomorphism f, is not surjective}
={z € R: xR # R}.

Clearly, for two distinct elements = and y in Z*(R), the vertices « and y are
adjacent if and only if x is a non-zero element in Ker(f,) or y is a non-zero
element in Ker(f;). Concerning this, they were led to introduce the following
graph, denoted by T'(R), which is a dual of T'(R) ‘in some sense’. For two
distinct elements z and y in W*(R) := W(R) \ {0}, the vertices x and y are
adjacent if and only if  + yR is a non-zero element in Coker(f,) and y + zR
is a non-zero element in Coker(f,). This means that x and y are adjacent, in
I'"(R), if and only if ¢ yR and y ¢ xR. Thus the definition of cozero-divisor
graph IV(R) is given as follows.

Definition 2.1. [3] Let R be a commutative ring with identity and let W*(R)
be the set of all non-zero non-unit elements of R. The cozero-divisor graph
I"(R) of R is a simple graph with the vertex set W*(R), and two distinct
vertices a and b are adjacent if and only if @ ¢ bR and b ¢ aR.

Note that W (R) consists of all the non-unit elements of R and every non-unit
element of R belongs to a maximal ideal. Thus, clearly, W (R) = Unemax(r)m-

Let R be a ring. Then R is a field if and only if IV(R) is an empty graph.
If R = Zyn, where p is prime and n € N, then I'(R) & K,,, where m =
pr-p"Hp—-1) -1

We recall the following basic results from [3].

Theorem 2.2. [3, Theorem 2.1] Let R be a commutative ring with identity.
Then TV(R) is not complete if and only if there exists an element a € W*(R)
such that |aR| > 2.

Corollary 2.3. [3, Corollary 2.2] Let R be a commutative ring with identity.
Then I'"(R) is complete if and only if aR = {0,a} for all a in W*(R).

Theorem 2.4. [3, Theorem 2.3] Let R be a commutative ring with identity.
Then
(i) T'(R) — J(R) is connected.
(#) If R is a non-local ring, then diam(I'(R) — J(R)) < 2.

If R is alocal ring with J(R) = 0, then I (R) is connected and diam (I (R) <
2.

Theorem 2.5. [3, Theorem 2.5] Let R be a non-local ring such that, for every
element a € J(R), there exists m € Max(R) and b € m — J(R) with a ¢ bR.
Then T'(R) is connected and diam(I'"(R)) < 3.

Suppose R is a local ring with maximal ideal m. If IV(R) is connected, then
either m is a cyclic ideal with two elements or m is not cyclic.
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In the following theorem, J. Cain, L. Mathewson and A. Wilkens proved
that I'V(R) preserves connectedness over a direct product.

Theorem 2.6. [21, Theorem 3.2] Let R~ Ry x Ry X --- X R,,, where R; is a
commutative ring for alli € {1,2,...,n}. Letx,y € R withx = (x1,22,...,ZTn)
and y = (Y1,Y2,---»Yn). If @i —y; in T'(R;) for some i € {1,2,...,n}, then
x —y in T'(R).

The converse does not hold. If z — y in IV(Ry X Ry X --- X Ry), it is
possible that z; is not adjacent to y; for all « € {1,2,...,n}. For example,
in IV(Z16 X Z1s),(2,4) — (4,2), but 2 is not adjacent to 4 in IV(Zi6). In fact,
I'(Z1g) is empty.

Theorem 2.7. [3, Theorem 2.7] Let (R, m) be a Noetherian local ring such that
m is a principal ideal. Then there is no adjacency between vertices in T'(R).

Theorem 2.8. [3, Theorem 2.8] Let R be a non-local ring. Then gr(I'(R) —
J(R)) <5 or gr(I'(R) — J(R)) = .

Theorem 2.9. [3, Theorem 2.9] Suppose that |Max(R)| > 3. Then gr(I'(R)) =
3.

The following theorem shows that a ring R is finite whenever the cozero-
divisor graph I'V(R) is finite.

Theorem 2.10. [3, Theorem 2.10] Suppose that Z(R) # W (R). Then I'(R)
is finite if and only if R is finite.

Corollary 2.11. [3, Corollary 2.11] Let R be a commutative domain and T'(R)
be finite. Then R is a field.

J. Cain, L. Mathewson and A. Wilkens provide proof for a more generalized
statement that I"(R) is finite if and only if R is finite in [21]. The following
theorem gives the special case that I'V(R) — J(R) is a complete bipartite graph.

Proposition 2.12. [3, Proposition 2.12] Let R be a ring with Max(R) =
{my,ma}. Then T"(R)—J(R) is a complete bipartite graph with parts m; — J(R)
fori=1,2if and only if, every cyclic ideals a,b C m; — J(R), for some i =1,2
are totally ordered(i.e.,either a Cb or b C a).

Theorem 2.13. [3, Theorem 2.14] Let R be a commutative ring with identity.

(i) Let R not be a field. If R has an infinite number of mazimal ideals,
then w(I"(R)) is also infinite; otherwise w(I'(R)) > |Maz(R)|.
(1) If x(IV(R)) < o0, then [Maz(R)| < co.

We refer to the reader the papers [2, 5, 6] for some properties of cozero-
divisor graphs.
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3. RELATION BETWEEN I'(R) AND I''(R)

In this section, we present results concerning the relation between the zero
divisor graph and cozero divisor graph. Assume that Z(R) = W(R) in the
following results.

Theorem 3.1. [3, Theorem 3.1] Suppose that I'(R) is complete. Then I'(R)
is also complete.

The Converse need not be true. For example in the ring Zg, I'(Zg) is complete
but IV(Zg) is not complete. The following theorem shows that over a reduced
ring, the converse of Theorem 3.1 is true.

Theorem 3.2. [3, Theorem 3.3] Let R be a reduced ring and T'(R) be complete.
Then T'(R) is also complete.

Corollary 3.3. [3, Corollary 3.4] In a reduced ring R, T'(R) is complete if and
only if T'(R) is complete.

The following result gives the relation between adjacency in the graphs I'(R)
and TV(R).

Lemma 3.4. [3, Lemma 3.5] Assume that a,b € W*(R) are distinct vertices
in I'"(R) and a is not adjacent to b.Then dr(g)(a,b) < 2.

Recall that a simple undirected graph is called a planar graph if it can be
drawn on the plane in such a way that no edges cross each other.

Theorem 3.5. [3, Theorem 3.9] Assume that |Max(R)| > 5. Then I"(R) is
not planar.

Lemma 3.6. [3, Lemma 3.10] Either the complement of I (R) or its subdivision
is a subgraph of T'(R).

Theorem 3.7. [3, Theorem 3.11] Assume that the complement of T'(R) is not
planar. Then T'(R) is not planar.

For any vertex = of a connected graph G, the eccentricity of z, denoted by
e(z), is the maximum of the distances from = to the other vertices of G, and
the minimum value of the eccentricity is the radius of G, which is denoted by
r(G). The radius of cozero-divisor graphs is given by the following Theorems.

Theorem 3.8. [3, Theorem 3.12] Suppose that R is a non-local ring with
J(R) =0. Then r(T'(R)) =0 if and only if r(T'(R)) = 1.

Theorem 3.9. [3, Theorem 3.13] Assume that R is a non-local ring with
J(R) =0 and r(I"(R)) = diam(I"(R)) = 1. Then r(T'(R)) = 1.

Theorem 3.10. [3, Theorem 3.15] Let R be a non-local Noetherian ring with
J(R) = 0. Assume that the complement of T'(R) is a subgraph of the comple-
ment of I'(R). If r(I'"(R)) = 2, then r(I'(R)) = 2.
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4. SOME PROPERTIES OF I'(R)

In this section we mention some properties of IV(R). In particular, we list
the characterization of star and unicyclic graph.

Theorem 4.1. [9, Lemma 7] Let R be a commutative ring. IfI'(R) is a forest
with at least one edge, then the following conditions hold:

(i) R is not local.

(i) |Maz(R)| = 2.

(’LZZ) IfM(L.’E(R) = my, My, then |m2\m1| =1 or |m1 \m2| =1.

(iv) J(R) = 0.

Theorem 4.2. [5, Theorem 2.1] Let R be a non-local finite ring.
(7) If T'(R) is a forest(contains no cycles), then R = 7y x F, where F is a field.
(i) If R = Zs X F, where F is a field, then T'(R) is a star graph.

Theorem 4.3. [5, Theorem 2.2] Let R be a finite ring.

(2) If R is non-local, then T (R) is a double-star graph if and only if R = Zo xF,
where F is a field.

(i3) If R s local with principal mazimal ideal m, then TV(R) is a double-star

graph if and only if R is either Z4 or Zé[;i] or F, where F is a field.

(#1) If R is local with non-principal mazimal ideal m and T (R) is a double-star
graph, then the minimal generating set of m has two elements.

According to [5], if I"(R) is a unicyclic graph, then |Max(R)| < 3. In 2014,
S. Akbari and S. Khojasteh proved the following improvement in this result for
unicyclic graph.

Theorem 4.4. [8, Theorem 1] Let R be a commutative ring. If T'(R) is a
unicyclic graph, then |Max(R)| < 2.

Theorem 4.5. [8, Theorem 2| Let R be a commutative non-local ring. If T'(R)
s a unicyclic graph, then R is a finite ring.

The following results give the characterization of unicyclic cozero-divisor
graph.

Theorem 4.6. [5, Theorem 2.3] Let R = Ry x - -+ x Ry, be a finite commutative
ring with identity, where each R; is local ring and n > 2. Then TV(R) is unicyclic
if and only if R = Ty x 4, Zé[;g] x T or Zg X Zs.

Theorem 4.7. [8, Theorem 4] Let R be a commutative local ring. Then T'(R)
Zyl,y] Zalx]
(my)? 7 (2w.a?)”

is a unicyclic graph if and only if R =

A refinement of a graph H is a graph G such that the vertex sets of G and
H are the same and every edge in H is an edge in G.
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Proposition 4.8. [5, Proposition 2.1] IV(R) is the refinement of a star graph
if and only if there exists an element a in W*(R) such that |aR| = 2 and, for
allbe W*(R) with a # b, a ¢ bR.

In particular, if there exists a maximal ideal m of R such that |m| = 2, then
I"(R) is the refinement of a star graph.

Theorem 4.9. [5, Theorem 2.4] Let R be a non-local finite ring. Then T'(R)
is a union of cycle graphs if and only if R = Zg X Zs.

An Eulerian graph is a graph that has a path that visits each edge exactly
once which starts and ends on the same vertex. Clearly, a nontrivial connected
graph G is Eulerian if and only if, every vertex of G has an even degree.

Theorem 4.10. [5, Theorem 2.6] Suppose that R contains a principal maximal
ideal m such that |W(R) — m| is an odd number. Then I''(R) — J(R) is not
Eulerian.

Theorem 4.11. [5, Theorem 2.7] Assume that R is a non-local ring. Then
the following conditions are equivalent:

(1) T'(R) — J(R) is complete bipartite.

(7)) T'(R) — J(R) is bipartite.

(i7i) T'(R) — J(R) contains no triangles.

The next theorem, which is due to Afkhami and Khashyarmanesh [5], char-
acterizes Hamiltonian I''(R) — J(R) when R is a finite ring with two maximal
ideals.

Theorem 4.12. [5, Theorem 2.8] Let R be a finite ring with two mazimal
ideals my and ma such that |my| = |ma|. Then I'(R) — J(R) is Hamiltonian.

Theorem 4.13. [5, Theorem 2.9] Assume that R is non-local. Then x(I'"(R)—
J(R)) =2 if and only if w(I'(R) — J(R)) = 2.

Proposition 4.14. [6, Proposition 4.5] In IV(Ry X Ra), we have the following
inequalities:

clique (I"(Ry x Ry)) > Max {clique(T"(Ry)), clique (I"(R2))};

X(I"(Ry x R2)) = Maz{x(I"(R1)), x(I" (R2))}-

Theorem 4.15. [6, Theorem 4.7] Assume that Ry and Ry are fields. Then
I"(Ry x R2) is a complete bipartite graph.

Theorem 4.16. [6, Theorem 4.10] The cozero-divisor graph I'(R1 x Rz) is
connected and diam(I"(R; x Ry)) < 3.

Theorem 4.17. [6, Theorem 4.13] (i) If at least one of the cozero-divisor graph
I"(Ry) or T"(Rz) is not totally disconnected, the gr(I'(R; X Ra) = 3.

(i) If Ry # Zo and Ry # Zs, then gr(T'(R; X Ry) < 4.

(#ii) If Ry = Za and Ry is a field, then gr(I'"(Ry x Rg) = co.

(iv) Ry = Zo and Ry is not a field, then gr(I'(Ry X Ry) = 3,4 or oo.
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5. RINGS WHOSE COZERO-DIVISOR GRAPHS ARE OF BOUNDED DEGREE

In this section, we see that for every positive integer A, the set of commuta-
tive nonlocal rings with maximum degree A is finite. S. Akbari et. al classified
all rings whose cozero-divisor graph has a maximum degree at most 3.

Theorem 5.1. [8, Theorem 5] Let R be a commutative nonlocal ring and A
be the mazimum degree of IV(R). If A is finite, then |Max(R)| < A+ 1, and
R is a finite ring.

Theorem 5.2. [8, Theorem 6] Let A be a positive integer and <f be the set
of all commutative nonlocal rings R with maximum degree at most A. Then
|R| < (A+ 1A% and o is finite.

Theorem 5.3. [8, Theorem 7] Let R be a commutative nonlocal ring and A
be the mazimum degree of T'(R). Then A < 3 if and only if R is isomorphic
to one of the rings: Zo X Lo, Lo X L3, Lo X Ty, Lo X Ly, Lo X Lolz]/(x?),Z3 X
Zg,Zg X F4,F4 X ]F4, and ZQ X ZQ X Z2.

Lemma 5.4. [8, Lemma 7] Let (R,m) be a commutative local ring, A > 0 be
the mazimum degree of T'(R). If A is finite, then R is finite, m is principal,
orm=m?,

Theorem 5.5. [8, Theorem 8] Let (R, m) be a commutative local ring and A
be the mazimum degree of T'(R). If 0 < A < 3, then I'(R) is a 3-cycle.

Corollary 5.6. [8, Corollary 7] Let R be a commutative local ring and A be the
mazximum degree of T'(R). Then 0 < A < 3 if and only if R = Zs[x, y]/(x,y)?,
Zylz]/ (27, 22).

Corollary 5.7. [8, Corollary 9] Let R be a commutative nonlocal ring and
I"(R) be a disjoint union of cycles. Then TV(R) is a 4-cycle and R = 73 X Zs.

S. Akbari and S. Khojasteh have improved Lemma 2.2 of [5].

Corollary 5.8. [8, Corollary 10,11] Let R be a commutative ring. If I'(R) is
a disjoint union of cycles, then the following hold:

(i)|Max(R)| < 2.

(ZZ)F/(R) S {03, 04},'

(i13)T"(R) = C3 if and only if R = Zs|x,y]/(x,y)?, Zs|z]/ (22, 22);

(iv)I"(R) = Cy if and only if R = Z3 X Zs.

In particular, I'V(R) is a disjoint union of cycles if and only if R is isomorphic
to one of the following rings: R = Z3 x Zs, Za[z,y]/(x,y)?, Za[z]/ (22, 22).

In the remaining part of this section, we see the connection between two
graphs I'(R) and IV(R). The complement of the cozero-divisor graph I"(R), is
the Cayley graph Cay(W*(R), R\ {1}).
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Proposition 5.9. [5, Proposition 3.1] Let R be a finite ring such that T'(R)
is not a refinement of a complete r-partite graph, where r is a positive integer.
Then I'(R) is connected.

Proposition 5.10. [5, Proposition 3.2] IV(R) is complete if and only if the set
of all principal ideals of R is totally ordered by inclusion.

Proposition 5.11. [5, Proposition 3.3] Let R be a Noetherian ring. If T'(R)
has an infinite clique,then R has a principal ideal with infinite order which
contains all vertices of the clique.

Note that I'V(R; X Rs) is not connected, in general. For example, I'V(Zy X Zs)
is disconnected. In the following theorem, we study the girth of IV(R; X Rs).

Theorem 5.12. [5, Theorem 3.1] gr(I"(Ry X R3)) = 3,6 or co.

Lemma 5.13. [5, Lemma 3.1] Suppose that Ry and Ry are non-trivial commu-
tative rings with identities. Then I'V(R; X Rg) contains a subgraph isomorphic
to K;, where t is the number of unit elements of R; , for some i =1,2. More-
over, if [W(R1)| > 1 (or |W(R2)| > 1), then K11 is isomorphic to a subgraph
OfF/(Rl X Rg)

Proposition 5.14. [5, Proposition 3.5] IV(R; X Rz) is not planar if one of the
following conditions holds:

(1) [U(R1)| = 5.

(i) |U(Ry) > 4 and |W(Ry)| > 1.

6. REDUCED COZERO-DIVISOR GRAPHS OF COMMUTATIVE RINGS

Amanda Wilkens et al. continued investigating the algebraic implications of
the graph by developing the reduced cozero-divisor graph, which is a simpler
analog. It is clear from the definition of the cozero-divisor graph that any
two elements which generate the same ideal will play similar roles within the
structure of the graph, as this next theorem demonstrates.

Theorem 6.1. [27, Theorem 2.1] Let R be a ring, and let z,y € W(R)*. If
(x) = (y), then x is not adjacent to y, and for all z € W(R)*,x — z if and only
ify—z.

This tells us that any two points that generate the same ideal will have
exactly the same set of neighbors. In this way, IV(R) is somewhat redundant in
its portrayal of relationships between principal ideals. The inclusion of multiple
generators of the same ideal serves only to complicate the graph as the rings
get larger.

The reduced cozero-divisor graph of R, denoted by I'.(R), and defined as
follows. Let Q(R) designate the set of principal ideals of R, and let Q(R)* =
Q(R)\{(0), R} (i.e. Q(R)* is the set of nontrivial principal ideals of R). Then
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V(' (R)) = Q(R)*, and (a) — (b) if and only if (a) € (b) and (b) € (a). Since
the vertex set of I',(R) is the principal ideals themselves and not elements of
R, the redundancies of I'V(R) are eliminated.

Theorem 6.2. [27, Theorem 2.4] Let R be a ring. Then I'v(R) is complete if
and only if every principal ideal of R is a maximal principal ideal.

The following theorem investigates connections in I',.(R) over the decompo-
sition of rings.

Theorem 6.3. [27, Theorem 2.5] Let R = Ry X --- X R, where R; is a com-
mutative ring with identity for 1 < i <mn. Let (x), (y) € QR)*. If (z;) — (v;)
in T'v(R;) for some i € {1,2,...,n}, then (z) — (y) in T'r(R).

Theorem 6.4. [27, Theorem 3.2] Let Ry = Fy x Fy X -+ X F, and Ry =
G1 x Gy X --- X G, where F; and G; are fields for all i € {1,...,n} and
je{l,...,m}. Thenn=m if and only if T'.(Ry) = T'.(R2).

A ring R is a special principal ideal ring, or SPIR, if it is a local principal
ideal ring (PIR) whose maximal ideal is nilpotent.

Theorem 6.5. [27, Theorem 3.4] Let Ry and Ry be rings with Ry = S1 X Sa X
<% Sy and Ry =2 Ty xTo x -+ - X Ty, , where (S;, (p;)) s an SPIR with nilpotency
degree a; for alli € {1,2,...,n} and (T}, (q;)) is an SPIR with nilpotency index
b for all j € {1,2,...,m}. If n = m and a1,aq,...,a, is a permutation of
bl, bg, ey bn, then FT(Rl) = FT(RQ)

Theorem 6.6. [27, Theorem 4.3] Let R be a non-local Artinian ring. Then
I'.(R) is connected with diam(T'(R)) < 3.

Theorem 6.7. [27, Theorem 4.5] Let R be a non-local Artinian ring. Then
gr(Tr(R))

<4 or gr(I'+(R)) = 0.

Proposition 6.8. [27, Proposition 4.8] Let (R, m) be an Artinian SPIR. Then
I',.(R) is complete if and only if m? = 0.

Theorem 6.9. [27, Theorem 4.9] Let R be an Artinian PIR. Then the following
are equivalent:

(i) T (R) is complete,

(ii)) R = Fy X F3, and

(iii) T.(R) = K2.

There are significant advantages to studying reduced cozero-divisor graphs
as opposed to the cozero-divisor graphs themselves; first and foremost, I',.(R)
is typically a much simpler graph that provides the same information regarding
principal ideal relationships.

The next result comments on the relationship between the connectedness of
I'"(R) and T'.(R).
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Theorem 6.10. [21, Theorem 4.2 (1) If |2(R)*| > 1, then T';.R) is connected
if and only if T'(R) is connected.
(2) If UR)*| =1, then T'(R) is connected if and only if |W(R)*| = 1.

Theorem 6.11. [21, Theorem 5.6] Let R1 and Ry be rings with Ry = Zye x
Z a2 X - “Lpan and Ry = Z o X 7L o2 X+« Lgam , where p; and q; are prime
mtegers and a;,b; > 1 for i E {1, 2 n}and j € {1,2,...,m}. Ifn=m
and ay,as, . ..,a, 15 a permutation of bl, ba,...by, then T*(Ry) 2 T*(Ry).

7. COZERO-DIVISOR GRAPH OF R[x] AND R[[z]]

In [6], M. Afkhami and K. Khashyarmanesh investigated some combina-
torial properties of the cozero-divisor graphs I'V(R[z]) and T”(R[[z]]) such as
connectivity, diameter, girth, clique numbers and planarity. They also study
the cozero-divisor graphs of the direct products of two arbitrary commutative
rings. They stated that I'V(R[z]) is always connected and its diameter is not
exceeding three. Recently, in [9], Akbari et. al made an improvement and
determined the diameter of cozero-divisor graph of R[z] is two.

Theorem 7.1. [9, Theorem 3] Let R be a commutative ring. Then
diam(I" (R[z])) = 2.
Theorem 7.2. [6, Theorem 2.7] gr(I'(R[z])) = 3.

Theorem 7.3. [6, Theorem 2.8] In the graph I'(R[z]), clique (I'(R[z])) is
infinity and hence the chromatic number x(I"(R[z])) is infinity.

Proposition 7.4. [6, Proposition 2.10] If there exists a mazimal ideal m of
R with |m| = 2, then there is a refinement of a star graph in the structure of
I'(Rlz]).

Theorem 7.5. [9, Theorem 4] If R is a field, then I(R[[x]]) is totally discon-
nected.

Theorem 7.6. [9, Theorem 8] Let R be a commutative Artinian non-local ring.
If J(R) = 0, then diam(T'(R[[z]])) = 3.

Theorem 7.7. [9, Theorem 5] Let (R,m) be a commutative local ring and
m # 0. Then diam(T"(R[[z]])) < 3.

Theorem 7.8. [9, Theorem 6] Let (R, m) be a local ring, m # 0 and m? = 0.
Then diam(I"(R][[z]])) = 2.

Lemma 7.9. [6, Lemma 3.5] Let a € W*(R) and let i and j be positive integers
such that i < j < 2i. Then the vertices a + x* and a + 27 are adjacent in

(R {[z]])-
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8. GENUS OF COZERO-DIVISOR GRAPHS

The authors in [6] investigated the planarity of IV(R). Also, they character-
ized all finite non-local commutative rings such that I'V(R) is planar. Assume
that R is isomorphic to the ring Ry x Ry X - -+ X R,,, where R; is local for every
1=1,...,n.

Proposition 8.1. [4, Proposition 2.1, 2.2] (i) If n > 4, then T"(R) is not
planar.

(i) Assume that n = 3. If there exists 1 < i < 3, such that R; has at least
three elements, then I'(R) is not planar.

Theorem 8.2. [6, Theorem 2.9] The cozero-divisor graph T"(R[z]) is not pla-
nar.

Theorem 8.3. [4, Theorem 2.5] Let R be a non-local ring. Then T'(R) is
planar if and only if R is one of the following rings: = Zo X Zio X Lo, = Zo X F,

& o X Ty, = Ty X ch[f)], > 7 xF, 2 73 x Ly, 2 Ty x 2 where F is a finite
field.

(x2) 7

Theorem 8.4. [4, Theorem 2.6] Suppose that (R,m) is a local ring such that
m is a principal ideal. Then TV(R) is planar.

In [24], S. Kavitha and R. Kala determined all isomorphism classes of finite
commutative rings R with identity whose I''(R) has genus one. Also they
characterized all non-local rings for which the reduced cozero-divisor graph
I'.(R) is planar.

Theorem 8.5. [24, Theorem 2.1] Let R = Fy X - - - X F), be a finite commutative
ring with identity, where each F; is a field and n > 2. Then v(I''(R)) = 1 if
and only if R is isomorphic to one of the following rings: Fqy x Fy,Fy X Zs, Z5 X
Zs,Fy x F7 or Zs X Zg X Zs.

Theorem 8.6. [24, Theorem 2.3] Let R = Ry X -+- X Ry, X Fy x -+ x Fp,
be a commutative ring with identity, where each (R;, m;) is a local ring with
m; # {0}, Fj is a field and n,m > 1. Then v(I'(R)) = 1 if and only if R is

isomorphic to one of the following rings: Zs x Fy, f;[;;] x Fy,Z4 x Fs, Zé[;g] X

F5,Z4 x Fr7 or Z<;[;;] X Fr,Zg x Zm%[;g] X Lz, Lg X Za, Z<;[37;] X Z%% X

ZQ, é4:£3>c]2 X ZQ or Léij;z] X ZQ.

Theorem 8.7. [24, Theorem 3.1] Let R = Fy X - - - X F), be a finite commutative
ring with identity, where each F; is a field and n > 2. Then I'.(R) is planar
if and only if R is isomorphic to one of the following rings: Fy x Fy x F3 or
F1 X FQ.

Theorem 8.8. [24, Theorem 3.2] Let R = Ry X - -+ X R, be a commutative ring
with identity 1, where each (R;,m;) is a local ring with m; # {0} and n > 2.
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Then T'.(R) is planar if and only if R = Ry X Rs such that m; is the only
non-zero principal ideal in R;.

Theorem 8.9. [24, Theorem 3.3] Let R = Ry X -+ X R, X Fy x -+ X F,, be
a finite commutative ring with identity, where each (R;, my;) is a local ring and
each F; is o field, m,n > 1. Then I';t(R) is planar if and only if R satisfies the
following conditions:

(i) n+m=2.

(i) There exists only two non-zero principal ideals (a1),{as) in Ry such that
(a1) € {az) and (az) Z (a1).

(#i) mq = {a) is a principal ideal with nilpotency at most k = 4 and

if k =2, then (a) is the only ideal in Ry

if k =3, then (a),(a®) are the only ideals in Ry

if k=3, then (a), <a2> , <a3> are the only ideals in Ry.

Lemma 8.10. [6, Lemma 4.1] Suppose that R = Ry x --- X Ry, is a direct
product of finite commutative rings. If a; is adjacent to b; in T'(R;), for some
1 < ¢ < n, then every element in R with i-th component a; is adjacent to all
elements in R with i-th component b;.

Proposition 8.11. [6, Proposition 4.4] Assume that either I'(Ry) or I'(Rz)
is not planar. Then I'(Ry x Rg) is not planar.

The embedding of graphs in a non-orientable surface is not an easy one. In
2017, A. Mallika and R. Kala aimed at the embedding of I'V(R) in non-orientable
compact surfaces [25]. In particular, they classified all finite non-local rings R
(upto isomorphism) with 0 < F(I"(R)) < 2.

Theorem 8.12. [25, Corollary 3.4] Let R = Fy x --- X F,, be a finite com-
mutative ring with identity, where F;’s are finite fields for 1 < i < n and
|F1| < |Fa| <--- < |F,|. Then

(i) ¥(T'(R)) = 1 if and only if R is isomorphic to one of the following rings:
]F4 X F4,F4 X Z5.

(15 )7(I"(R)) = 2 if and only if R is isomorphic to one of the following rings:
]F4 X Z7,Z5 X Z57ZQ X Zg X 23

Theorem 8.13. [25, Corollary 3.7] Let R= Ry X -+ X R, X F} x -+- x F,,, be
a finite commutative ring with identity, where R;’s are finite local rings which
is not a field with |R;| < |Riy1| for 1 < i < n and F;’s are finite fields with
‘F]| S |Fj+1| fO’I’ 1 S] S m. Then

(i) ¥(I"(R)) = 1 if and only if R is isomorphic to one of the following rings:
Z4 X F4, Z4 X Z5, %[23;] X ]F4, Z<:2v[2w>] X Z5.

(75)5(T'(R)) = 2 if and only if R is isomorphic to one of the following rings:

Zs X Zo, @2_7% x Za, %;E:g] x Za, T X Lo, Z{gﬂ—["gl x Za, Ta X T, Z@—[ﬁ] x 7.
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9. THE COZERO-DIVISOR GRAPH OF A MODULE

The concept of the zero-divisor graph of commutative rings has been gen-
eralized to modules over commutative rings; see for instance, [19] and [26].
In 2018, A. Alibemani et. all studied some connections between the graph-
theoretic properties of I'; (M) and algebraic-theoretic properties of M and R
[12]. The cozero-divisor graph of a non-zero unital left R-module M, denoted
by I (M), is a graph with vertices Wr(M)* = {m € M|Rm # M} \ {0} and
two distinct vertices m and n are adjacent if m ¢ Rn and n ¢ Rm.

Proposition 9.1. [12, Proposition 2.1] Let R be a ring and M a left R-module.
Then (1) T'y(M) is empty if and only if M is a simple R-module.
(2) T’y (M) is empty if and only if R is a division ring.

Proposition 9.2. [12, Proposition 2.3] Let R be a ring and M a left R-module
such that T'y (M) contains a cycle. Then gr(I';(M) € {3,4}.

Corollary 9.3. [12, Corollary 2.4] Let R be a ring and M a left R-module.
Then gr(I'y(M) € {3,4, cc}.

Example 9.4. [12, Example 2.5] Now, we show that all three cases of Corollary
9.3 may happen.

(1) gr(T%(Z4)) = .

(2) gr(Ty, xz,(Z3 x Z3)) = 4.

(3) gr(T,(Za x Za x Z2)) = 3.

Proposition 9.5. [12, Proposition 2.9] Let R be a ring and M a Noetherian
left R-module. Then I’y (M) is a complete bipartite graph with non-empty edge
set if and only if M = Ny @& Na, where N1 and Ny are all simple submodules
of M.

Proposition 9.6. [12, Proposition 2.12] Let R be a reduced ring and w(I'z(R)) <
oco. Then

(1) The number of minimal prime ideals of R is at most o/.)(F'R(R))

(2) The number of annihilator ideals of R is at most 2T r(R)),

Lemma 9.7. [12, Lemma 2.18] Let R be a reduced ring. If I'5(R) is planar,
then |[Min(R)| < 4.

Proposition 9.8. [12, Proposition 2.20] Assume that R is a reduced ring with
Z(R) # 0. IfT'3(R) is planar, then there exists a ring isomorphism between
R and one of the following rings: Zg X Lo X Lo, Lo X S, Zs x S, where S is a
division ring.

10. THE COZERO-DIVISOR GRAPH RELATIVE TO FINITELY GENERATED

MODULES

In [16], H. Ansari-Toroghy et al. introduced a certain subgraph r r(M) of
the cozero-divisor graph f(R), called the cozero-divisor graph relative to M
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and obtained some results similar to those of [3] and [5]. This graph, with a
different point of view, can be regarded as a reduction of f(R), namely, we
have I'z(R) = I'(R).

From now on, M denote a finitely generated R-module.

Definition 10.1. [16, Definition 1.] Define the cozero-divisor graph relative
to M, denoted by I'r(M) as a graph with vertices Wi(M) = Wr(M) \ {0}
and two distinct vertices r and s are adjacent if and only if r ¢ (sM :gp M) and
s¢ (rM g M).

Definition 10.2. [16, Definition 2.] Define the strongly cozero-divisor graph
relative to M , denoted by I'r(M) as a graph with vertices WE(M) = Wr(M)\
{0} and two distinct vertices 7 and s are adjacent if and only if r ¢ \/sM : g M
and s ¢ /TM :p M.

The following example shows that f(R), r r(M) and r r(M) are different.

Set R = Z (here Z denotes the ring of integers) and M = Zj3. Then
Wi(R) = Z\ {—1,1,0} and WjH(M) =Z\ ({m : (m,12) = 1} U {0}) where
(m, 12) denotes the greatest common divisor of m and 12. The elements 8 and
12 are adjacent in I'(R) but they are not adjacent in I'r(M). Also, 6 and 8 are
adjacent in I'gr(M) but they are not adjacent in I'g(M). Moreover, 6 and 10
are adjacent in I'g(R) but they are not adjacent in I'z(M).

An R-module L is said to be a multiplication module if for every submodule
N of L there exists an ideal I of R such that N = IL.

Theorem 10.3. [16, Theorem 1] (a)I’g(M) is a subgraph of I'(R).
(b)Lr(R) is a subgraph of I'(R).

(¢) If M is a faithful R-module, then Wj;(M) = W*(R).

(d) If M is a faithful R-module, then T (M) = T (R).

() If M is a faithful multiplication R-module, then I'r(M) = T'(R).

Theorem 10.4. [16, Theorem 2] 'zr(M) is complete if and only if fR(M) is
complete.

Theorem 10.5. [16, Theorem 4] Let M be a non-local module such that for
every element r € J(M), there exist P € Max(M) and s € P\ J(M) with
r ¢ (sM:p M). Then T r(M) is connected and diam(Lr(M)) < 3.

Theorem 10.6. [16, Theorem 6] Let [Maz(M)| > 3. Then gr(Ur(M)) = 3.

Theorem 10.7. [16, Theorem 8] Assume that |Max(M)| > 5. Then I'g(M)
is not planar.

Theorem 10.8. [16, Theorem 10] Let R be a Noetherian ring. If T'r(M) is
totally disconnected, then M is a local module with mazximal ideal of the form

(xM :gr M) for some x € W (M).
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Proposition 10.9. [16, Proposition 2] If the graph I'r(M)\ J(M) is n-partite
for some positive integer n, then |Max(M)| < n.

Theorem 10.10. [16, Theorem 12] Let M be an R-module with Max(M) =
{m1,my}. Then Tr(M)\ J(M) is a complete bipartite graph with parts m; \
J(M),i=1,2, if and only if every pair of ideals (rM g M), (sM :g M) con-
tained in (mq \ J(M)) or (mzo \ J(M)), where r,s € R, are totally ordered.

Theorem 10.11. [16, Theorem 13] Let M be a faithful R-module and Zr(M) #
Wgr(M). Then T'r(M) is finite if and only if R is finite.

FUTURE SCOPE
There are many possibilities for future research into this topic. This
could include proving the converse of Theorem 6.11, and investigating more
general decompositions as well. The connections may be able to be made
between I'(R), T*(R) and I'(R) along the lines of research in [3]. In [27], the
authors discussed the connectedness only for Artinian rings. There is an open
problem to classify all rings whose I',.(R) is connected.
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