

2-Irreducible and Strongly 2-Irreducible Submodules of a Module

F. Farshadifar^{a*}, H. Ansari-Toroghy^b

^aDepartment of Mathematics Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran

^bDepartment of Pure Mathematics, Faculty of Mathematical Sciences University of Guilan, Rasht, Iran

E-mail: f.farshadifar@cfu.ac.ir
E-mail: ansari@guilan.ac.ir

ABSTRACT. Let R be a commutative ring with identity and M be an R -module. In this paper, we will introduce the concept of 2-irreducible (resp., strongly 2-irreducible) submodules of M as a generalization of irreducible (resp., strongly irreducible) submodules of M and investigated some properties of these classes of modules.

Keywords: Irreducible ideal, Strongly 2-irreducible ideal, 2-irreducible submodule, Strongly 2-irreducible submodule.

2000 Mathematics subject classification: 13C13, 13C99.

1. INTRODUCTION

Throughout this paper, R will denote a commutative ring with identity and \mathbb{Z} will denote the ring of integers.

An ideal I of R is said to be *irreducible* if $I = J_1 \cap J_2$ for ideals J_1 and J_2 of R implies that either $I = J_1$ or $I = J_2$. A proper ideal I of R is said to be *strongly irreducible* if for ideals J_1, J_2 of R , $J_1 \cap J_2 \subseteq I$ implies that $J_1 \subseteq I$ or $J_2 \subseteq I$ [12]. An ideal I of R is said to be *2-irreducible* if whenever $I = J_1 \cap J_2 \cap J_3$ for

*Corresponding Author

ideals J_1, J_2 and J_3 of R , then either $I = J_1 \cap J_2$ or $I = J_1 \cap J_3$ or $I = J_2 \cap J_3$. Clearly, any irreducible ideal is a 2-irreducible ideal [21].

A proper submodule N of an R -module M is said to be *irreducible* (resp., *strongly irreducible*) if for submodules H_1 and H_2 of M , $N = H_1 \cap H_2$ (resp., $H_1 \cap H_2 \subseteq N$) implies that $N = H_1$ or $N = H_2$. (resp., $H_1 \subseteq N$ or $H_2 \subseteq N$).

The main purpose of this paper is to introduce the concept of 2-irreducible and strongly 2-irreducible submodules of an R -module M as a generalization of irreducible and strongly irreducible submodules of M and obtain some related results.

A submodule N of an R -module M is said to be a *2-irreducible submodule* if whenever $N = H_1 \cap H_2 \cap H_3$ for submodules H_1, H_2 and H_3 of M , then either $N = H_1 \cap H_2$ or $N = H_2 \cap H_3$ or $N = H_1 \cap H_3$ (Definition 2.1).

A proper submodule N of an R -module M is said to be a *strongly 2-irreducible submodule* if whenever $H_1 \cap H_2 \cap H_3 \subseteq N$ for submodules H_1, H_2 and H_3 of M , then either $H_1 \cap H_2 \subseteq N$ or $H_2 \cap H_3 \subseteq N$ or $H_1 \cap H_3 \subseteq N$ (Definition 2.6).

In Section 2 of this paper, for an R -module M , among other results, we prove that if M is a Noetherian R -module and N is a 2-irreducible submodule of M , then either N is irreducible or N is an intersection of exactly two irreducible submodules of M (Theorem 2.22). In Theorem 2.9, we provide a characterization for strongly 2-irreducible submodules of M . Also, it is shown that if M is a strong comultiplication R -module, then every non-zero proper submodule of R is a strongly sum 2-irreducible R -module if and only if every non-zero proper submodule of M is a strongly 2-irreducible submodule of M (Theorem 2.11). Further, it is proved that if N is a submodule of a finitely generated multiplication R -module M , then N is a strongly 2-irreducible submodule of M if and only if $(N :_R M)$ is a strongly 2-irreducible ideal of R (Theorem 2.12). In Theorem 2.19 and 2.21, we provide some useful characterizations for strongly 2-irreducible submodules of some special classes of modules. Example 2.14 shows that the concepts of strongly irreducible submodules and strongly 2-irreducible submodules are different in general. Finally, let $R = R_1 \times R_2 \times \cdots \times R_n$ ($2 \leq n < \infty$) be a decomposable ring and $M = M_1 \times M_2 \times \cdots \times M_n$ be an R -module, where for every $1 \leq i \leq n$, M_i is an R_i -module, respectively, it is proved that a proper submodule N of M is a strongly 2-irreducible submodule of M if and only if either $N = \times_{i=1}^n N_i$ such that for some $k \in \{1, 2, \dots, n\}$, N_k is a strongly 2-irreducible submodule of M_k , and $N_i = M_i$ for every $i \in \{1, 2, \dots, n\} \setminus \{k\}$ or $N = \times_{i=1}^n N_i$ such that for some $k, m \in \{1, 2, \dots, n\}$, N_k is a strongly irreducible submodule of M_k , N_m is a strongly irreducible submodule of M_m , and $N_i = M_i$ for every $i \in \{1, 2, \dots, n\} \setminus \{k, m\}$ (Theorem 2.28).

2. MAIN RESULTS

Definition 2.1. We say that a submodule N of an R -module M is a *2-irreducible submodule* if whenever $N = H_1 \cap H_2 \cap H_3$ for submodules H_1 , H_2 and H_3 of M , then either $N = H_1 \cap H_2$ or $N = H_2 \cap H_3$ or $N = H_1 \cap H_3$.

EXAMPLE 2.2. Let $R = K[X, Y]$ be a polynomial ring in variables X and Y over a field K . Let I be the ideal $\langle X^2, XY \rangle$. Then $\langle X^2, XY \rangle = \langle X \rangle \cap \langle X^2, Y \rangle$ implies that I is not an irreducible ideal of R . But since $\langle X \rangle \cap \langle X^2, Y \rangle$ is a primary decomposition for I , one can see that I is a 2-irreducible ideal of R by using [17, 9.31].

EXAMPLE 2.3. Let $R = K[X, Y]$ be a polynomial ring in variables X and Y over a field K and let $I = \langle X \rangle \cap \langle Y \rangle$. Then I is not an irreducible ideal of R . But since $\langle X \rangle$ and $\langle Y \rangle$ are prime and so strongly irreducible ideals of R , we have I is a 2-irreducible ideal of R by [21, Proposition 3].

Theorem 2.4. *Let M be a Noetherian R -module. If N is a 2-irreducible submodule of M , then either N is irreducible or N is an intersection of exactly two irreducible submodules of M .*

Proof. Let N be a 2-irreducible submodule of M . By [17, Exercise 9.31], N can be written as a finite irredundant irreducible decomposition $N = N_1 \cap N_2 \cap \dots \cap N_k$. We show that either $k = 1$ or $k = 2$. If $k > 3$, then since N is 2-irreducible, $N = N_i \cap N_j$ for some $1 \leq i, j \leq k$, say $i = 1$ and $j = 2$. Therefore $N_1 \cap N_2 \subseteq N_3$, which is a contradiction. \square

Corollary 2.5. *Let M be a Noetherian multiplication R -module. If N is a 2-irreducible submodule of M , then N a 2-absorbing primary submodule of M .*

Proof. Let N be a 2-irreducible submodule of M . By the fact that every irreducible submodule of a Noetherian R -module is primary and regarding Theorem 2.22, we have either N is a primary submodule or is a sum of two primary submodules. It is clear that every primary submodule is 2-absorbing primary, also the sum of two primary submodules is a 2-absorbing primary submodule, by [15, Theorem 2.20]. \square

Definition 2.6. We say that a proper submodule N of an R -module M is a *strongly 2-irreducible submodule* if whenever $H_1 \cap H_2 \cap H_3 \subseteq N$ for submodules H_1 , H_2 and H_3 of M , then either $H_1 \cap H_2 \subseteq N$ or $H_2 \cap H_3 \subseteq N$ or $H_1 \cap H_3 \subseteq N$.

EXAMPLE 2.7. [21, Corollary 2] Consider the \mathbb{Z} -module \mathbb{Z} . Then $n\mathbb{Z}$ is a strongly 2-irreducible submodule of \mathbb{Z} if $n = 0$, p^t or $p^r q^s$, where p, q are prime integers and t, r, s are natural numbers.

Proposition 2.8. *The strongly 2-irreducible submodules of a distributive R -module are precisely the 2-irreducible submodules.*

Proof. This is straightforward. \square

Theorem 2.9. *Let N be a proper submodule of an R -module M . Then the following conditions are equivalent:*

- (a) *N is a strongly 2-irreducible submodule;*
- (b) *For all elements x, y, z of M , we have $(Rx + Ry) \cap (Rx + Rz) \cap (Ry + Rz) \subseteq N$ implies that either $(Rx + Ry) \cap (Rx + Rz) \subseteq N$ or $(Rx + Ry) \cap (Ry + Rz) \subseteq N$ or $(Rx + Rz) \cap (Ry + Rz) \subseteq N$.*

Proof. (a) \Rightarrow (b) This is clear.

(b) \Rightarrow (a) Let $H_1 \cap H_2 \cap H_3 \subseteq N$ for submodules H_1, H_2 and H_3 of M . If $H_1 \cap H_2 \not\subseteq N$, $H_1 \cap H_3 \not\subseteq N$, and $H_2 \cap H_3 \not\subseteq N$, then there exist elements x, y, z of M such that $x \in H_2 \cap H_3$, $y \in H_1 \cap H_3$, and $z \in H_1 \cap H_2$ but $x \notin N$, $y \notin N$, and $z \notin N$. Therefore,

$$(Ry + Rz) \cap (Rx + Rz) \cap (Rx + Ry) \subseteq H_1 \cap H_2 \cap H_3 \subseteq N.$$

Hence by the part (a), either $(Ry + Rz) \cap (Rx + Rz) \subseteq N$ or $(Ry + Rz) \cap (Rx + Ry) \subseteq N$ or $(Rx + Rz) \cap (Rx + Ry) \subseteq N$. Thus either $z \in N$ or $y \in N$ or $x \in N$. This contradiction completes the proof. \square

Recall that a *waist submodule* of an R -module M is a submodule that is comparable to any other submodules of M .

Proposition 2.10. *Let N be a proper submodule of an R -module M . Then we have the following.*

- (a) *If N is a strongly 2-irreducible submodule of M , then it is also a 2-irreducible submodule of M .*
- (b) *If N is a strongly 2-irreducible submodule of M , then N is a strongly 2-irreducible submodule of T and N/K is a strongly 2-irreducible submodule of M/K for any $K \subseteq N \subseteq T$.*
- (c) *If for all elements x, y, z of M we have $Rx \cap Ry \cap Rz \subseteq N$ implies that either $Rx \cap Ry \subseteq N$ or $Rx \cap Rz \subseteq N$ or $Ry \cap Rz \subseteq N$, then N is a strongly 2-irreducible submodule of M .*
- (d) *If N is a waist submodule of M , then N is strongly 2-irreducible submodule of M if and only if N is 2-irreducible module.*
- (e) *If N satisfies $(N+T) \cap (N+K) = N + (T \cap K)$, whenever $T \cap K \subseteq N$, then N is strongly 2-irreducible submodule of M if and only if N is a 2-irreducible module.*

Proof. (a) Let N be a strongly 2-irreducible submodule of M and let $N = H_1 \cap H_2 \cap H_3$ for submodules H_1, H_2 and H_3 of M . Then by assumption, either $H_1 \cap H_2 \subseteq N$ or $H_1 \cap H_3 \subseteq N$ or $H_2 \cap H_3 \subseteq N$. Now the result follows from the fact that the reverse of inclusions are clear.

The parts (b), (d), and (e) are straightforward.

(c) Let $H_1 \cap H_2 \cap H_3 \subseteq N$ for submodules H_1 , H_2 and H_3 of M . If $H_1 \cap H_2 \not\subseteq N$, $H_1 \cap H_3 \not\subseteq N$, and $H_2 \cap H_3 \not\subseteq N$, then there exist elements x, y, z of M such that $x \in H_2 \cap H_3$, $y \in H_1 \cap H_3$, and $z \in H_1 \cap H_2$ but $x \notin N$, $y \notin N$, and $z \notin N$. Now the result follows by assumption. \square

An R -module M is said to be a *comultiplication module* if for every submodule N of M there exists an ideal I of R such that $N = (0 :_M I)$, equivalently, for each submodule N of M , we have $N = (0 :_M \text{Ann}_R(N))$ [2].

An R -module M satisfies the *double annihilator conditions* (DAC for short) if for each ideal I of R we have $I = \text{Ann}_R(0 :_M I)$ [9].

An R -module M is said to be a *strong comultiplication module* if M is a comultiplication R -module and satisfies the DAC conditions [4].

A submodule N of an R -module M is said to be a *strongly sum 2-irreducible submodule* if whenever $N \subseteq H_1 + H_2 + H_3$ for submodules H_1 , H_2 and H_3 of M , then either $N \subseteq H_1 + H_2$ or $N \subseteq H_2 + H_3$ or $N \subseteq H_1 + H_3$. Also, M is said to be a *strongly sum 2-irreducible module* if and only if M is a strongly sum 2-irreducible submodule of itself [10].

Theorem 2.11. *Let M be a strong comultiplication R -module. Then every non-zero proper submodule of R is a strongly sum 2-irreducible R -module if and only if every non-zero proper submodule of M is a strongly 2-irreducible submodule of M .*

Proof. " \Rightarrow " Let N be a non-zero proper submodule of M and let $H_1 \cap H_2 \cap H_3 \subseteq N$ for submodules H_1 , H_2 and H_3 of M . Then by using [11, 2.5],

$$\text{Ann}_R(N) \subseteq \text{Ann}_R(H_1) + \text{Ann}_R(H_2) + \text{Ann}_R(H_3).$$

This implies that either $\text{Ann}_R(N) \subseteq \text{Ann}_R(H_1) + \text{Ann}_R(H_2)$ or $\text{Ann}_R(N) \subseteq \text{Ann}_R(H_1) + \text{Ann}_R(H_3)$ or $\text{Ann}_R(N) \subseteq \text{Ann}_R(H_2) + \text{Ann}_R(H_3)$ since by assumption, $\text{Ann}_R(N)$ is a strongly sum 2-irreducible R -module. Therefore, either $H_1 \cap H_2 \subseteq N$ or $H_1 \cap H_3 \subseteq N$ or $H_2 \cap H_3 \subseteq N$ since M is a comultiplication R -module.

" \Leftarrow " Let I be a non-zero proper submodule of R and let $I \subseteq I_1 + I_2 + I_3$. Then

$$(0 :_M I_1) \cap (0 :_M I_2) \cap (0 :_M I_3) \subseteq (0 :_M I).$$

Thus by assumption, either $(0 :_M I_1) \cap (0 :_M I_2) \subseteq (0 :_M I)$ or $(0 :_M I_1) \cap (0 :_M I_3) \subseteq (0 :_M I)$ or $(0 :_M I_2) \cap (0 :_M I_3) \subseteq (0 :_M I)$. This implies that either $(0 :_M I_1 + I_2) \subseteq (0 :_M I)$ or $(0 :_M I_1 + I_3) \subseteq (0 :_M I)$ or $(0 :_M I_2 + I_3) \subseteq (0 :_M I)$. Thus either $I \subseteq I_1 + I_2$ or $I \subseteq I_1 + I_3$ or $I \subseteq I_2 + I_3$ since M is a strong comultiplication R -module. \square

An R -module M is said to be a *multiplication module* if for every submodule N of M there exists an ideal I of R such that $N = IM$ [6].

Theorem 2.12. *Let N be a submodule of a finitely generated multiplication R -module M . Then N is a strongly 2-irreducible submodule of M if and only if $(N :_R M)$ is a strongly 2-irreducible ideal of R .*

Proof. ” \Rightarrow ” Let N be a strongly 2-irreducible submodule of M and let $J_1 \cap J_2 \cap J_3 \subseteq (N :_R M)$ for some ideals J_1, J_2 , and J_3 of R . Then

$$J_1M \cap J_2M \cap J_3M \subseteq (N :_R M)M = N$$

by [8, Corollary 1.7]. Thus by assumption, either $J_1M \cap J_2M \subseteq N$ or $J_1M \cap J_3M \subseteq N$ or $J_2M \cap J_3M \subseteq N$. Hence, either $(J_1 \cap J_2)M \subseteq (N :_R M)M$ or $(J_1 \cap J_3)M \subseteq (N :_R M)M$ or $(J_2 \cap J_3)M \subseteq (N :_R M)M$. Therefore, either $J_1 \cap J_2 \subseteq (N :_R M)$ or $J_1 \cap J_3 \subseteq (N :_R M)$ or $J_2 \cap J_3 \subseteq (N :_R M)$ by [18, Corollary of Theorem 9].

” \Leftarrow ” Let $(N :_R M)$ is a strongly 2-irreducible ideal of R and let $H_1 \cap H_2 \cap H_3 \subseteq N$ for some submodules H_1, H_2 and H_3 of M . Then we have

$$(H_1 \cap H_2 \cap H_3 :_R M)M = ((H_1 :_R M) \cap (H_2 :_R M) \cap (H_3 :_R M))M \subseteq (N :_R M)M.$$

Thus $(H_1 :_R M) \cap (H_2 :_R M) \cap (H_3 :_R M) \subseteq (N :_R M)$ by [18, Corollary of Theorem 9]. Hence, either $(H_1 :_R M) \cap (H_2 :_R M) \subseteq (N :_R M)$ or $(H_1 :_R M) \cap (H_3 :_R M) \subseteq (N :_R M)$ or $(H_2 :_R M) \cap (H_3 :_R M) \subseteq (N :_R M)$ since $(N :_R M)$ is a strongly 2-irreducible ideal of R . Therefore, either $H_1 \cap H_2 \subseteq N$ or $H_1 \cap H_3 \subseteq N$ or $H_2 \cap H_3 \subseteq N$ by [8, Corollary 1.7]. \square

EXAMPLE 2.13. Consider the \mathbb{Z} -module $\mathbb{Z}_{p^t q^n r^m}$, where p, q, r are prime integers and t, n, m are natural numbers.

- (a) By using Theorem 2.12 and Example 2.7, one can see that $\bar{p}^t \mathbb{Z}_{p^t q^n r^m}$ and $\bar{q}^n \bar{r}^m \mathbb{Z}_{p^t q^n r^m}$ are strongly 2-irreducible submodules of $\mathbb{Z}_{p^t q^n r^m}$.
- (b) $\bar{p} \bar{q} \bar{r} \mathbb{Z}_{p^3 qr} = \bar{p} \bar{q} Z_{p^3 qr} \cap \bar{p} \bar{r} Z_{p^3 qr} \cap \bar{q} \bar{r} Z_{p^3 qr}$ implies that $\bar{p} \bar{q} \bar{r} \mathbb{Z}_{p^3 qr}$ is not a 2-irreducible submodule of $\mathbb{Z}_{p^3 qr}$.

The following example shows that the concepts of strongly irreducible submodules and strongly 2-irreducible submodules are different in general.

EXAMPLE 2.14. Consider the \mathbb{Z} -module \mathbb{Z}_6 . Then $0 = \bar{3} \mathbb{Z}_6 \cap \bar{2} \mathbb{Z}_6$ implies that the 0 submodule of \mathbb{Z}_6 is not strongly irreducible. But $(0 :_{\mathbb{Z}} \mathbb{Z}_6) = 6\mathbb{Z}$ is a strongly 2-irreducible ideal of \mathbb{Z} by Example 2.7. Since the \mathbb{Z} -module \mathbb{Z}_6 is a finitely generated multiplication \mathbb{Z} -module, 0 is a strongly 2-irreducible submodule of \mathbb{Z}_6 by Theorem 2.12.

Lemma 2.15. *Let M be an R -module. If N_1 and N_2 are strongly irreducible submodules of M , then $N_1 \cap N_2$ is a strongly 2-irreducible submodule of M .*

Proof. This is straightforward. \square

A proper submodule P of an R -module M is said to be *prime* if for any $r \in R$ and $m \in M$ with $rm \in P$, we have $m \in P$ or $r \in (P :_R M)$ [7].

Proposition 2.16. *Let M be a multiplication R -module and let N_1 , N_2 , and N_3 be prime submodules of M such that $N_1 + N_2 = N_1 + N_3 = N_2 + N_3 = M$. Then $N_1 \cap N_2 \cap N_3$ is not a strongly 2-irreducible submodule of M .*

Proof. Assume on the contrary that $N_1 \cap N_2 \cap N_3$ is a strongly 2-irreducible submodule of M . Then $N_1 \cap N_2 \cap N_3 \subseteq N_1 \cap N_2 \cap N_3$ implies that either $N_1 \cap N_2 \subseteq N_1 \cap N_2 \cap N_3$ or $N_1 \cap N_3 \subseteq N_1 \cap N_2 \cap N_3$ or $N_2 \cap N_3 \subseteq N_1 \cap N_2 \cap N_3$. We can assume without loss of generality that $N_1 \cap N_2 \subseteq N_1 \cap N_2 \cap N_3$. Then $N_1 \cap N_2 \subseteq N_3$. It follows that $(N_1 :_R M)N_2 \subseteq N_3$. As N_3 is a prime submodule of M , we have $N_2 \subseteq N_3$ or $(N_2 :_R M) \subseteq (N_3 :_R M)$. Thus $N_2 \subseteq N_3$ or $N_1 \subseteq N_3$ since M is a multiplication R -module. Therefore, $N_3 = M$, which is a contradiction. \square

Corollary 2.17. *Let M be a multiplication R -module such that every proper submodule of M is strongly 2-irreducible. Then M has at most two maximal submodules.*

Proof. This follows from Proposition 2.16 \square

Let N be a submodule of an R -module M . The intersection of all prime submodules of M containing N is said to be the (prime) radical of N and denote by $\text{rad}_M N$ (or simply by $\text{rad}(N)$). In case N does not contain in any prime submodule, the radical of N is defined to be M . Also, $N \neq M$ is said to be a radical submodule of M if $\text{rad}(N) = N$ [14].

Lemma 2.18. *Let I be an ideal of R and N be a submodule of an R -module M . Then $\text{rad}(IN) = \text{rad}(N) \cap \text{rad}(IM)$.*

Proof. By [13, Corollary of Theorem 6], we have $\text{rad}(N \cap IM) = \text{rad}(N) \cap \text{rad}(IM)$. Since $IN \subseteq IM \cap N$, $\text{rad}(IN) \subseteq \text{rad}(IM \cap N)$. Thus $\text{rad}(IN) \subseteq \text{rad}(N) \cap \text{rad}(IM)$. Now let P be a prime submodule of M such that $IN \subseteq P$. As P is prime, $N \subseteq P$ or $I \subseteq (P :_R M)$. Hence $N \cap IM \subseteq P$. This in turn implies that $\text{rad}(N) \cap \text{rad}(IM) \subseteq \text{rad}(IN)$, as desired. \square

A proper ideal I of R is said to be a 2-absorbing ideal of R if whenever $a, b, c \in R$ and $abc \in I$, then $ab \in I$ or $ac \in I$ or $bc \in I$ [5].

A proper submodule N of an R -module M is said to be a 2-absorbing primary submodule of M if whenever $a, b \in R$, $m \in M$, and $abm \in N$, then $am \in \text{rad}(N)$ or $bm \in \text{rad}(N)$ or $ab \in (N :_R M)$ [15].

A proper submodule N of an R -module M is called a 2-absorbing submodule of M if whenever $abm \in N$ for some $a, b \in R$ and $m \in M$, then $am \in N$ or $bm \in N$ or $ab \in (N :_R M)$ [19] and [16].

Theorem 2.19. *Let M be a finitely generated multiplication R -module and N be a radical submodule of M . Then the following conditions are equivalent:*

- (a) N is a strongly 2-irreducible submodule of M ;

- (b) N is a 2-absorbing submodule of M ;
- (c) N is a 2-absorbing primary submodule of M ;
- (d) N is either a prime submodule of M or is an intersection of exactly two prime submodules of M .

Proof. (a) \Rightarrow (b) Let I, J be ideals of R and K be a submodule of M such that $IJK \subseteq N$. Then by using Lemma 2.18,

$$K \cap IM \cap JM \subseteq \text{rad}(K) \cap \text{rad}(IM) \cap \text{rad}(JM) = \text{rad}(IJK) \subseteq \text{rad}(N) = N$$

Hence by part (a), either $K \cap IM \subseteq N$ or $K \cap JM \subseteq N$ or $IM \cap JM \subseteq N$. Thus either $IK \subseteq N$ or $JK \subseteq N$ or $IJM \subseteq N$ as needed.

(b) \Rightarrow (c) This is clear.
(c) \Rightarrow (b) This is clear by using [15, Theorem 2.6].
(b) \Rightarrow (d) Since N is a 2-absorbing submodule of M , $(N :_R M)$ is a 2-absorbing ideal of R by [20, Proposition 1]. Hence $\sqrt{(N :_R M)} = P$ is a prime ideal of R or $\sqrt{(N :_R M)} = P \cap Q$, where P and Q are distinct prime ideals of R that are minimal over $(N :_R M)$ by [5, Theorem 2.4]. We have $\sqrt{(N :_R M)}M = \text{rad}(N)$ by [14, Theorem 4]. If $\sqrt{(N :_R M)} = P$, then $PM = \text{rad}(N)$. Since M is a multiplication R -module, PM is a prime submodule of M by [8, Corollary 2.11]. Now let $\sqrt{\text{Ann}_R(N)} = P \cap Q$, where P and Q are distinct prime ideals of R . Then $(P \cap Q)M = \text{rad}(N)$. By [8, Corollary 1.7], $(P \cap Q)M = PM \cap QM$. Thus by [8, Corollary 2.11], $\text{rad}(N)$ is an intersection of two prime submodules of M . Now, we prove the claim by assumption that N is a radical submodule of M .

(d) \Rightarrow (a) This follows from Lemma 2.15. \square

The following example shows that parts (a) and (b) of Theorem 2.19 are not equivalent in general.

EXAMPLE 2.20. Consider the submodule $G_t = \langle 1/p^t + \mathbb{Z} \rangle$ of the \mathbb{Z} -module \mathbb{Z}_{p^∞} . Then G_t is a strongly 2-irreducible submodule of \mathbb{Z}_{p^∞} . But G_t is not a 2-absorbing submodule of \mathbb{Z}_{p^∞} . It should be note that the \mathbb{Z} -module \mathbb{Z}_{p^∞} is not a finitely generated multiplication \mathbb{Z} -module.

A submodule N of an R -module M is said to be *pure* if $IN = IM \cap N$ for every ideal I of R [1]. Also, an R -module M is said to be *fully pure* if every submodule of M is pure [3].

Theorem 2.21. *Let M be a fully pure multiplication R -module and N be a submodule of M . Then the following conditions are equivalent:*

- (a) N is a strongly 2-irreducible submodule of M ;
- (b) N is a 2-absorbing submodule of M ;
- (c) N is a 2-irreducible submodule of M .

Proof. (a) \Rightarrow (b) Let I, J be ideals of R and K be a submodule of M such that $IJK \subseteq N$. Then since M is fully pure,

$$K \cap IM \cap JM = IJK \subseteq N.$$

Hence by part (a), either $K \cap IM \subseteq N$ or $K \cap JM \subseteq N$ or $IM \cap JM \subseteq N$. Thus either $IK \subseteq N$ or $JK \subseteq N$ or $IJM \subseteq N$.

(b) \Rightarrow (a) Let $H_1 \cap H_2 \cap H_3 \subseteq N$ for submodules H_1, H_2 and H_3 of M . Then

$$(H_1 :_R M) \cap (H_2 :_R M) \cap (H_3 :_R M) = (H_1 \cap H_2 \cap H_3 :_R M) \subseteq (N :_R M).$$

Thus either $(H_1 :_R M)(H_2 :_R M) \subseteq (N :_R M)$ or $(H_1 :_R M)(H_3 :_R M) \subseteq (N :_R M)$ or $(H_2 :_R M)(H_3 :_R M) \subseteq (N :_R M)$ since $(N :_R M)$ is a 2-absorbing ideal of R by [20, Proposition 1]. We can assume without loss of generality that $(H_1 :_R M)(H_2 :_R M) \subseteq (N :_R M)$. Thus as M is fully pure, we have

$$(H_1 :_R M)M \cap (H_2 :_R M)M \subseteq (N :_R M)M \subseteq N.$$

Therefore, $H_1 \cap H_2 \subseteq N$ since M is a multiplication R -module.

(a) \Leftrightarrow (c) By [3, proof of Theorem 2.19], M is a distributive R -module. Now the result follows from Proposition 2.8. \square

Lemma 2.22. *Let M be an R -module, S a multiplicatively closed subset of R , and N be a finitely generated submodule of M . If $S^{-1}N \subseteq S^{-1}K$ for a submodule K of M , then there exists $s \in S$ such that $sN \subseteq K$.*

Proof. This is straightforward. \square

Proposition 2.23. *Let M be an R -module, S be a multiplicatively closed subset of R and N be a finitely generated prime strongly 2-irreducible submodule of M such that $(N :_R M) \cap S = \emptyset$. Then $S^{-1}N$ is a strongly 2-irreducible submodule of $S^{-1}M$ if $S^{-1}N \neq S^{-1}M$.*

Proof. Let $S^{-1}H_1 \cap S^{-1}H_2 \cap S^{-1}H_3 \subseteq S^{-1}N$ for submodules $S^{-1}H_1, S^{-1}H_2$ and $S^{-1}H_3$ of $S^{-1}M$. Then $S^{-1}(H_1 \cap H_2 \cap H_3) \subseteq S^{-1}N$. By Lemma 2.22, there exists $s \in S$ such that $s(H_1 \cap H_2 \cap H_3) \subseteq N$. This implies that $H_1 \cap H_2 \cap H_3 \subseteq N$ since N is prime and $(N :_R M) \cap S = \emptyset$. Now as N is a strongly 2-irreducible submodule of M , we have either $H_1 \cap H_2 \subseteq N$ or $H_1 \cap H_3 \subseteq N$ or $H_2 \cap H_3 \subseteq N$. Therefore, either $S^{-1}H_1 \cap S^{-1}H_2 \subseteq S^{-1}N$ or $S^{-1}H_1 \cap S^{-1}H_3 \subseteq S^{-1}N$ or $S^{-1}H_2 \cap S^{-1}H_3 \subseteq S^{-1}N$, as needed. \square

Proposition 2.24. *Let M be an R -module and $\{K_i\}_{i \in I}$ be a chain of strongly 2-irreducible submodules of M . Then $\cap_{i \in I} K_i$ is a strongly 2-irreducible submodule of M .*

Proof. Let $H_1 \cap H_2 \cap H_3 \subseteq \cap_{i \in I} K_i$ for submodules H_1, H_2 and H_3 of M . Assume that $H_1 + H_2 \not\subseteq \cap_{i \in I} K_i$, $H_1 + H_3 \not\subseteq \cap_{i \in I} K_i$, and $H_2 + H_3 \not\subseteq \cap_{i \in I} K_i$.

Then there are $m, n, t \in I$, where $H_1 \cap H_2 \not\subseteq K_m$, $H_1 \cap H_3 \not\subseteq K_n$, and $H_2 \cap H_3 \not\subseteq K_t$. Since $\{K_i\}_{i \in I}$ is a chain we can assume that $K_m \subseteq K_n \subseteq K_t$. But as $H_1 \cap H_2 \cap H_3 \subseteq K_m$ and K_m is a strongly sum 2-irreducible submodule of M , we have either $H_1 \cap H_2 \subseteq K_m$ or $H_1 \cap H_3 \subseteq K_m$ or $H_2 \cap H_3 \subseteq K_m$. In any case, we get a contradiction. \square

Theorem 2.25. *Let $f : M \rightarrow \dot{M}$ be a epimorphism of R -modules. Then we have the following.*

- (a) *If N is a strongly 2-irreducible submodule of M such that $\ker(f) \subseteq N$, then $f(N)$ is a strongly 2-irreducible submodule of \dot{M} .*
- (b) *If \dot{N} is a strongly 2-irreducible submodule of \dot{M} , then $f^{-1}(\dot{N})$ is a strongly 2-irreducible submodule of M .*

Proof. (a) Let N be a strongly 2-irreducible submodule of M . If $f(N) = \dot{M}$, then we have $N + \ker(f) = f^{-1}(f(N)) = f^{-1}(\dot{M}) = f^{-1}(f(M)) = M$. Now as $\ker(f) \subseteq N$, we get that $N = M$, which is a contradiction. Therefore, $f(N) \neq \dot{M}$. Suppose that $\dot{H}_1 \cap \dot{H}_2 \cap \dot{H}_3 \subseteq f(N)$ for submodules \dot{H}_1, \dot{H}_2 and \dot{H}_3 of \dot{M} . Then $f^{-1}(\dot{H}_1) \cap f^{-1}(\dot{H}_2) \cap f^{-1}(\dot{H}_3) \subseteq f^{-1}(f(N)) = N$ since $\ker(f) \subseteq N$. Thus by assumption, either $f^{-1}(\dot{H}_1) \cap f^{-1}(\dot{H}_2) \subseteq N$ or $f^{-1}(\dot{H}_1) \cap f^{-1}(\dot{H}_3) \subseteq N$ or $f^{-1}(\dot{H}_2) \cap f^{-1}(\dot{H}_3) \subseteq N$. Now as f is epimorphism, we have either $\dot{H}_1 \cap \dot{H}_2 \subseteq f(N)$ or $\dot{H}_1 \cap \dot{H}_3 \subseteq f(N)$ or $\dot{H}_2 \cap \dot{H}_3 \subseteq f(N)$, as needed.

(b) Let \dot{N} be a strongly 2-irreducible submodule of \dot{M} . Since $\dot{N} \neq \dot{M}$ and f is a epimorphism, we have $f^{-1}(\dot{N}) \neq M$. Now let $H_1 \cap H_2 \cap H_3 \subseteq f^{-1}(\dot{N})$ for submodules H_1, H_2 and H_3 of M . Then $f(H_1) \cap f(H_2) \cap f(H_3) \subseteq f(f^{-1}(\dot{N})) = \dot{N}$. Thus by assumption, either $f(H_1) \cap f(H_2) \subseteq \dot{N}$ or $f(H_1) \cap f(H_3) \subseteq \dot{N}$ or $f(H_2) \cap f(H_3) \subseteq \dot{N}$. Now we have either $H_1 \cap H_2 \subseteq f^{-1}(\dot{N})$ or $H_1 \cap H_3 \subseteq f^{-1}(\dot{N})$ or $H_2 \cap H_3 \subseteq f^{-1}(\dot{N})$, as required. \square

Theorem 2.26. *Let M be a finitely generated multiplication distributive R -module and let N be a non-zero proper submodule of M . Then the following statements are equivalent:*

- (a) *N is a strongly 2-irreducible submodule of M ;*
- (b) *$(N :_R M)$ is a strongly 2-irreducible ideal of R ;*
- (c) *$(N :_R M)$ is a 2-irreducible ideal of R .*

Proof. (a) \Rightarrow (b) This follows from Theorem 2.12.

(b) \Rightarrow (c) This follows from [21, Proposition 1].

(c) \Rightarrow (a) Let $H_1 \cap H_2 \cap H_3 \subseteq N$ for submodules H_1, H_2 and H_3 of M . Then as M is a distributive R -module, we have

$$N = N + (H_1 \cap H_2 \cap H_3) = (N + H_1) \cap (N \cap H_2) \cap (N \cap H_3).$$

This implies that $(N :_R M) = (N + H_1 :_R M) \cap (N + H_2 :_R M) \cap (N + H_3 :_R M)$. Thus by assumption, either $(N :_R M) = (N + H_1 :_R M) \cap (N + H_2 :_R M)$ or $(N :_R M) = (N + H_1 :_R M) \cap (N + H_3 :_R M)$ or $(N :_R M) = (N + H_2 :_R M)$.

$M) \cap (N + H_3 :_R M)$. Therefore, by [8, Corollary 1.7], either $N = N + (H_1 \cap H_2)$ or $N = N + (H_1 \cap H_3)$ or $N = N + (H_2 \cap H_3)$, since M is a finitely generated multiplication R -module. Thus either, $H_1 \cap H_2 \subseteq N$ or $H_1 \cap H_3 \subseteq N$ or $H_2 \cap H_3 \subseteq N$ as needed. \square

Let R_i be a commutative ring with identity and M_i be an R_i -module, for $i = 1, 2$. Let $R = R_1 \times R_2$. Then $M = M_1 \times M_2$ is an R -module and each submodule of M is in the form of $N = N_1 \times N_2$ for some submodules N_1 of M_1 and N_2 of M_2 .

Theorem 2.27. *Let $R = R_1 \times R_2$ be a decomposable ring and $M = M_1 \times M_2$ be an R -module, where M_1 is an R_1 -module and M_2 is an R_2 -module. Suppose that $N = N_1 \times N_2$ is a proper submodule of M . Then the following conditions are equivalent:*

- (a) *N is a strongly 2-irreducible submodule of M ;*
- (b) *Either $N_1 = M_1$ and N_2 strongly 2-irreducible submodule of M_2 or $N_2 = M_2$ and N_1 is a strongly 2-irreducible submodule of M_1 or N_1, N_2 are strongly irreducible submodules of M_1, M_2 , respectively.*

Proof. (a) \Rightarrow (b). Let $N = N_1 \times N_2$ be a strongly 2-irreducible submodule of M such that $N_2 = M_2$. From our hypothesis, N is proper, so $N_1 \neq M_1$. Set $\tilde{M} = M/(0 \times M_2)$. One can see that $\tilde{N} = N/(0 \times M_2)$ is a strongly 2-irreducible submodule of \tilde{M} . Also, observe that $\tilde{M} \cong M_1$ and $\tilde{N} \cong N_1$. Thus N_1 is a strongly 2-irreducible submodule of M_1 . By a similar argument as in the previous case, N_2 is a strongly 2-irreducible submodule of M_2 , where, $N_1 = M_1$. Now suppose that $N_1 \neq M_1$ and $N_2 \neq M_2$. We show that N_1 is a irreducible submodule of M_1 . Suppose that $H_1 \cap K_1 \subseteq N_1$ for some submodules H_1 and K_1 of M_1 . Then

$$(H_1 \times M_2) \cap (M_1 \times 0) \cap (K_1 \times M_2) \subseteq (H_1 \cap K_1) \times 0 \subseteq N_1 \times N_2.$$

Thus by assumption, either $(H_1 \times M_2) \cap (M_1 \times 0) \subseteq N_1 \times N_2$ or $(H_1 \times M_2) \cap (K_1 \times M_2) \subseteq N_1 \times N_2$ or $(M_1 \times 0) \cap (K_1 \times M_2) \subseteq N_1 \times N_2$. Therefore, $H_1 \subseteq N_1$ or $K_1 \subseteq N_1$ since $N_2 \neq M_2$. Thus N_1 is a strongly irreducible submodule of M_1 . Similarly, we can show that N_2 is strongly irreducible submodule of M_2 .

(b) \Rightarrow (a). Suppose that $N = N_1 \times M_2$, where N_1 is a strongly 2-irreducible submodule of M_1 . Then it is clear that N is a strongly 2-irreducible submodule of M . Now, assume that $N = N_1 \times N_2$, where N_1 and N_2 are strongly irreducible submodules of M_1 and M_2 , respectively. Hence $(N_1 \times M_2) \cap (M_1 \times N_2) = N_1 \times N_2 = N$ is a strongly 2-irreducible submodule of M , by Lemma 2.15. \square

Theorem 2.28. *Let $R = R_1 \times R_2 \times \cdots \times R_n$ ($2 \leq n < \infty$) be a decomposable ring and $M = M_1 \times M_2 \times \cdots \times M_n$ be an R -module, where for every $1 \leq i \leq n$, M_i is an R_i -module, respectively. Then for a proper submodule N of M the following conditions are equivalent:*

- (a) N is a strongly 2-irreducible submodule of M ;
- (b) Either $N = \times_{i=1}^n N_i$ such that for some $k \in \{1, 2, \dots, n\}$, N_k is a strongly 2-irreducible submodule of M_k , and $N_i = M_i$ for every $i \in \{1, 2, \dots, n\} \setminus \{k\}$ or $N = \times_{i=1}^n N_i$ such that for some $k, m \in \{1, 2, \dots, n\}$, N_k is a strongly irreducible submodule of M_k , N_m is a strongly irreducible submodule of M_m , and $N_i = M_i$ for every $i \in \{1, 2, \dots, n\} \setminus \{k, m\}$.

Proof. We use induction on n . For $n = 2$ the result holds by Theorem 2.27. Now let $3 \leq n < \infty$ and suppose that the result is valid when $K = M_1 \times \dots \times M_{n-1}$. We show that the result holds when $M = K \times M_n$. By Theorem 2.27, N is a strongly 2-irreducible submodule of M if and only if either $N = L \times M_n$ for some strongly 2-irreducible submodule L of K or $N = K \times L_n$ for some strongly 2-irreducible submodule L_n of M_n or $N = L \times L_n$ for some strongly irreducible submodule L of K and some strongly irreducible submodule L_n of M_n . Note that a proper submodule L of K is a strongly irreducible submodule of K if and only if $L = \times_{i=1}^{n-1} N_i$ such that for some $k \in \{1, 2, \dots, n-1\}$, N_k is a strongly irreducible submodule of M_k , and $N_i = M_i$ for every $i \in \{1, 2, \dots, n-1\} \setminus \{k\}$. Consequently the claim is now verified. \square

ACKNOWLEDGMENTS

The authors would like to thank the referee for his/her helpful comments.

REFERENCES

1. W. Anderson, K.R. Fuller, *Rings and Categories of Modules*, Springer-Verlag, New York-Heidelberg-Berlin, 1974.
2. H. Ansari-Toroghy, F. Farshadifar, The Dual Notion of Multiplication Modules, *Taiwanese J. Math.*, **11**(4), (2007), 1189–1201.
3. H. Ansari-Toroghy, F. Farshadifar, Fully Idempotent and Coidempotent Modules, *Bull. Iranian Math. Soc.*, **38**(4), (2012), 987-1005.
4. H. Ansari-Toroghy, F. Farshadifar, Strong Comultiplication Modules, *CMU. J. Nat. Sci.*, **8**(1), (2009), 105–113.
5. A. Badawi, On 2-absorbing Ideals of Commutative Rings, *Bull. Austral. Math. Soc.*, **75**, (2007), 417-429.
6. A. Barnard, Multiplication Modules, *J. Algebra*, **71**, (1981), 174-178.
7. J. Dauns, Prime Modules, *J. Reine Angew. Math.*, **298**, (1978), 156-181.
8. Z. A. El-Bast, P. F. Smith, Multiplication Modules, *Comm. Algebra*, **16**, (1988), 755–779.
9. C. Faith, Rings Whose Modules Have Maximal Submodules, *Publ. Mat.*, **39**, (1995), 201-214.
10. F. Farshadifar, H. Ansari-Toroghy, Strongly Sum 2-irreducible Submodules of a Module, *São Paulo J. Math. Sci.*, (2021). <https://doi.org/10.1007/s40863-021-00211-w>.
11. I. M. A. Hadi, G. A. Humod, Strongly (Completely) Hollow Sub-modules II, *Ibn AL-Haitham Journal For Pure and Applied Science*, **26**(1), (2013), 292-302.
12. W. J. Heinzer, L. J. Ratliff, D. E. Rush, Strongly Irreducible Ideals of a Commutative Ring, *J. Pure Appl. Algebra*, **166**(3), (2002), 267-275.
13. C. P. Lu, M -Radicals of Submodules in Modules, *Math. Japonica*, **34**(2), (1989), 211-219.

14. R. L. McCasland, M. E. Moore, On Radical of Submodules of Finitely Generated Modules, *Canad. Math. Bull.*, **29**(1), (1986), 37-39.
15. H. Mostafanasab, E. Yetkin, U. Tekir, A. Yousefian Darani, On 2-absorbing Primary Submodules of Modules over Commutative Rings, *An. St. Univ. Ovidius Constanta*, **24**(1), (2016), 335-351.
16. Sh. Payrovi, S. Babaei, On 2-absorbing Submodules, *Algebra Collq.*, **19**, (2012), 913-920.
17. R. Y. Sharp, *Step in Commutative Algebra*, Cambridge University Press, 1990.
18. P. F. Smith, Some Remarks on Multiplication Modules, *Arch. Math.*, **50**, (1988), 223-235.
19. A. Yousefian Darani, F. Soheilnia, 2-absorbing and Weakly 2-absorbing Submoduels, *Thai J. Math.*, **9**(3), (2011), 577-584.
20. A. Yousefian Darani, F. Soheilnia, On n-absorning Submodules, *Math. Commun.*, **17**, (2012), 547-557.
21. A. Yousefian Darani, H. Mostafanasab, 2-irreducible and Strongly 2-irreducible Ideals of Commutative Rings, *Miskolc Mathematical Notes*, **17**(1), (2016), 441-455.