Iranian Journal of Mathematical Sciences and Informatics

Vol. 19, No. 2 (2024), pp 195-206 DOI: 10.61186/ijmsi.19.2.195

Pointwise Inner and Center Actors of a Lie Crossed Module

M. Jamshidi, F. Saeedi*

Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran

E-mail: mehdijamshidi44@yahoo.com E-mail:saeedi@mashdiau.ac.ir

ABSTRACT. Let \mathcal{L} be a Lie crossed module and $\mathrm{Act}_{pi}(\mathcal{L})$ and $\mathrm{Act}_{z}(\mathcal{L})$ be the pointwise inner actor and center actor of \mathcal{L} , respectively. We will give a necessary and sufficient condition under which $\mathrm{Act}_{pi}(\mathcal{L})$ and $\mathrm{Act}_{z}(\mathcal{L})$ are equal.

Keywords: Pointwise Inner, Crossed Module, Center Actor.

2020 Mathematics subject classification: 17B40, 17B99.

1. Introduction

Crossed modules of groups are introduced by Whitehead [11] to study homotopy relation among groups. Lie crossed modules are also introduced and used by Lavendhomme and Rosin [8] as a sufficient coefficient of a nonabelian cohomology of T-algebras.

A crossed module \mathcal{L} in Lie algebras is a homomorphism $d: L_1 \longrightarrow L_0$ with an action of L_0 on L_1 satisfying special conditions (see Casas [3], Casas and Ladra [4, 5] for details).

In [9], Norrie extended the definition of actor to the 2-dimensional case by giving a description of the corresponding object in the category of crossed modules of groups. The analogoue construction for the category of crossed modules of Lie algebras is given in [5].

Received 5 February 2020; Accepted 25 November 2021 © 2024 Academic Center for Education, Culture and Research TMU

^{*}Corresponding Author

Downloaded from ijmsi.ir on 2025-11-04

Actor of crossed module of Leibniz algebras also introduced by Casas et al. in [6].

Allahyari and Saeedi in [1] and [2] introduced a chain of subcrossed modules of $Act(\mathcal{L})$, and showed that for two Lie crossed module \mathcal{L} and \mathcal{M} , $ID^*Act(\mathcal{L}) \cong ID^*Act(\mathcal{M})$ if \mathcal{L} and \mathcal{M} are isoclinic. Sheikh-Mohseni et al. [10] gives a necessary and sufficient condition for $Der_c(L)$ and $Der_z(L)$ of a Lie algebra L to be equal.

In this paper, we shall introduce a new subcrossed module of $Act(\mathcal{L})$, denoted by $Act_z(\mathcal{L})$, and study its relationships with subcrossed modules of $Act(\mathcal{L})$, say $InnAct(\mathcal{L})$ and $Act_{pi}(\mathcal{L})$. In section 2, definitions and primary notations used for Lie crossed module and $Act(\mathcal{L})$ are presented. In section 3, $Act_z(\mathcal{L})$ is defined and some of its elementary properties are proved. In section 4, we prove the main theorem, which gives a necessary and sufficient condition for the equality of $Act_{pi}(\mathcal{L})$ and $Act_z(\mathcal{L})$.

2. Preliminaries on crossed modules

Definition 2.1. A Lie crossed module is a Lie homomorphism $d: L_1 \longrightarrow L_0$ together with an action of L_0 on L_1 , denoted as $(l_0, l_1) \mapsto^{l_0} l_1$ for all $l_0 \in L_0$ and $l_1 \in L_1$, such that

- (1) $d(^{l_0}l_1) = [l_0, d(l_1)];$
- $(2) \ ^{d(l_1)}l_1' = [l_1, l_1'],$

for all $l_0 \in L_0$ and $l_1, l_1' \in L_1$. The crossed module \mathcal{L} is denoted by $\mathcal{L}: (L_1, L_0, d)$.

The crossed module $\mathcal{L}': (L'_1, L'_0, d')$ is a subcrossed module of $\mathcal{L}: (L_1, L_0, d)$, and denoted by $\mathcal{L}' \leq \mathcal{L}$, if L'_0 and L'_1 are subalgebras of L_0 and L_1 , respectively, and d' is the restriction of d on L'_1 , and the action of L'_0 on L'_1 is induced from the action of L_0 on L_1 .

The subcrossed module $\mathcal{L}': (L'_1, L'_0, d')$ of $\mathcal{L}: (L_1, L_0, d)$ is an ideal of \mathcal{L} , denoted by $\mathcal{L}' \triangleleft \mathcal{L}$, if L'_0 and L'_1 are ideals of L_0 and L_1 , respectively, and that we have ${}^{l_0}l'_1 \in L'_1$ and ${}^{l'_0}l_1 \in L'_1$ for all $l_0 \in L_0$, $l'_0 \in L'_0$, $l_1 \in L_1$, and $l'_1 \in L'_1$.

Definition 2.2. Let $\mathcal{L}: (L_1, L_0, d)$ be a Lie crossed module. The center $Z(\mathcal{L})$ of \mathcal{L} , that is an ideal of \mathcal{L} , is defined as

$$Z(\mathcal{L}): (^{L_0}L_1, \operatorname{st}_{L_0}(L_1) \cap Z(L_0), d_{|}),$$

where

$$^{L_0}L_1 = \{l_1 \in L_1 \mid^{l_0} l_1 = 0, \ \forall \ l_0 \in L_0\}$$

and

$$\operatorname{st}_{L_0}(L_1) = \left\{ l_0 \in L_0 \mid^{l_0} l_1 = 0, \ \forall \ l_1 \in L_1 \right\}.$$

and d_{\parallel} is restriction of d to $^{L_0}L_1$.

The crossed module \mathcal{L} is abelian if it coincides with its center, i.e.

$$L_1 = {}^{L_0} L_1$$
 and $L_0 = \operatorname{st}_{L_0}(L_1) \cap Z(L_0)$.

The derived subcrossed module of \mathcal{L} , denoted as \mathcal{L}^2 , is defined as follows:

$$\mathcal{L}^2:(D_{L_0}(L_1),L_0^2,d_1),$$

where

$$D_{L_0}(L_1) = \langle l_0 l_1 \mid l_0 \in L_0, l_1 \in L_1 \rangle.$$

and d_{\parallel} is restriction of d to $^{L_0}L_1$.

A homomorphism between two Lie crossed modules $\mathcal{L}:(L_1,L_0,d)$ and $\mathcal{L}':(L_1',L_0',d')$ is a pair (f,g) of Lie algebra homomorphisms $f:L_1\longrightarrow L_1'$ and $g:L_0\longrightarrow L_0'$ satisfying

- $(1) \ d'f = gd;$
- (2) $f(l_0 l_1) = g(l_0) f(l_1),$

for all $l_0 \in L_0$ and $l_1 \in L_1$.

Definition 2.3. Assume $\mathcal{L}:(L_1,L_0,d)$ is a crossed module. A derivation of \mathcal{L} is a pair $(\psi,\phi):\mathcal{L}\to\mathcal{L}$ satisfying the following conditions:

- (1) $\psi \in \operatorname{Der}(L_1)$,
- (2) $\phi \in \text{Der}(L_0)$,
- (3) $d\psi = \phi d$,
- (4) $\psi(l_0 l_1) = l_0 \psi(l_1) + \phi(l_0) (l_1),$

for all $l_0 \in L_0$ and $l_1 \in L_1$.

The set of all derivations of \mathcal{L} is denoted by $\mathrm{Der}(\mathcal{L})$, which is a Lie algebra with bracket as in the following:

$$[(\psi, \phi), (\psi', \phi')] = ([\psi, \psi'], [\phi, \phi']) = (\psi\psi' - \psi'\psi, \phi\phi' - \phi'\phi).$$

Definition 2.4. Assume $\mathcal{L}:(L_1,L_0,d)$ is a Lie algebra crossed module. The a map $\delta:L_0\to L_1$ is called crossed derivation if

$$\delta([l_0, l'_0]) =^{l_0} \delta(l'_0) -^{l'_0} \delta(l_0)$$

for all $l_0, l'_0 \in L_0$. The set of all crossed derivations from L_0 to L_1 is denoted by $Der(L_0, L_1)$, which turns into a Lie algebra via the following bracket:

$$[\delta_1, \delta_2] = \delta_1 d\delta_2 - \delta_2 d\delta_1$$

for all $\delta_1, \delta_2 \in \text{Der}(L_0, L_1)$.

Definition 2.5. To each Lie crossed module $\mathcal{L}: (L_1, L_0, d)$, there corresponds a crossed module $Act(\mathcal{L}): (Der(L_0, L_1), Der(\mathcal{L}), \Delta)$ such that

hom
$$\Delta Der(L_0, L_1)Der(\mathcal{L})\delta(\delta d, d\delta)$$

and the action of $Der(\mathcal{L})$ on $Der(L_0, L_1)$ is defined as

$$(\alpha,\beta)\delta = \alpha\delta - \delta\beta$$

for all $(\alpha, \beta) \in \text{Der}(\mathcal{L})$ and $\delta \in \text{Der}(L_0, L_1)$, and it is called the actor of \mathcal{L} (see Casas and Ladra, [5]).

Proposition 2.6. There exists a canonical homomorphism of crossed modules as

$$(\varepsilon, \eta) : \mathcal{L} \longrightarrow \operatorname{Act}(\mathcal{L}),$$

where

hom
$$\varepsilon L_1 \operatorname{Der}(L_0, L_1) l_1 \delta_{l_1}$$
 and hom $\eta L_0 \operatorname{Der}(\mathcal{L}) l_0(\alpha_{l_0}, \beta_{l_0})$,

in which $\delta_{l_1}(l_0) = {}^{l_0} l_1$, $\alpha_{l_0}(l_1) = {}^{l_0} l_1$, and $\beta_{l_0}(l'_0) = [l_0, l'_0]$ for all $l_0 \in L_0$, $l'_0 \in L_0$, and $l_1 \in L_1$.

The image of (ε, η) is an ideal of $Act(\mathcal{L})$ and it is denoted as $InnAct(\mathcal{L})$. We have

InnAct(
$$\mathcal{L}$$
) : $(\varepsilon(L_1), \eta(L_0), \Delta_{|})$.

On can easily see that $\ker(\varepsilon, \eta) = Z(\mathcal{L})$. (See allahyary and saeedi [1])

Definition 2.7. Let \mathcal{L} be a Lie crossed module. Then the pointwise inner actor of \mathcal{L} is defined as follows:

$$Act_{pi}(\mathcal{L}) : (Der_{pi}(L_0, L_1), Der_{pi}(\mathcal{L}), \Delta_{|}),$$

where

$$\operatorname{Der}_{pi}(L_0, L_1) = \{ \delta \in \operatorname{Der}(L_0, L_1) \mid \forall \ l_0 \in L_0, \ \exists \ l_1 \in L_1 : \delta(l_0) = l_0 \ l_1 \}$$

and

$$\mathrm{Der}_{pi}(\mathcal{L}) = \left\{ (\alpha, \beta) \in \mathrm{Der}(\mathcal{L}) \mid \begin{array}{c} \forall \ l_1 \in L_1, \ \exists \ l_0 \in L_0 : \alpha(l_1) =^{l_0} \ l_1, \\ \forall \ l_0 \in L_0, \ \exists \ l'_0 \in L_0 : \beta(l_0) = [l'_0, l_0] \end{array} \right\}.$$

One can easily verify that $Act_{pi}(\mathcal{L})$ is a subcrossed module of $Act(\mathcal{L})$ and contains $InnAct(\mathcal{L})$ (see Allahyari and Saeedi [1]).

Definition 2.8. Let $\mathcal{L}:(L_1,L_0,d)$ be a Lie crossed module. Then $\mathrm{ID}^*\mathrm{Act}(\mathcal{L})$ is defined as

$$ID^*Act(\mathcal{L}): (ID^*(L_0, L_1), ID^*(\mathcal{L}), \Delta_{|}),$$

where

$$\mathrm{ID}^*(L_0,L_1) = \left\{ \delta \in \mathrm{Der}(L_0,L_1) \mid \begin{array}{l} \delta(x_0) \in D_{L_0}(L_1), \ \forall \ x_0 \in L_0, \\ \delta(x_0) = 0, \ \forall \ x_0 \in \mathrm{st}_{L_0}(L_1) \cap Z(L_0), \end{array} \right\}$$

and

$$ID^{*}(\mathcal{L}) = \left\{ (\alpha, \beta) \in Der(\mathcal{L}) \mid \begin{array}{l} \alpha(x_{1}) \in D_{L_{0}}(L_{1}), \ \forall \ x_{1} \in L_{1}, \\ \alpha(x_{1}) = 0, \ \forall \ x_{1} \in ^{L_{0}} L_{1}, \\ \beta(x_{0}) \in L_{0}^{2}, \ \forall \ x_{0} \in L_{0}, \\ \beta(x_{0}) = 0, \ \forall \ x_{0} \in \operatorname{st}_{L_{0}}(L_{1}) \cap Z(L_{0}) \end{array} \right\}.$$

On can easily show that $ID^*Act(\mathcal{L})$ is a subcrossed module of $Act(\mathcal{L})$ and contains $Act_{pi}(\mathcal{L})$ (see Allahyari and Saeedi [1]).

3. Center actor of Lie crossed modules

In this section we define subcrossed module of $Act(\mathcal{L})$ namely $Act_z(\mathcal{L})$ and we prove some of its elementary properties.

Definition 3.1. Let $\mathcal{L}:(L_1,L_0,d)$ be a Lie crossed module. The $\mathrm{Act}_z(\mathcal{L})$ is defined as follows:

$$Act_z(\mathcal{L}) : (Der_z(L_0, L_1), Der_z(\mathcal{L}), \Delta_{|}),$$

where

$$Der_z(L_0, L_1) = \left\{ \delta \in Der(L_0, L_1) \mid \delta(l_0) \in {}^{L_0} L_1, \ \forall \ l_0 \in L_0 \right\}$$

and

$$\operatorname{Der}_{z}(\mathcal{L}) = \left\{ (\alpha, \beta) \in \operatorname{Der}(\mathcal{L}) \mid \begin{array}{l} \alpha(l_{1}) \in^{L_{0}} L_{1}, \ \forall \ l_{1} \in L_{1}, \\ \beta(l_{0}) \in \operatorname{st}_{L_{0}}(L_{1}) \cap Z(L_{0}), \ \forall \ l_{0} \in L_{0}. \end{array} \right\}$$

Note that Δ_{\parallel} is the restriction of Δ to $\mathrm{Der}_z(L_0, L_1)$.

Proposition 3.2. $Act_z(\mathcal{L})$ is a subcrossed module of $Act(\mathcal{L})$.

Proof. We have to show that

- (1) $\operatorname{Der}_z(L_0, L_1) \leq \operatorname{Der}(L_0, L_1);$
- (2) $\operatorname{Der}_z(\mathcal{L}) \leqslant \operatorname{Der}(\mathcal{L});$
- (3) $\Delta_{|\operatorname{Der}_z(L_0,L_1)} \subseteq \operatorname{Der}_z(\mathcal{L}).$
- (1) Assume δ, δ' are two arbitrary elements of $\operatorname{Der}_z(L_0, L_1)$. Then

$$\delta(x_0) \in {}^{L_0} L_1$$
 and $\delta'(x_0) \in {}^{L_0} L_1$

for all $x_0 \in L_0$. Now since $[\delta, \delta'](x_0) = \delta d\delta'(x_0) - \delta' d\delta(x_0)$, one can easily verify that

$$[\delta, \delta'](x_0) \in^{L_0} L_1$$

for all $x_0 \in \mathcal{L}$. Hence $\mathrm{Der}_z(L_0, L_1) \leqslant \mathrm{Der}(L_0, L_1)$.

(2) Let (α, β) and (α', β') be two elements of $Der_z(\mathcal{L})$. Then

$$\alpha(x_1) \in^{L_0} L_1$$
 and $\alpha'(x_1) \in^{L_0} L_1$,
 $\beta(x_0) \in \operatorname{st}_{L_0}(L_1) \cap Z(L_0)$ and $\beta'(x_0) \in \operatorname{st}_{L_0}(L_1) \cap Z(L_0)$

for all $x_0 \in L_0$ and $x_1 \in L_1$. Since

$$[(\alpha, \beta), (\alpha', \beta')] = ([\alpha, \alpha'], [\beta, \beta']) = (\alpha\alpha' - \alpha'\alpha, \beta\beta' - \beta'\beta),$$

one can see that

$$(\alpha \alpha' - \alpha' \alpha)(x_1) = \alpha \alpha'(x_1) - \alpha' \alpha(x_1) \in^{L_0} L_1,$$

$$(\beta \beta' - \beta' \beta)(x_0) = \beta \beta'(x_0) - \beta' \beta(x_0) \in \operatorname{st}_{L_0}(L_1) \cap Z(L_0)$$

for all $x_0 \in L_0$ and $x_1 \in L_1$. Therefore $[(\alpha, \beta), (\alpha', \beta')] \in \operatorname{Der}_z(\mathcal{L})$ so that $\operatorname{Der}_z(\mathcal{L}) \leq \operatorname{Der}(\mathcal{L})$.

(3) Assume $\delta \in \operatorname{Der}_z(L_0, L_1)$. From the definition of Δ , we have

$$\Delta(\delta) = (\delta d, d\delta).$$

One can easily check that

$$\delta d(x_1) \in {}^{L_0} L_1,$$

$$d\delta(x_0) \in \operatorname{st}_{L_0}(L_1) \cap Z(L_0)$$

for all $x_0 \in L_0$ and $x_1 \in L_1$. Thus $\Delta(\delta) = (\delta d, d\delta) \in \operatorname{Der}_z(\mathcal{L})$, and so $\Delta_{|\operatorname{Der}_z(L_0, L_1)} \subseteq \operatorname{Der}_z(\mathcal{L})$. Therefore $\operatorname{Act}_z(\mathcal{L}) \leqslant \operatorname{Act}(\mathcal{L})$, and the proof is complete.

Definition 3.3. Let $\mathcal{L}: (L_1, L_0, d)$ be a Lie crossed module and $\mathcal{M}: (M_1, M_0, d)$ be an ideal of \mathcal{L} . Then the centralizer of \mathcal{M} in \mathcal{L} , denoted as $\mathcal{C}_{\mathcal{L}}(\mathcal{M})$, is defined as

$$\mathcal{C}_{\mathcal{L}}(\mathcal{M}): (^{M_0}L_1, C_{L_0}(M_0) \cap \operatorname{st}_{L_0}(M_1), d_{|}),$$

where

$$M_0 L_1 = \{ x_1 \in L_1 \mid x_0 \mid x_1 = 0, \ \forall \ x_0 \in M_0 \},$$

$$C_{L_0}(M_0) = \{ x_0 \in L_0 \mid [x_0, y_0] = 0, \ \forall \ y_0 \in M_0 \},$$

$$\operatorname{st}_{L_0}(M_1) = \{ x_0 \in L_0 \mid x_0 \mid x_1 = 0, \ \forall \ x_1 \in M_1 \}.$$

Let $\mathcal{M}: (M_1, M_0, d_1)$ and $\mathcal{N}: (N_1, N_0, d_1)$ be two ideals of the crossed module $\mathcal{L}: (L_1, L_0, d)$. Then the ideal $\mathcal{M} \cap \mathcal{N}$ of \mathcal{L} is defined as

$$\mathcal{M} \cap \mathcal{N} : (M_1 \cap N_1, M_0 \cap N_0, d_{\mid}).$$

Lemma 3.4. Let $\mathcal{L}: (L_1, L_0, d)$ be a Lie crossed module and $\mathcal{M}: (M_1, M_0, d)$ be an ideal of \mathcal{L} . Then $\mathcal{M} \cap \mathcal{C}_{\mathcal{L}}(\mathcal{M}) = Z(\mathcal{M})$.

Proof. It is obvious. \Box

Lemma 3.5. Let $\mathcal{L}: (L_1, L_0, d)$ be a Lie crossed module and $\operatorname{InnAct}(\mathcal{L}) \leq \mathcal{H} \leq \operatorname{ID}^* \operatorname{Act}(\mathcal{L})$. Then

$$C_{\text{Act}(\mathcal{L})}(\mathcal{H}) = \text{Act}_z(\mathcal{L}).$$

Proof. Assume $\mathcal{H}: (H_1, H_0, \Delta)$. We need to show that

- (1) H_0 Der $(L_0, L_1) = Der_z(L_0, L_1);$
- (2) $C_{\mathrm{Der}(\mathcal{L})}(H_0) \cap \mathrm{st}_{\mathrm{Der}(\mathcal{L})}(H_1) = \mathrm{Der}_z(\mathcal{L}).$
- (1) Let $\delta \in \text{Der}_z(L_0, L_1)$. Then $\delta(l_0) \in L_0$ for all $l_0 \in L_0$. Now if $(\alpha, \beta) \in H_0$, then we observe that

$$^{(\alpha,\beta)}\delta(l_0) = (\alpha\delta - \delta\beta)(l_0) = \alpha(\delta(l_0)) - \delta(\beta(l_0)) = -\delta(\beta(l_0)).$$

Since $\beta(l_0) \in L_0^2$, there exist $x_0, y_0 \in L_0$ such that $\beta(l_0) = [x_0, y_0]$. Then

$$(\alpha,\beta)\delta(l_0) = \delta([x_0,y_0]) = {}^{y_0}\delta(x_0) - {}^{x_0}\delta(y_0) = 0.$$

Thus $\delta \in {}^{H_0} \operatorname{Der}(L_0, L_1)$ and consequently $\operatorname{Der}_z(L_0, L_1) \subseteq {}^{H_0} \operatorname{Der}(L_0, L_1)$.

Conversely, assume $\delta \in {}^{H_0}$ Der (L_0, L_1) . Then ${}^{(\alpha,\beta)}\delta(x_0) = 0$ for all $x_0 \in L_0$ and $(\alpha,\beta) \in H_0$. Now since \mathcal{H} contains InnAct (\mathcal{L}) , we can write $(\alpha,\beta) = (\alpha_{l_0},\beta_{l_0})$ for some $l_0 \in L_0$. Then

$$(\alpha_{l_0}, \beta_{l_0}) \delta(x_0) = 0 \Rightarrow (\alpha_{l_0} \delta - \delta \beta_{l_0})(x_0) = 0,$$

$$\Rightarrow \alpha_{l_0}(\delta(x_0)) - \delta(\beta_{l_0}(x_0)) = 0,$$

$$\Rightarrow^{l_0} \delta(x_0) - \delta([l_0, x_0]) = 0,$$

$$\Rightarrow^{l_0} \delta(x_0) - {}^{l_0} \delta(x_0) + {}^{x_0} \delta(l_0) = 0,$$

$$\Rightarrow^{x_0} \delta(l_0) = 0$$

for all $x_0, l_0 \in L_0$. Therefore $\delta \in \operatorname{Der}_z(L_0, L_1)$ so that ${}^{H_0}\operatorname{Der}(L_0, L_1) \subseteq \operatorname{Der}_z(L_0, L_1)$.

(2) Let $(\alpha, \beta) \in \operatorname{Der}_z(\mathcal{L})$. Then

$$\alpha(l_1) \in {}^{L_0} L_1$$
 and $\beta(l_0) \in \operatorname{st}_{L_0}(L_1) \cap Z(L_0)$

for all $l_0 \in L_0$ and $l_1 \in L_1$. Now assume $(\alpha', \beta') \in H_0$ is any element. Then

$$[(\alpha, \beta), (\alpha', \beta')] = ([\alpha, \alpha'], [\beta, \beta']),$$
$$[\alpha, \alpha'](l_1) = (\alpha\alpha' - \alpha'\alpha)(l_1) = \alpha(\alpha'(l_1)) - \alpha'(\alpha(l_1)) = \alpha(\alpha'(l_1)).$$

Since $\alpha'(l_1) \in D_{L_0}(L_1)$, there exist $x_0 \in L_0$ and $x_1 \in L_1$ such that

$$[\alpha, \alpha'](l_1) = \alpha(\alpha'(l_1)) = \alpha(x_0 x_1) = x_0 \alpha(x_1) + \beta(x_0) x_1 = 0.$$

Similarly, we can show that

$$[\beta, \beta'](l_0) = (\beta\beta' - \beta'\beta)(l_0) = \beta(\beta'(l_0)) - \beta'(\beta(l_0))$$
$$= \beta([x_0, y_0]) = [\beta(x_0), y_0] + [x_0, \beta(y_0)] = 0$$

for some $x_0, y_0 \in L_0$. Hence, we conclude that $[(\alpha, \beta), (\alpha', \beta')] = 0$ and so

$$\operatorname{Der}_{z}(\mathcal{L}) \subseteq C_{\operatorname{Der}(\mathcal{L})}(H_{0}).$$
 (3.1)

Now suppose that $\delta \in H_1$. Then

$$(\alpha,\beta)\delta(x_0) = \alpha(\delta(x_0)) - \delta(\beta(x_0)) = \alpha(\delta(x_0)).$$

Since $H_1 \subseteq ID^*(L_0, L_1)$, there exist elements $y_0 \in L_0$ and $y_1 \in L_1$ such that $\delta(x_0) = y_0 y_1$. Then we have

$$(\alpha,\beta)\delta(x_0) = \alpha(\delta(x_0)) = \alpha(y_0,y_1) = y_0 \alpha(y_1) + \beta(y_0) y_1 = 0.$$

Thus

$$\operatorname{Der}_{z}(\mathcal{L}) \subseteq \operatorname{st}_{\operatorname{Der}(\mathcal{L})}(H_{1}).$$
 (3.2)

From (3.1) and (3.2) it follows that

$$\operatorname{Der}_{z}(\mathcal{L}) \subseteq C_{\operatorname{Der}(\mathcal{L})}(H_{0}) \cap \operatorname{st}_{\operatorname{Der}(\mathcal{L})}(H_{1}).$$

Conversely, assume $(\alpha, \beta) \in C_{\mathrm{Der}(\mathcal{L})}(H_0) \cap \mathrm{st}_{\mathrm{Der}(\mathcal{L})}(H_1)$. Then

$$(\alpha,\beta)\delta = 0$$
 and $[(\alpha,\beta),(\alpha',\beta')] = 0$

for all $\delta \in H_1$ and $(\alpha', \beta') \in H_0$. Now since $InnAct(\mathcal{L}) \subseteq \mathcal{H}$, we can write $\delta = \delta_{l_1}$ for some $l_1 \in L_1$. Then

$$(\alpha,\beta)\delta_{l_1}(x_0) = 0 \Rightarrow \alpha(\delta_{l_1}(x_0)) - \delta_{l_1}(\beta(x_0)) = 0,$$

$$\Rightarrow \alpha(x_0 l_1) - \beta(x_0) l_1 = 0,$$

$$\Rightarrow^{x_0} \alpha(l_1) + \beta(x_0) l_1 - \beta(x_0) l_1 = 0,$$

$$\Rightarrow^{x_0} \alpha(l_1) = 0$$

for all $x_0 \in L_0$ and $l_1 \in L_1$. This shows that

$$\alpha(l_1) \in^{L_0} L_1 \tag{3.3}$$

for all $l_1 \in L_1$.

On the other hand, for all $l_0 \in L_0$, we have

$$\begin{split} [(\alpha,\beta),(\alpha_{l_0},\beta_{l_0})] &= 0 \Rightarrow [\alpha,\alpha_{l_0}](x_1) = 0, \\ &\Rightarrow \alpha(\alpha_{l_0}(x_1) - \alpha_{l_0}(\alpha(x_1)) = 0, \\ &\Rightarrow \alpha({}^{l_0}x_1) - {}^{l_0}\alpha(x_1) = {}^{l_0}\alpha(x_1) + {}^{\beta(l_0)}x_1 - {}^{l_0}\alpha(x_1) = {}^{\beta(l_0)}x_1 = 0 \end{split}$$

for all $x_1 \in L_1$, which implies that $\beta(l_0) \in \operatorname{st}_{L_0}(L_1)$. Also

$$\begin{split} [\beta, \beta_{l_0}] &= 0 \Rightarrow [\beta, \beta_{l_0}](x_0) = 0, \\ &\Rightarrow \beta(\beta_{l_0}(x_0)) - \beta_{l_0}(\beta(x_0)) = 0, \\ &\Rightarrow \beta([l_0, x_0]) - [l_0, \beta(x_0)] = 0, \\ &\Rightarrow [\beta(l_0), x_0] + [l_0, \beta(x_0)] - [l_0, \beta(x_0)] = [\beta(l_0), x_0] = 0 \end{split}$$

for all $x_0 \in L_0$, which implies that $\beta(l_0) \in Z(L_0)$. Hence

$$\beta(l_0) \in \operatorname{st}_{L_0}(L_1) \cap Z(L_0).$$
 (3.4)

From (3.3) and (3.4), we get
$$(\alpha, \beta) \in \mathrm{Der}_z(\mathcal{L})$$
.

Corollary 3.6. Let $\mathcal{L}: (L_1, L_0, d)$ be a Lie crossed module and $\operatorname{InnAct}(\mathcal{L}) \leq \mathcal{H} \leq \operatorname{ID}^* \operatorname{Act}(\mathcal{L})$. Then

$$\mathcal{H} \cap \operatorname{Act}_{z}(\mathcal{L}) = Z(\mathcal{H}).$$

Proof. The result follows by Lemmas 3.4 and 3.5.

4. Main theorem

We are now ready to prove our main theorem, which gives a necessary and sufficient condition for $\mathrm{Act}_{pi}(\mathcal{L})$ and $\mathrm{Act}_z(\mathcal{L})$ to be equal. To this end, we need some preliminary lemmas.

Lemma 4.1. Let $\mathcal{L}: (L_1, L_0, d)$ be a Lie crossed module and $Act_{pi}(\mathcal{L}) = Act_z(\mathcal{L})$. Then $InnAct(\mathcal{L})$ is abelian.

Proof. The result follows from the fact that $\operatorname{InnAct}(\mathcal{L}) \subseteq \operatorname{Act}_{pi}(\mathcal{L})$ and $\operatorname{Act}_{pi}(\mathcal{L}) = \operatorname{Act}_{z}(\mathcal{L})$.

Definition 4.2. Let $\mathcal{L}: (L_1, L_0, d_{\mathcal{L}})$ and $\mathcal{M}: (M_1, M_0, d_{\mathcal{M}})$ be two Lie crossed modules. The set of all linear transformations from \mathcal{L} to \mathcal{M} is denoted by $T(\mathcal{L}, \mathcal{M})$ and it is defined as

$$T(\mathcal{L}, \mathcal{M}) : (T(L_0, M_1), (T(L_1, M_1), T(L_0, M_0))),$$

where for example $T(L_0, M_1)$ is the vector space of linear transformations from L_0 to M_1 .

Definition 4.3. Let $\mathcal{L}:(L_1,L_0,d)$ be a Lie crossed module. The dimension of \mathcal{L} is defined as

$$\dim \mathcal{L} = (\dim L_1, \dim L_0).$$

Lemma 4.4. Let $\mathcal{L}:(L_1,L_0,d)$ be a Lie crossed module. Then we have the following vector space isomorphisms:

- (1) $\operatorname{Der}_z(L_0, L_1) \cong T(L_0/L_0^2, L_0, L_1);$
- (2) $\operatorname{Der}_{z}(\mathcal{L}) \cong (T(L_{1}/D_{L_{0}}(L_{1}), L_{0}, L_{1}), T(L_{0}/L_{0}^{2}, \operatorname{st}_{L_{0}}(L_{1}) \cap Z(L_{0})).$

Proof. (1) For each $\delta \in \operatorname{Der}_z(L_0, L_1)$, we can define the map $\psi_{\delta} : L_0/L_0^2 \longrightarrow^{L_0} L_1$ by $\psi_{\delta}(l_0 + \mathcal{L}_0^2) = \delta(l_0)$ for all $l_0 \in L_0$. Clearly, ψ_{δ} is well-defined. Also, it is easy to see that the map

$$\psi: \operatorname{Der}_z(L_0, L_1) \longrightarrow T\left(\frac{L_0}{L_0^2}, L_0 L_1\right)$$

define by $\psi(\delta) = \psi_{\delta}$ is an one-to-one and onto linear transformation. Thus

$$\operatorname{Der}_{z}(L_{0}, L_{1}) \cong T\left(\frac{L_{0}}{L_{0}^{2}}, L_{0} L_{1}\right).$$

(2) For each $(\alpha, \beta) \in \operatorname{Der}_z(\mathcal{L})$, we may define the maps $\phi_{\alpha} : L_1/D_{L_0}(L_1) \longrightarrow^{L_0} L_1$ and $\phi_{\beta} : L_0/L_0^2 \longrightarrow \operatorname{st}_{L_0}(L_1) \cap Z(L_0)$ by $\phi_{\alpha}(l_1 + D_{L_0}(L_1)) = \alpha(l_1)$ and $\psi_{\beta}(l_0 + L_0^2) = \beta(l_0)$, respectively. One can easily check that, the maps ϕ_{α} and ϕ_{β} are well-defined linear transformations. Now, it is easy to show that the map

$$\hom \phi \mathrm{Der}_z(\mathcal{L}) \bigg(T \left(\frac{L_1}{D_{L_0}(L_1)}, ^{L_0} L_1 \right), T \left(\frac{L_0}{L_0^2}, \mathrm{st}_{L_0}(L_1) \cap Z(L_0) \right) \bigg) (\alpha, \beta) (\phi_\alpha, \phi_\beta)$$

is a one-to-one and onto linear transformation. Thus

$$\operatorname{Der}_{z}(\mathcal{L}) \cong \left(T\left(\frac{L_{1}}{D_{L_{0}}(L_{1})}, L_{0} L_{1}\right), T\left(\frac{L_{0}}{L_{0}^{2}}, \operatorname{st}_{L_{0}}(L_{1}) \cap Z(L_{0})\right) \right),$$

as required

Corollary 4.5. We have

$$\dim \operatorname{Act}_z(\mathcal{L}) = \left(\dim T\left(\frac{L_0}{L_0^2}, ^{L_0}L_1\right), \\ \dim \left(T\left(\frac{L_1}{D_{L_0}(L_1)}, ^{L_0}L_1\right), T\left(\frac{L_0}{L_0^2}, \operatorname{st}_{L_0}(L_1) \cap Z(L_0)\right)\right)\right).$$

Theorem 4.6. Let $\mathcal{L}: (L_1, L_0, d)$ be a nonabelian Lie crossed module of finite dimension with $Z(\mathcal{L}) \neq 0$. Then $\operatorname{Act}_z(\mathcal{L}) = \operatorname{Act}_{pi}(\mathcal{L})$ if and only if $Z(\mathcal{L}) = \mathcal{L}^2$ and

$$\dim \operatorname{Act}_{pi}(\mathcal{L}) = \left(\dim T\left(\frac{L_0}{\operatorname{st}_{L_0}(L_1) \cap Z(L_0)}, D_{L_0}(L_1)\right), \\ \dim \left(T\left(\frac{L_1}{L_0L_1}, D_{L_0}(L_1)\right), T\left(\frac{L_0}{\operatorname{st}_{L_0}(L_1) \cap Z(L_0)}, L_0^2\right)\right)\right).$$

Proof. First assume that $\operatorname{Act}_z(\mathcal{L}) = \operatorname{Act}_{pi}(\mathcal{L})$. Since $\operatorname{InnAct}(\mathcal{L}) \subseteq \operatorname{Act}_{pi}(\mathcal{L})$, we get $\mathcal{L}^2 \subseteq Z(\mathcal{L})$. For each $\delta \in \operatorname{Der}_{pi}(L_0, L_1)$, we define the well-defined linear transformation $\psi_\delta : L_0/\operatorname{st}_{L_0}(L_1) \cap Z(L_0) \longrightarrow D_{L_0}(L_1)$ by $\psi_\delta(x_0 + \operatorname{st}_{L_0}(L_1) \cap Z(L_0)) = \delta(x_0)$. One can easily check that the map

$$\psi: \operatorname{Der}_{pi}(L_0, L_1) \longrightarrow T\left(\frac{L_0}{\operatorname{st}_{L_0}(L_1) \cap Z(L_0)}, D_{L_0}(L_1)\right)$$

define by $\psi(\delta) = \psi_{\delta}$ is a one-to-one and onto linear transformation. Thus

$$\dim \operatorname{Der}_{pi}(L_0, L_1) = \dim T\left(\frac{L_0}{\operatorname{st}_{L_0}(L_1) \cap Z(L_0)}, D_{L_0}(L_1)\right). \tag{4.1}$$

Also, for each $(\alpha, \beta) \in \operatorname{Der}_{pi}(\mathcal{L})$, the maps $\phi_{\alpha} : L_1/^{L_0}L_1 \longrightarrow D_{L_0}(L_1)$ and $\phi_{\beta} : L_0/\operatorname{st}_{L_0}(L_1) \cap Z(L_0) \longrightarrow L_0^2$ defined by $\phi_{\alpha}(x_1 + ^{L_0}L_1) = \alpha(x_1)$ and $\phi_{\beta}(x_0 + \operatorname{st}_{L_0}(L_1) \cap Z(L_0)) = \beta(x_0)$, respectively, are well-defined linear transformations. One can easily see that

$$\phi: \mathrm{Der}_{pi}(\mathcal{L}) \longrightarrow \left(T\left(\frac{L_1}{L_0L_1}, D_{L_0}(L_1)\right), T\left(\frac{L_0}{\mathrm{st}_{L_0}(L_1) \cap Z(L_0)}, L_0^2\right)\right)$$

given by $\phi(\alpha, \beta) = (\phi_{\alpha}, \phi_{\beta})$ is a one-to-one and onto linear transformation. Thus

$$\dim \operatorname{Der}_{pi}(\mathcal{L}) = \dim \left(T\left(\frac{L_1}{L_0L_1}, D_{L_0}(L_1)\right), T\left(\frac{L_0}{\operatorname{st}_{L_0}(L_1) \cap Z(L_0)}, L_0^2\right) \right). \tag{4.2}$$

From (4.1) and (4.2), it follows that

$$\dim \operatorname{Act}_{pi}(\mathcal{L}) = \left(\dim T\left(\frac{L_0}{\operatorname{st}_{L_0}(L_1) \cap Z(L_0)}, D_{L_0}(L_1)\right), \\ \dim \left(T\left(\frac{L_1}{L_0L_1}, D_{L_0}(L_1)\right), T\left(\frac{L_0}{\operatorname{st}_{L_0}(L_1) \cap Z(L_0)}, L_0^2\right)\right)\right).$$

Suppose on the contrary that $\mathcal{L}^2 \subset Z(\mathcal{L})$. Then

$$\dim T\left(\frac{\mathcal{L}}{Z(\mathcal{L})},\mathcal{L}^2\right)<\dim T\left(\frac{\mathcal{L}}{\mathcal{L}^2},Z(\mathcal{L})\right),$$

which contradicts the equality of $\operatorname{Act}_{pi}(\mathcal{L})$ and $\operatorname{Act}_{z}(\mathcal{L})$. Therefore $\mathcal{L}^{2} = Z(\mathcal{L})$. Conversely, assume that $\mathcal{L}^{2} = Z(\mathcal{L})$ and

$$\dim \operatorname{Act}_{pi}(\mathcal{L}) = \left(\dim T\left(\frac{L_0}{\operatorname{st}_{L_0}(L_1) \cap Z(L_0)}, D_{L_0}(L_1)\right), \\ \dim \left(T\left(\frac{L_1}{L_0L_1}, D_{L_0}(L_1)\right), T\left(\frac{L_0}{\operatorname{st}_{L_0}(L_1) \cap Z(L_0)}, L_0^2\right)\right)\right).$$

Since $\mathcal{L}^2 \subseteq Z(\mathcal{L})$, we have

$$Act_{pi}(\mathcal{L}) \leqslant Act_z(\mathcal{L}).$$
 (4.3)

On the other hand, we have

$$\dim \operatorname{Der}_{z}(L_{0}, L_{1}) = \dim T\left(\frac{L_{0}}{L_{0}^{2}}, L_{1}\right)$$

$$= \dim \left(\frac{L_{0}}{\operatorname{st}_{L_{0}}(L_{1}) \cap Z(L_{0})}, D_{L_{0}}(L_{1})\right)$$

$$= \dim \operatorname{Der}_{pi}(L_{0}, L_{1}) \tag{4.4}$$

and

$$\dim \operatorname{Der}_{z}(\mathcal{L}) = \dim T\left(\frac{L_{1}}{L_{0}L_{1}}, D_{L_{0}}(L_{1})\right), T\left(\frac{L_{0}}{L_{0}^{2}}, \operatorname{st}_{L_{0}}(L_{1}) \cap Z(L_{0})\right)$$

$$= \dim \left(T\left(\frac{L_{1}}{L_{0}L_{1}}, D_{L_{0}}(L_{1})\right), T\left(\frac{L_{0}}{\operatorname{st}_{L_{0}}(L_{1}) \cap Z(L_{0})}, L_{0}^{2}\right)\right)$$

$$= \dim \operatorname{Der}_{pi}(\mathcal{L})$$

$$(4.5)$$

From (4.4) and (4.5), we conclude that $\dim \operatorname{Act}_z(\mathcal{L}) = \dim \operatorname{Act}_{pi}(\mathcal{L})$. Since $\operatorname{Act}_{pi}(\mathcal{L}) \leqslant \operatorname{Act}_z(\mathcal{L})$ by (4.3), it follows that $\operatorname{Act}_z(\mathcal{L}) = \operatorname{Act}_{pi}(\mathcal{L})$. The proof is completed.

Acknowledgments

We thank the two referees for careful readings of the manuscript and for a number of constructive corrections and suggestions.

REFERENCES

- 1. A. Allahyari, F. Saeedi, Some Properties of Isoclinism of Lie Algebra Crossed Module, *Asian–Eur. J. Math.*, **13**(3), (2020), 2050055 (14 pages).
- A. Allahyari, F. Saeedi, On Nilpotency of Outer Pointwise Inner Actor of the Lie Algebra Crossed Modules, *Journal of Mathematical Extension*, 14(1), (2020), 19–40.
- J. M. Casas, Invariants de Modulos Cruzados en Algebras de Lie, Ph.D. Thesis, Universty of Santiago, 1991.

[DOI: 10.61186/ijmsi.19.2.195]

- J. M. Casas, M. Ladra, Perfect Crossed Modules in Lie Algebras, Comm. Algebra, 23, (1995), 1625–1644.
- J. M. Casas, M. Ladra, The Actor of a Crossed Module in Lie Algebra, Comm. Algebra, 26, (1998), 2065–2089.
- J. M.Casas, R. Fernandez-Casado, X. Garcia-Martinez, E. Khmaladze, Actor of a Crossed Module of Leibniz Algebras, Theory Appl. Categ., 33, (2018), 23–42.
- B. Edalatzadeh, Capability of Crossed Modules of Lie Algebras, Comm. Algebra, 42, (2014), 3366–3380.
- R. Lavendhomme, J. R. Roisin, Cohomologie Non Abelienne de Structures Algebriques, J. Algebra, 67, (1980), 385–414.
- K. Norrie, Actions and Automorphisms of Crossed Modules, Bull. Soc. Math. France, 118(2), (1990), 129–146.
- S. Sheikh-Mohseni, F. Saeedi, M. Badrkhani-Asl, On Special Subalgebras of Derivations of Lie Algebras, Asian-European J. Math., 8(2), (2015), 1550032 (12 pages).
- J. H. C. Whitehead, Combinatorial Homotopy II, Bull. Amer. Math. Soc., 55, (1949), 453–496.