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ABSTRACT. The statistical convergence with respect to a modulus func-
tion has various applications in both mathematics and statistics. The
main purpose of this research paper is to establish the relations between
the sets of strongly f-lacunary summable and strongly g-lacunary sum-
mable sequences, strongly f-lacunary summable and g-lacunary statisti-
cally convergent sequences, where f and g are different modulus functions
under certain conditions. Furthermore, for some special modulus func-
tions, we establish the relations between the sets of strongly f-lacunary

summable and strongly lacunary summable sequences.
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1. INTRODUCTION

The notion of statistical convergence was first based on the first edition of
the monograph of Zygmund [22], and its definition was introduced by Fast

[10] in a short note and later reintroduced by Schoenberg [21] independently
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with some of the basic properties of statistical convergence. In recent decades,
statistical convergence has been confirmed in many several fields and under
various names, such as measure theory, approximation theory, Banach spaces,
hopfield neural network, locally convex spaces, trigonometric series, number
theory, summability theory, ergodic theory, turnpike theory, Fourier analysis,
and optimization. Subsequently, Saldt [20], Fridy [12], Connor [8], Rath and
Tripathy [18], Et [9], and many others were further explored from the point of
perspective of sequence spaces and related to summability theory.

The idea of a modulus function was structured by Nakano [17]. Some authors
such as Ruckle [19] and Maddox [15] have introduced some sequence spaces by
using a modulus function. Other than them, to establish a number of sequence
spaces, Gosh and Srivastava [13], Bhardwaj and Singh [3], and some others
have used a modulus function. More information on this principle, as well as
its applications, can be found in [2, 5, 6, 7, 14].

We denote by N the set of natural numbers. The number 6(A) of aset A C N
is called the natural density of A and is defined by

0(A) = lim %|{k§n:keA}|

n—oo

where {k <n:k e A}| denotes the number of elements of A which are less
than or equal to n. One easily may see that §(4) = 0 if A C N is a finite set
and 6(N) =1 and also §(N— A) = §(N) —6(A) =1 —5§(A4).

In this paper, the spaces of bounded and convergent sequences are symbol-
ized by /. and c, respectively, as well as the set of all complex numbers is
symbolized by C.

A sequence (zy) in C is named statistically convergent to the number [ € C
if 6 ({keN:|z,—1] >e}) =0 for each € > 0.

We imply an increasing sequence 6 = (k,.) of non-negative integer numbers
with kg = 0 by a lacunary sequence such that h, =k, — k,._; — 0o as r — o0.
The intervals put by 6 shall be represented by I, = (k,._1 , k] and the ratio
ﬁ can be shortened by ¢,..

Fridy and Orhan [11] defined lacunary statistical convergence as the follow-
ing expression.

Let 8 = (k) be a lacunary sequence. A sequence (zy) of numbers is named
lacunary statistically convergent (or Sy-convergent) to the number I, if

. 1
Jim o (k€ I o — 1 > £} = 0

for each € > 0. In this case, we write Sy — limzy = [. Throughout the paper,
the class of Sp-convergent sequences will be symbolized by Sy.
A function f : [0, o) — [0, 00) is called a modulus function (or a modulus)
if
(1) f(t) =0if and only if t = 0,
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(2) f(t1+t2) < f(t1) + f(t2) for every t1,t2 € [0, 00),

(3) f is increasing,

(4) f is continuous from the right at 0.
From these properties, it is clear that a modulus function must be continu-
ous everywhere on [0, 00). A modulus function may be either unbounded or
bounded. For instance, f(t) = log(t + 1) is unbounded, but f(t) = &7 is
bounded.

()

Lemma 1.1. [16] For any modulus f, tlim fT 1) 1)
—00

erists and lim == = inf —=.
t—o0 t€(0,00)

The following definition was presented by Aizpuru et al. [1].

The number §7(A) of a set A C N is defined by

. fk<n ke Al
Op(A) = lim ——=rr5
and is called the f-density of A, where f is an unbounded modulus function.
A sequence () in C is named f-statistically convergent to [ € C if for each
e >0,

df(A)=({keN: |z -1 >¢e})=0.
Throughout the paper, Sfsymbolizes the class of all f-statistically convergent
sequences.

Definition 1.2. Suppose § = (k,) is a lacunary sequence and f is an un-
bounded modulus. Then, the sequence (x) in C is named f-lacunary statisti-
cally convergent (or Sg -convergent) to [ € C, if

Jim s (k€ 1y =1 = €} = 0

for every ¢ > 0. We write Sg —limay = 1if (zx) is Sg—convergent to [.
Throughout the paper, Sg symbolizes the class of all sequences which are Sg -
convergent, that is,

: 1
f T . > —
Sy = {(xk) .rhm (hT)f(‘{kEIr dep =1 > €}]) =0, for everys>0}.

We write Sy instead of Sg in the case f(t) =t and for § = (2"), we write S/
instead of Sg and also in the particular case f(t) =t and § = (2"), we write S
instead of Sg.

Lemma 1.3. The Sg—limz't of every Sg—convergent sequence 1S unique.

2. MAIN RESULTS

In this section, we first give the definition of Ng and then establish the
relations between NJ and NJ, Ny and NJ, NJ and S§, £oo NS and N{, for
different modulus functions f and g under some conditions on the considered
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modulus functions. However, the relations between the sets Ny and Sy, Sp and
S are known already in [11].

Definition 2.1. Suppose 8 = (k) is a lacunary sequence and f is a mod-
ulus function. Then, the sequence (zj) in C is named strongly f—lacunary
summable (or strongly Ng -summable) to [ € C, if

tin 3 100 -
keI,
If the sequence (xy) is strongly Naf—summable to [, we write Ng —limaxy = 1.
The class of strongly Ng -summable sequences will be symbolized by Nef , that
is,

1

f_ R _

Ny = {(mk) : Thj& T Z f (lxx —1]) = 0 for some number l} .
kel

Note that the modulus function f need not be unbounded in this definition.

The strong Naf -summability will reduce to the strong Ng-summability if we

take f(t) =

Theorem 2.2. Suppose f and g are modulus functions and 0 = (k) is a
lacunary sequence. If sup 583 < 00, then Nj C Nf
te(0, 00)

Proof. Assume that « = sup MNP 00, then we have % < a, and so that

g(t)
t€(0, 00)
f () < ag(t) for every t € [0, 00). Now, it is clear that a > 0 and if (xy) is

strongly N§-summable to some | € C, we may write

*Zflwk—l\ Z (lzwe — 1)

" kel, " kel,

Taking the limits on both sides as 7 — oo, we obtain that (z5) € NJ implies
(1) € NJ. 0

Remark 2.3. The following example shows that the inclusion Nj C Nef is strict
at least for some special modulus functions f and g.

EXAMPLE 2.4. Let the lacunary sequence § = (k,.) be given and consider the
sequence (z) such that xy to be [\/hr] at the first [\/hr integers in I,., and
x, = 0 otherwise, where [t] denotes the integer part of a real number ¢. Now, if

we take modulus functions f (t) = ;5 and g (t) =t, then sup 8 =1< o
t€(0, 00)

and so that N C Ng. By using the equality f(0) = 0, we have

Vhe] [V
;;f<|xk|>:;[m}f<[m]>=m.
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By taking the limits as r — oo, we get that Ng —limzy =0 and so (zy) € Nef.
But since

o ot = g [V ([Vi]) = MR

[\/}TT,]LM — 1 asr — oo, we get that (zy) ¢ Nj. Hence, (z) € Ng =\

and the inclusion Nj C Nef is strict.

and

r

Theorem 2.5. Suppose [ and g are modulus functions and 6 = (k) is a

lacunary sequence. If inf L? > 0, then Ng C N and the inclusion is
t€(0,00) 9t

strict.

Proof. Assume that § = inf f(t) > (0. Then, we have MOJ > [ and so that
te(0, 00) g(t) g(t)

Bg (t) < f(¢) for every t € [0, 00). Now, if (z) is strongly Ng—summable to
some [ € C, we may write

*Z (Jop = 1) < Z f|$k_”

" kel, " kel
Taking the limits on both sides as r — oo, we obtain that (zy) € Nef implies
(Ik) S Ng
For the strict inclusion, if we take the sequence of Example 2.4 with modulus

functions f(t) =t and g (t) = t+1, then the strict inclusion will happen. O

The result below is obtained from Theorem 2.2 and Theorem 2.5.

Corollary 2.6. Suppose f and g are modulus functions and 0 = (k) is a
lacunary sequence. If

@ f(®)

0< inf —= sup —= < 00,
t€(0,00) g (¢ te(omg(t)

then NJ = NY.

Theorem 2.7. For any modulus function f and lacunary sequence 0 = (k,.),
we have Ny C Ng.

Proof. Assume that (x) € Ny. So that
) 1
Jim o= > =1l =0
kel,

for some [ € C. Given € > 0 and choose ¢ with 0 < § < 1 such that f(¢) < e
for ¢t € (0, §]. Now, consider

Yo flz=i= Y flan—I+ > f(lze 1)

kel,. kel,. kel
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Since f (|xg —]) < € for |z, — 1] < 4, then

S Fllex—1)) < eh,
kel
‘xk—”S(s

and also for |z — | > 0, we get

|{,C}€—l‘ |(Ek—l|
—1 or 7 1 LA
|xk |< 5 <1+ 5 s

Since f is a modulus, we have

Pty g (4 |22 < (1 [ 2] ) <2 e

So, we get
2f (1
> < S
kel, kel,
‘Ckal|>6 |$k7”>6
Thus,
X flae=l) < e+2EL T a1
kel, kel,
|zk—l|>6
< E—l—%(l)% Solag 1.
kel,.
Since (z1) € Ny, we obtain that (xy) € Nef. O

Corollary 2.8. Suppose f is any modulus function and 0 = (k) is a lacunary
sequence. If inf %t) > 0, then NI = Np.

€(0,00)

Proof. Since Ny C N(_]; for any modulus function f by Theorem 2.7, taking

g(t) = t in Theorem 2.5, we get Nef C Ny if (inf )@ > 0. Therefore,
te(0, 00

NJ = Npif inf L8>0 O
te (0, 00)

Theorem 2.9. Assume that f and g are unbounded modulus functions and

0 = (k) is a lacunary sequence. If inf Lf) > 0 and lim 2 > 0, then
te(0,00) 9 t—oo U

every strongly Naf -summable sequence is Sy -statistically convergent.

Proof. Suppose that g = inf L? > 0. Then, we have £ > 3 and so that
t€(0, 00) g(t) g(t)

Bg (t) < f(¢) for every t € [0, 00). Now, if (z) is strongly Ng—summable to
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some [ € C, then we may write

o fla=U) = B X g(jzn—1))

kel, kel,.

= B X g(z—I)+6r X g(z—1)
kel,. kel,
|z —l|>e |z, —1|<e

> B X gz 1)
kel,
|z —1>e

> B kel | —1 = e}g(e).

Since |{k € I, : |z, — | > €}| is a positive integer and ¢ is a modulus, we have

A e —1) > Bg({k el : |z —1 > e}]) 49

kel,
g({k€l:|zp—1l|>e}]) g(hr) 9(6)5.

g(hs) hy  g(1)

Taking the limits on both sides as r — oo, we obtain that (zy) € Nef implies
(zr) € Sy since tlim @ > 0. This fulfills the proof. O
— 00

Remark 2.10. The converse of the above theorem is not true, in general. It can
be shown in the following example.

EXAMPLE 2.11. Let 6 be given and select the sequence (x) as in Example 2.4
and also consider the modulus function g (t) = f(t) = ¢t. Then, we have

inf L% >0 and tlim 9 - 0. Given any € > 0, we have
—00

te(0, 00) 9(t) t

. . ~og(vee])
Jim o (ke I ol 2 €} = Jim U <0

r

So that S§ — limzj, = 0 and thus (zx) € Sj. On the other hand,

1 _ [Vhe] [V,
Tlgglo h Z f(zg]) = Tlggo T =1
kel,
Hence, Nef —limxy # 0 and thus (z) ¢ Nef.

The following result is obtained by taking g (t) = f (¢) in Theorem 2.9.
Corollary 2.12. Assume that f is an unbounded modulus function and 0 =
(k) is a lacunary sequence. If tlim %t) > 0, then every strongly Nef -summable

—00
sequence 18 S’g -statistically convergent.

The following result is obtained by taking g (¢t) = ¢ in Theorem 2.9.

Corollary 2.13. Assume that f is an unbounded modulus function and 0 =

(k) is a lacunary sequence. If (inf )@ > 0, then every strongly Ng-
te(0, 00

summable sequence is Sg-statistically convergent.

The following result is obtained by taking f (¢t) = ¢ in Corollary 2.13, which
is also the first part of Theorem 1 of [11].
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Corollary 2.14. A strongly Ng-summable sequence is Sy-statistically conver-
gent.

Theorem 2.15. Suppose 0 = (k) is a lacunary sequence. Then, for any
unbounded modulus functions f and g, we have €. N Sg C Ny.

Proof. Let f and g be unbounded modulus functions and 6 = (k,.) be given.
Since Sg C Sp for every modulus f by Theorem 11 of [4], and since £,,NSy C Ny
by the second part of Theorem 1 of [11], then we have £, ﬂSg C looNSy C Ny,
that is, oo N Sg C Np. On the other hand, Ny C N for any modulus g by
Theorem 2.7. Therefore, £, N Sg C N{. O

Remark 2.16. The following example shows that the inclusion £, N Sg C N§
is strict at least for some special modulus functions f and g.

EXAMPLE 2.17. As an example, let the lacunary sequence 6 = (k,.) be provided
and consider the sequence () such that z; to be /h, at the first [\/hT]
integers in I., and zp = 0 otherwise. Now, if we take modulus functions
f(t) = g7 and g (t) = t, then for every ¢ > 0, we have

f ([Vhe])

1
lim ——f({k €Ll :|axx]| >e}]) = llm =1

r—00 f (hr) f (hr)
So that (ij) ¢ Sg’ but since
tim 3 g ) = i LI

kel,

we get (xx) € Nj.
The outcome below is a result of Theorem 2.15.

Corollary 2.18. Suppose 0 = (k,) is a lacunary sequence and f is any un-
bounded modulus function. Then,

(1) LN S c NJ.

(2) €N S) CN.

(3) LN S C NJ.
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