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ABSTRACT. This paper focuses on the ['-semihypergroups. Our goal seeks
to find the conditions of sub—I'-semihypergroup using bi—bases properties.
We provide definitions and explain some properties of bi—bases in I'—
semihypergroups. The findings extend the results from bi-bases of I'—
semigroups. The findings demonstrate that if B is a bi—bases of a I'—-
semihypergroup H; then, B is a sub-I'-semihypergroup of H if and only
if for any b,c € B and v € I, b € byc or ¢ € byc.
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1. INTRODUCTION AND PRELIMINARIES

F. Marty [1] created hyperstructure theory. Algebraic hyperstructures are a
suitable generalization of classical algebraic structures. In a classical algebraic
structure, the composition of elements is an element, while in an algebraic hy-
perstructure, the composition of two elements is a set. Fabrici [2, 3] introduced
the concepts of one—sided and two—sided bases of a semigroup which were ex-
tended to ordered semigroups by T. Changpas and P. Summaprab [9]. Later,
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P. Kummoon and T. Changpas [6] defined and identified some properties of bi—
bases in semigroups, and they [7] extended the results to I'-semigroups. This
paper attempts to find the condition of sub—I'-semihypergroup using bi—bases
properties in I'-semihypergroups and begins by introducing the concept of bi—
bases of I'-semihypergroup and extend the results of bi—bases in I'-semigroups
to I'-semihypergroups. In this section, the authors begin by recalling termi-
nologies of I'-semihypergroups as follows:

Let H be a nonempty set. Then, the map o : H x H — P*(H) where
P*(H) is the family of nonempty subset of H. The system (H,o) is called a
semihypergroup if for every x,y,2 € H, xo(yoz) = (zoy)oz. If Aand B are
two nonempty subsets of H, then, we denote

AoB= U aob;zoA={z}oAand Aox=Aoc{z} forallz € H.

acA,beEB
A nonempty subset A of semihypergroup H is called a subsemihypergroup of
Hif Ao AC A.

Definition 1.1. [8] Let H and I" be two nonempty sets. Then, H is called a
I'-semihypergroup if I' is a set of hyperoperation on H and for every «, 8 € T,
za(yfz) = (zay)Bz for all x,y,z € H .

If A and B are two nonempty subsets of H, we denote

AIB =, cr AyB=U{ayb|a€ A,be B and y €'}
Let (H, o) be a semihypergroup and I' = {o}. Then, H is a '-semihypergroup.
Clearly, every semihypergroup is a I'-semihypergroup.

Definition 1.2. [5] Let H be a '-semihypergroup. A nonempty subset A of H
is called a sub—I'-semihypergroup of H if ATA C A. A sub-I'-semihypergroup
A of H is called a bi-I'-hyperideal of H if ATHI'A C A.

Proposition 1.3. [8] Let H be a I'-semihypergroup and B; be a bi-T'~hyperideal
of H for anyic 1. If ﬂ B; # 0; then, ﬂ B; is a bi-I'-hyperideal of H.
icl iel
Let A be a nonempty subset of a I'-semihypergroup H and define the set of all
bi-I'~hyperideal of H containing A as follows:
K = {B | B is a bi-I'-hyperideal of H containing A}.
Clearly, K # (), because H € K. Suppose (A), = ﬂ B. This indicates seen

BeK
that A C (A)p. By proposition 1.3, (A4), is a bi-T'—hyperideal of H. Moreover,

(A)p is the smallest bi-T'-hyperideal of H containing A.

Proposition 1.4. Let A be a nonempty subset of a I'-semihypergroup H.
Then,

(A), = AUATAU ATHT A
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Proof. Suppose B = AU ATAU ATHT' A. Clearly, A C B. Consider BI'B =
(AUATAUATHTAT(AUATAU ATHTA) C ATAU ATHT A C B. Hence,
B is a sub-I'-semihypergroup of H containing A. Consider BT HI'B = (AU
ATA U ATHTA)THT (AU ATAU ATHT A) C ATHTA C B. Therefore, B
is a bi-I'-hyperideal of H containing A. Let C' be any bi-I'-hyperideal of H
containing A. Thus, A C C. Since C is a sub—I'-semihypergroup of H; so,
AT'A C CTC C C. ATHTA C CTHTC C C because C is bi-I'-hyperideal
of H. Hence, B = AU ATAU ATHT'A C C. Thus, B is the smallest bi-I'-
hyperideal of H containing A. Therefore, (A), = AU ATAU ATHT A. O

(A)y is called the bi-I'-hyperideal of H generated by A.

Definition 1.5. Let H be a I'-semihypergroup. A nonempty subset B of H
is called a bi—bases of H if it satisfies the following two conditions.

1. H=(B), (i.e., H=BUBI'BUBI'HT'B).

2. If A is a nonempty subset of B such that H = (A); then, A = B.

EXAMPLE 1.6. Let H = {x,y, z,w} and I" = {8, a} be the sets of hyperopera-
tions defined below

B ‘ x Y z w @ x Y z w
| {2} Azy} {zw} {w v | {z,yt A{zy} {zw} {w
y | {zyr A{zy} {zw} {w} y | {zyr {y} {zw} {w}
z [ {zwt {zwp {2} {w} z [ {zw} {zwp  {z} {w}
w{ {w}y  Aw}  Aw} {w}  w| {w} Afw} Aw} {w}

N. Yaqoob [4] showed that H is a I'-semihypergroup. Consider (4); = {z} and
(A)a = {y}; so, (A); and (A)2 are bi-bases of H.

2. MAIN RESULTS

In this section, we characterize bi-bases of I'-semihypergroups and show
conditions of sub—I'-semihypergroup using bi-bases properties.

Lemma 2.1. Let B be a bi-bases of a I'-semihypergroup H and a,b € B.
If a € (b UOI'HT'D; then, a = b.

Proof. Let a,b € B. Suppose a € bI'bUbI'HTb and a # b. Setting A = B\{a};
then, A C B. From a # b, so b € A. Hence, (A)y C (B), = H. Let
x € H = (B)y. Then, x € BUBI'B U BT'HI'B. There are three cases to
consider.
Case 1: = € B.

Subcase 1.1: « # a. Then, z € B\{a} = A C (A)y.

Subcase 1.2: x =a. So, x =a € bIbUIHTH C ATAU ATHT A C (A)y.
Case 2 : x € BI'B. Hence, x € by;yby for some by,b; € B and v € T
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Subcase 2.1: by = a and by = a . By assumption,

T € bivby = ava
C (bI'bUbLI'HTD)T'(bI'b U BI'HT'D)
= bbb U bT'BI'bI HT'G U b HTOI'6I'd U b HITBI'bI" HT'D
C ATATATAU ATATATHTAU ATHTATATAU ATHTATATHT A
C ATHTA C (A),

Subcase 2.2: by # a and by = a. By assumption and A = B\{a},

x € by1ybe = byya C (B\{a})T'(bI'b U bI'HT'D)
= (B\{a})T0I'b U (B\{a})TOI'HT'b
C ATATAU ATATHTA C ATHTA C (A),

Subcase 2.3: by = a and by # a. By assumption and A = B\{a}; then,

2 € biyby = ayby C (BTHUBIHTH)(B\{a})
= bIBI(B\{a}) U T HTWD(B\{a})
C ATATAU ATATHTA C ATHT A C (A),.

Subcase 2.4: by # a and by # a. From A = B\{a}, so ¢ € byyby C
(B\{ah)I'(B\{a}) = AT'A C (A)s.
Case 3: x € BTHI'B. Hence, © € b3y, hvysby for some b3,by € B, 71,72 € T
and h € H.

Subcase 3.1: b3 = a and by = a, consider

T € bgy1hyoby
= amihya
C (r'bU B HTH)THT(bI'b U BT HT'h)
=bI'b'HITOI'b UBIDIHIBI'HTb U b’ HTBI' HT'0I'd U I HT'OI' HT'6I'b
C ATATHTATAU ATATATATHT AU ATHTATHTATAU ATHT ATHT AT A
C ATHTA C (A).

Subcase 3.2: b3 # a and by = a. By assumption and A = B\{a}; so,

x € b3y1hyabs = b3y1hy2a
C (B\{a})THT (5T U bT HTb)
— (B\{a})THT®Tb U (B\{a}) T HTPT HTb
C ATHTATAU ATHTATHT A C ATHT A C (A)y.
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Subcase 3.3 : b3 = a and by # a. By assumption and A = B\{a}; hence,

2 € bzyrhyaby = ay1hyaby
C (bTh U BT HTH)THT(B\{a})
= ODOCHT(B\{a}) UBT HTBL HT(B\{a})
C ATATHTAU ATHTATHT A C ATHT A C (A),.

Subcase 3.4: b3 # a and by # a. From A = B\{a}; then, z € b3y1hyeby C
(B\{a})THT'(B\{a}) = ATHT' A C (A)y. Thus, (A), = H. This is a contra-
diction. Therefore, a = b. O

Lemma 2.2. Let B be a bi-bases of a I'-semihypergroup H and a,b,c € B. If
a € cI'bUcl’HTD, thena =05 ora=c.

Proof. Let a,b,c € B and h € H. Assume a € cI['bU c['HT'b such that a # b
and a # c. Setting A = (B\{a}). Hence, A C B, then (A), C (B), = H.
From a # b and a # ¢; so, b,c € A. Let v € H. Since (B), = H; thus,
x € BUBI'BU BT HI'B. There are three cases to consider.
Case 1: = € B.
Subcase 1.1: © # a. Then, z € B\{a} = A C (A),.
Subcase 1.2: © = a. Thus, x =a € cI'bUT'HT'b C ATAU ATHT A C (A)y.
Case 2: x € BI'B. Then, x € byybs for some by,by € B and v €T
Subcase 2.1: by = a and by = a. By assumption,
x € biybe = aya C (cI'bU c'HTO)T' (cI'b U cI'HT'b) C ATHT'A C (A)y.
Subcase 2.2: by # a and by = a. By assumption and A = B\{a}; then,
x € b1ybe = byya C (B\{a})T'(cI'bU cI'HTb) C ATHT A C (A)p.
Subcase 2.3: b= a and b # a. By assumption and A = B\{a}; so,
x € b1ybe = aybe C (cI'bU I'HTBD)I'(B\{a}) C ATHT' A C (A)p.
Subcase 2.4: by # a and by # a. By assumption and A = B\{a}; thus,
x € biybe C (B\{a})T'(B\{a}) = AT A C (A)p.
Case 3: x € BTHI'B. Hence, © € b3y, hvysby for some b3,by € B, 71,72 € T
and h € H.
Subcase 3.1: b3 = a and by = a. Then,
x € bgy1hy2by = ay1hyea C (cI'b U T HTO)THT (cI'b U cI'HT'D) C ATHT'A C
(A)p.
Subcase 3.2: b3 # a and by = a. By assumption and A = B\{a}; so,
x € bgy1hyabs = bzyihyea C (B\{a})THT (cI'bU ¢<I'HT'b) C ATHT A C (A)p.
Subcase 3.3: b3 = a and by # a. By assumption and A = B\{a}; thus,
x € byy1hyaby = ay1hyeby C (cI'b U c'HTD)IHT (B\{a}) C ATHT A C (A),.
Subcase 3.4: b3 # a and by # a. From A = B\{a}; then,
x € bg’}/lh’}/gb4 S (B\{a})FHF(B\{a}) = AT'HT' A C (A)b
From all cases, (A), = H. This is a contradiction. Therefore, a = b or
a=c. (]
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Definition 2.3. Let H be a I'-semihypergroup. Define a quasi-order on H by,
for any a,b € H, a <3 b < (a)p C (b)p.

In example 1.6, A; = {z} and A2 = {y} are bi-bases of H. Since (z)s C (y)s,
so x < y and since (y)p C (x)p, then y <, . From = <, y and y <; z, but
x # y. Therefore, <p is not a partial order on H. This shows that the order
<p defined above is not, in general, a partial order.

Lemma 2.4. Let B be a bi-bases of a I'-semihypergroup H and a,b € B. If
a # b, then neither a <, b or b <; a.

Proof. Let a,b € B. Suppose a # b. If a < b; hence, (a)p C (b)p. Thus,
a € (a)p C (b)y = {b} UbU'HTH. By Lemma 2.1, ¢ = b. This is a
contradiction. If b <; a, can be proved similarly. O

Lemma 2.5. Let B be a bi-bases of a I'-semihypergroup H. For all a,b,c € B,
Y1,Y2 € and h € H.
1. Ifa € by;c U byiclbyic U by cL HTbysc; then, a =b or a = c.
2. If a € byyrhvyac U byrhyaclbyrhyac U byshyacl HL by hyac; then, a = b
ora=c.

Proof. Let a,b,ce B, ye€I'and h € H.
(1.) Assume a € by;cU by cl'byic U by cI’HTbyp ¢ such that a # b and a # c.
Consider A = B\{a}. Clearly, A C B, thus (A), C (B), = H. From a # b and
a #c;s0,b,c€ A. Let x € H. Since (B), = H,so x € BUBI'BUBTHIB.
There are three cases to consider.
Case 1: z € B.

Subcase 1.1: « # a. Then, x € B\{a} = A C (A)y.

Subcase 1.2: = = a. By assumption, so
x=a € byjcUbycl'by1cUbycT’HTbyic € ATAU ATHT A C (A)y.
Case 2: x € BI'B. Thus, x € byyby for some b1,b € B and v €T

Subcase 2.1 : by = a and b = a. By assumption, then
T € biyby = ava

C (by1cUby1clby1c U by eI’ HT by )T (byr e U byr clbyrc U by T HT by €)
C ATHTAC (A)
Subcase 2.2: by # a and by = a. By assumption and A = B\{a}; then,
x € b1ybe = byya C (B\{a})T'(by1cUby1cTbyi1c U by T HT by )
C ATHT' A C (A)y.
Subcase 2.3: by = a and by # a. By assumption and A = B\{a}; so,
x € biybe = ayby C (by1cU by cl'by1c U by I’ HTby )T (B\{a})
C ATHTA C (A),.
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Subcase 2.4: by # a and by # a. By assumption and A = B\{a}; thus,
x C bivbe C (B\{a})T'(B\{a}) = AT A C (A)y.
Case 3: © € BTHI'B. Hence, x € b3y, hy2bs for some b3, by € B and for some
v1,7v2 € I' and for some h € H.

Subcase 3.1: b3 = a and by = a. By assumption, then

T € b3y1hy204
= ay1hy2a
C (by1cUby1clby1c U by ¢’ HD by )T HT (by1c U byr el'byr e U by ¢ HTbyq €)
C ATHTA C (A),.

Subcase 3.2: bs # a and by = a. By assumption and A = B\{a}; so,

x € b3y1hyabs = byy1hyea C (B\{a})THT (by1c U by clby1e U by T HT by ¢)
C ATHTA C (A)y.

Subcase 3.3: b3 = a and by # a. By assumption and A = B\{a}; thus,

x € bay1hyaby = bgyr1hyea C (byrc U byiclbyie U by T HT by ¢)THT(B\{a})
C ATHT A C (A)y.

Subcase 3.4: b3 # a and by # a. By assumption and A = B\{a}; hence,
x € bgybs C (B\{a})T'(B\{a}) = ATA C (A)y.
From all cases, (A), = H. This is a contradiction. Therefore, a = b and a = c.
(2.) Assume a € by hyac U by hyacl'byg hyac U byg hyecl' HT'byy hyac such that
a #band a # c. Setting A = B\{a}. Then, A C B. Thus, (4), C (B), = H.
From a # b and a # ¢; so, b,c € A. Let x € H. Since (B), = H; then,
x € BUBI'BU BT HI'B. There are three cases to consider.
Case 1: = € B.

Subcase 1.1: © # a. Then, z € B\{a} = A C (A),.

Subcase 1.2: x = a. By assumption, then
x = a € byyhyec U by hyaclbys hyac U by hyocD HT by hyae € ATHT A C (A)p.
Case 2: x € BI'B. Thus, x € byyby for some b;,b, € B and v €T

Subcase 2.1: by = a and by = a. By assumption, thus

x € byvby = ava
C (byrhyac U byihyacl'byy hyae U by hryacl' HL by hryac) T
(by1 hyac U aybyr hyaclarybys hyae U aybyy hya D HT arybyy hysc)
C ATHT A C (A),.

Subcase 2.2: by # a and by = a. By assumption and A = B\{a}; so,

x € byyby = byva

C (B\{a})L'(by1hvy2e U avybyi hyaclaybyr hyae U aybys hyecl HT arybys hyac)

C ATHTA C (A)y.
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Subcase 2.3: by = a and by # a. By assumption A = B\{a}; hence,
x € byyby = aybs
C (by1hyac U aybyrhyzclaybyihyac U aybyihyzel HT aybyi hyze)T(B\{a})
C ATHTA C (A),.
Subcase 2.4: by # a and by # a. From A = B\{a}; then,
x € byybe € (B\{a})T'(B\{a}) = ATA C (A).
Case 3: © € BTHI'B. Hence, x € b3yhvybs for some b3, by € B, v1,72 € I’ and
heH.
Subcase 3.1: by = a and by = a. By assumption, so
T € byy1hyabs = ayihyea
C (by1hyac U by hyaclbys hyac U by hyacl HT by hyoc)THT
(by1hyze U byihyaclbyrhyac U by hyacl HT by hyac)
C ATHTA C (A)y.
Subcase 3.2: b3 # a and by = a. By assumption and A = B\{a}; thus,
x € byy1hryaby = bgyhyaa
C (B\{a})THT (by1 hyac U by hyaclbyr hyac U by hyacT HT by hryac)
C ATHTA C (A),.
Subcase 3.3: b3 = a and by # a. By assumption A = B\{a}; hence,
x € bayhyabs = ay1hyaby
C (by1hyac Ubyrhyaclbyrhryae U byy hyacl HTbyy hryoe) T HT (B\{a})
C ATHTA C (A)y.

Subcase 3.4: b3 # a and by # a. From A = B\{a}; then,
x € b3’ylh’}/2b4 S (B\{a})FHF(B\{a}) = AT'HT A C (A)b
From all cases, (A), = H. This is a contradiction. Therefore, a = b or
a=c. (]

Lemma 2.6. Let B be a bi-bases of a I'-semihypergroup H.
1. For any a,b,c € B,y €T, if a # b and a # ¢; then, a £y, byic.
2. For any a,b,c € B,y2,v3 € ' and h € H, if a # b and a # c; then,
a £y by2hysc.

Proof. (1.) Assume a # b and a # ¢. Suppose a <p, byic, thus (a)y C (by10)s.

Hence, a € (a)y C (by1¢)p = by1c U byrcl'byiec U by cI’HTbye. By Lemma

2.5(1.), it follows a = b and a = ¢. This contradicts the assumption.

(2.) Assume a # b and a # ¢. Suppose a <p byahyse, then (a)y C (by2hy3c)p.

Thus, a € (a), C (by2hy3c)p = byahyzcUbyahysclbyshyscUbyahyscD HTbyshyse.
By Lemma 2.5(2.), it follows a = b or a = ¢. This contradicts the assump-

tion. O
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Theorem 2.7. A nonempty subset B of a T'-semihypergroup H is a bi—bases
of H if and only if B satisfies the following conditions.

1. For any z € H,
1.1. there exists b € B such that x <, b or
1.2. there exists by,bs € B and v € I' such that x <y byybs or
1.3. there exists bs, by € B and 1,72 € I'such that x <p bsgy1hy2by.
2. For any a,b,c € B and v, €T, ifa # b and a # ¢; then, a £ byic.
3. For any a,b,c € B,y2,v3 € ' and h € H, if a a # b and a # c; then,
a £p by2hyse.

Proof. Assume B is a bi-bases of H. Then, H = (B);. To show that (1.)
holds, let x € H. Thus, x € BU BI'BU BI'HI'B. We consider three cases.

case 1: x € B. Then, z = b for some b € B. This implies (), C (b)p.
Therefore, © <y b.

case 2: ¢ € BI'B. Then, © € by~yby for some by,bo € B and v € . This
implies (z)p C (b1yb2)p. Hence, x <p byybs.

case 3: x € BTHI'B. Then, x € bzyi1hy2bs for some b3,by € B,h € H and
1,72 € I'. This implies (x), C (bsy1hy2b4)p. Hence, x <p b3y hvyaby.
The validity of (2.) and (3.) follow from Lemma 2.6(1.) and Lemma 2.6(2.),
respectively. Conversely, we will show that B is a bi-bases of H. Clearly,
(B)y C H. Let € H. By assumption, there exists b € B such that x <, b,
thus (z)p C (b)p. Thus, z € (), C (b)p, = bUIDUIHTY C BUBI'BU
BTHTB = (B)y. Then, H C (B)y. Hence, H = (B). Suppose H = (A)s.
Since A C B, there exists b € B\A. Since b € B C H = (A)p, so b € (A)y.
Thus, b € AUATAU ATHT'A. Since b ¢ A, we have b € ATAU ATHT A.
There are two cases to consider.

case 1: b € AT A. Thus, b € a;yi1as for some a1,a2 € A and v, € I'. From
A C B,soaj,as € B. Since b ¢ A; hence, b # a1 and b # as. From b € a1y1az;
then, (b)p C (a171a2)p. Hence, b < a1y1a2. This contradicts to (2).

case 2: b € ATHT A. Hence, b € azy2hysas for some az, a4 € A, h € H and
2,773 € I'. From A C B, so az,as € B. Since b ¢ A, then b # a3 and b # ay.
From b € agyshysaq, so (b)y C (agy2hyszas)p. Therefore, b <, azyahysays. This
contradicts to (3.). O

Theorem 2.8. Let B be a bi-baes of a I'-semihypergroup H. Then B is a
sub-T'—semihypergeoup of H if and only if for any b,c € B and v € T',b € byc
or c € byc

Proof. Suppose B is a sub—I'-semihypergroup of H and b ¢ byc and ¢ ¢ byc
for any b,c € B and v € I'. Assume a € byc, then a # b and a # c¢. Hence,
a € bycUbyclbye U bycl' HTbye. By Lemma 2.5(1.), a = b or a = ¢. This is a
contradiction. Conversely, assume b € byc or ¢ € byc for any b,c € B. We will
show that B is a sub-I'-semihypergroup of H. Let a € BT'B. Hence, a € byc
for some b,¢c € B and v € I'. This implies a € byc U bycl'byc U byc' HT'byc.
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By Lemma 2.5(1.), a = b or a = ¢. Hence, a € {b,c} C B. Therefore B is a
sub—I'-semihypergroup of H. O
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