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ABSTRACT. Let R be a ring. The class of SA-injective right R-modules
(SAIR) is introduced as a class of soc-injective right R-modules. Let N
be a right R-module. A right R-module M is said to be S A-N-injective
if every R-homomorphism from a semi-artinian submodule of N into M
extends to N. A module M is called S A-injective, if M is SA-R-injective.
We characterize rings over which every right module is S A-injective. Con-
ditions under which the class SAIg is closed under quotient (resp. direct
sums, pure homomorphic images) are given. The definability of the class
SAIR is studied. Finally, relations between SA-injectivity and certain

generalizations of injectivity are given.
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1. INTRODUCTION

Throughout R is an associative ring with identity and all modules are
unitary R-modules. If not otherwise specified, by a module (resp. homomor-
phism) we will mean a right R-module (resp. right R-homomorphism). We use
R-Mod (resp. Mod-R) to denote the class of left (resp. right) R-modules. We

will use M* to denote the character module Homy (M, Q/Z) of a right module
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M. Let G (resp. F) be a class of right (resp. left) R-modules. A pair (F,G)
is called almost dual pair if G is closed under summands and direct products,
and for any left R-module M, M € F if and only if M* € G [12, p. 66].

An exact sequence 0 — A 5 B A0 5 0of right R-modules is said to be
pure if the sequence 0 — Hompg(N, A) - Hompg(N, B) - Hompg(N,C) — 0 is
exact, for every finitely presented right R-module N and we called that a(A)
is a pure submodule of B [21]. A right R-module M is called F P-injective if
every monomorphism « : M — N is pure. A right R-module M is called pure
injective if M is injective with respect to all pure short exact sequences [21].
If a subclass G of Mod-R is closed under pure submodules, direct limits and
direct products, then it is called a definable class[16]. We denote by Soc(M)
to the socle of a module M. A right R-module M is called semi-artinian if for
any proper submodule N of M we have Soc(M/N) # 0 [9, p. 238]. We will
denote to the sum of all semi-artinian submodules of a right R-module M by
Sa(M). If N is a submodule of a right R-module M, the notation N C°* M
means that N is a semi-artinian submodule of M.

We refer the reader to [2], [9], [16], [18] and [21], for general background mate-
rials.

Injective modules have been studied extensively, and several generalizations
for these modules are given, for example, soc-injective modules [1], L-injective
Modules [13], and n-F P-injective modules [5]. If Ext'(R/K,M) = 0, for
any semisimple right ideal K of R, then a right R-module M is called soc-
injective [1], where Ext!(A, B) is defined as the first right derived functor of
Hompg (A, B), for any two right R-modules A, B (see [4, Ch. VI| for more
details).

In section 2 of this paper, we introduce the class of SA-injective modules.
This class of modules lies between injective modules and soc-injective modules.
We first give examples to show that the notion of S A-injectivity is distinct from
that of injectivity and soc-injectivity. We characterize rings over which every
module is SA-injective. We prove the equivalence of the following statements:
(1) Every right R-module is SA-injective; (2) Every semi-artinian module is
S A-injective; (3) Every semi-artinian right ideal of R is S A-injective; (4) Every
semi-artinian right ideal of R is a direct summand of R. Conditions under which
the class of SA-injective right R-modules (SAIR) is closed under quotient are
given. For instance, we prove that the equivalence of the following: (1) The
class SAIp is closed under quotient; (2) Sums of any two S A-injective submod-
ules of any right R-module is S A-injective; (3) All semi-artinian right ideals of
R are projective. Finally, we give conditions such that the class SAIg is closed
under direct sums. For instance, we prove that the following are equivalent.
(1) Sa(Rpr) is noetherian; (2) Any direct sum of S A-injective right R-modules
is S A-injective; (3) The class SAIR is closed under pure submodules; (4) All
F P-injective modules are S A-injective.
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In section 3, we study the definability of the class SAIg. It is shown that the
following assertions are equivalent: (1) SAIg is definable; (2) The class SAIg
is closed under pure submodules and pure homomorphic images; (3) Every
semi-artinian right ideal in R is finitely presented; (4) A module M € SAIg iff
M* € (SAIR)®; (5) A module M € SAIR iff M** € SAIg. Finally, we prove
that if the class SAIg is a definable, then the class of flat left R-modules and
the class (SAIR)® are coincide iff all modules in SAIR are F P-injective iff all
pure-injective modules in SAIR are injective.

In section 4, we give relations between SA-injectivity and certain generaliza-
tions of injectivity (in particular, quasi-injectivity and F-injectivity). Firstly,
we prove that a ring R is a right semi-artinian ring iff every S A-injective right
R-module is quasi-injective iff every cyclic S A-injective right R-module is quasi-
injective. Then, we prove that a commutative ring R is semisimple if and only
if R is a semi-artinian ring and every quasi-injective R-module is S A-injective.
Also, we prove that Sa(Rg) is a noetherian right R-module if and only if ev-
ery F-injective right R-module is SA-injective. Finally, we prove that a ring
R is a (von Neumann) regular and every P-injective right R-module is SA-
injective if and only if every SA-injective right R-module is P-injective and
every semi-artinian right ideal of R is a direct summand of Rpg.

2. SA-INJECTIVE MODULES

Definition 2.1. Let N be a module. A module M is called SA-N-injective,
if for any semi-artinian submodule K of N, any homomorphism f : K — M
extends to N. M is called SA-injective if M is SA-R-injective. A ring R is
called S A-injective if the module Ry is S A-injective.

We will use SAIR to denote the class of S A-injective right R-modules.

EXAMPLES 2.2. (1) All injective modules are SA-injective. Since 0 is the
only semi-artinian right ideal in Z, we have the right Z-module Z is a SA-
injective but it is not injective. Hence S A-injectivity is a proper generalization
of injectivity.

(2) Since every semisimple module is semi-artinian, we have every S A-injective
module is soc-injective. The converse is not true in general, for example: let
R = Zs|x1,72,...] where 23 = 0 for all i, 22 = 33? # 0 for all < and j and
x;xz; = 0 for all ¢ # j. By [1, Example 5.7], R is a semiprimary commutative
and soc-injective ring but it is not self injective. By [18, Example 1, p. 184],
R is a right semi-artinian ring, so that Proposition 2.5 in [18, p. 183] implies
that I C** Ry for any right ideal I in R and hence R is not SA-injective ring.
(3) Clearly, if Soc(Ng) = 0, then 0 is the only semi-artinian submodule of
N and hence every module is S A-N-injective. Particularly, all Z-modules are
S A-injective.
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(4) All modules with zero socles are SA-injective, this follows from the fact
that Soc(M) = 0 if and only if Sa(M) = 0, for any module M.

Proposition 2.3. Let N be a module. Then following statements hold:

(1) The class of SA-N-injective modules is closed under isomorphic copies,
direct products, direct summands and finite direct sums.

(2) For any submodule K of N, if M is SA-N-injective module, then M s
S A-K -injective.

(3) If M is SA-N-injective module, then M is SA-K -injective, for any module
K isomorphic to N.

Proof. Clear. (]

Corollary 2.4. The class of SA-injective right R-modules (SAIR) is closed
under isomorphic copies, direct products, direct summands and finite direct
sums.

Proposition 2.5. Let M be a module and {N; : i € I} be a family of modules.
If @N; is a multiplication module, then M is SA-@N;-injective iff M is SA-

1€ 1€l

N;-injective, for all i € I.

Proof. (=) By Proposition 2.3((2),(3)).
(<) Let K C*® N;. Since PN; is a multiplication module (by hypoth-

i€l i€l
esis), we have from [20, Theorem 2.2, p. 3844] that K = K, with K; is a
i€l

submodule of N, for all ¢ € I. By [9, p. 238], K; C** N,. For i € I, consider
the following diagram:

where ik, iy, are injection maps and 41, 72 are inclusion maps.  The

hypothesis implies that there exists homomorphism h; : N; — M such that

h; 0 iz = f oig,. By [9, Theorem 4.1.6(2)], there exists exactly one homomor-

phism h : @N; — M satisfying h; = hoiy, . Thus foix, = h;oiy =
i€l

ho IZ:N{, 0l = hoigo iKi for all i € I. Let (ai)iel S @Ki, thus a; eK;,

el
fOI' all Z S I and f((ai)iej) = f(ZiEI ZK7(((11)16[)) = (h [¢] ’i])((ai)iej). Thus
f = hoi; and the proof is complete. O


http://dx.doi.org/10.61186/ijmsi.18.2.51
http://ijmsi.ir/article-1-1626-en.html

[ Downloaded from ijmsi.ir on 2026-02-19 ]

[ DOI: 10.61186/ijmsi.18.2.51 ]

On A Class of Soc-Injective Modules 55

Recall that a ring R is called a right invariant if each of its right ideals is an
ideal of R [20, p. 3839].

Corollary 2.6. (1) Let M be a module over a right invariant ring R and
1=A; + X2+ ...+ Xy in R such that \; are orthogonal idempotent. Then M
is S A-injective iff M is SA-\jR-injective for every j = 1,2,...,m.

(2) If M is SA-aR-injective module and aR = bR, where a and b are idempo-
tents of R, then M is SA-bR-injective.

Proof. (1) By [2, Corollary 7.3], R = én})\jR. Since R is a right invariant ring,

j=1
we get from [20, Proposition 3.1, p. 3855] that R is a multiplication module and
hence Proposition 2.5 implies that M is S A-injective iff M is SA-\; R-injective
for all 1< j < m.

(2) By Proposition 2.3(3). O

Proposition 2.7. The following statements are equivalent for a module M.
(1) All modules are SA-M -injective.

(2)
(3) All semi-artinian submodules of M are S A-M -injective.
4)

(4) All semi-artinian submodules of M are direct summands of M.

Proof. Straightforward. a

All semi-artinian modules are S A-M -injective.

Proposition 2.7 implies the next result.

Corollary 2.8. For a ring R, the following conditions are equivalent.
(1) Mod-R = SAIg.

(2) All semi-artinian modules are S A-injective.

(3) All semi-artinian right ideals of R are SA-injective.

(4) If I C** Rpg, then I is a direct summand of Rg.

Corollary 2.9. A module M is semisimple if and only if M is semi-artinian
and all modules are SA-M -injective.

Proof. (=) It is obvious.

(<) If K is a submodule of M, then K is semi-artinian by [9, p. 238] and
hence Proposition 2.7 implies that K is a direct summand of M. Thus M is a
semisimple module. O

As a special case of Corollary 2.9, we have the following corollary.

Corollary 2.10. A ring R is a right semisimple ring if and only if it is a right
semi-artinian ring and Mod-R = SAIg .

In general, not every semi-artinian submodule of a projective module is
projective, for example, if M = Z4 as Zs-module and K = 274, then K C5* M
but K is not a projective Z4-module.
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Theorem 2.11. The following conditions are equivalent for a projective module
M.

(1) The class of SA-M-injective modules is closed under quotient.

(2) Every quotient of an injective module is S A-M -injective.

(3) If K1 and Ko are two SA-M-injective submodules of a module N, then
Ky + Ky is SA-M-injective.

(4) If K1 and Ky are two injective submodules of a module N, then K; + Ky
is S A-M -injective.

(5) If K C** M, then K is projective.

Proof. (1) = (2) and (3) = (4) are obvious.
(2) = (5) Consider the following diagram:

0 — =K< s

d

E——N——0

where N and E are modules, K is a semi-artinian submodule of M, h is an
epimorphism and f is a homomorphism. We can assume that F is injec-
tive (see, e.g. [3, Proposition 5.2.10]). By SA-M-injectivity of N, f can be
extended to a homomorphism ¢g : M — N. By projectivity of M, there is a
homomorphism g : M — E such that hog = g. Let f : K — FE be the
restriction of § over K. It is clear that h o f = f. Then K is projective.

(5) = (1) Let L and N be modules such that N is SA-M-injective and
h : N — L is an epimorphism. If K C** M and f : K — L is any
homomorphism, then the hypothesis implies that K is projective and hence
there is a homomorphism g : K — N with ho g = f. By SA-M-injectivity
of N, there is a homomorphism §: M — N with goi=g¢g. Let S =hog:
M — L. Then foi=hogoi=hog= f. and hence L is an SA-M-injective
module.

(1) = (3) Let K; and K3 be two SA-M-injective submodules of a module
K. Thus K; + K> is a homomorphic image of the direct sum Ky & Ky. SA-M-
injectivity of K1 @® K5 and the hypothesis imply that K7+ K5 is SA-M-injective.

(4) = (2) Let F be an injective module with submodule D. Let B=F @ F,
L= {(x,z) |z €D}, B=B/L,Ki={b+LeB|becFal}, Ky =
{b+LeB|be0®F}. Then B = K; + K,. Since (F®0)NL = 0 and
0 F)NL=0,F=2K;,i=1,2 Since KiNKy={b+LeEB|beDd0}=
{b+LeB|bc0® D}, KiNKy =D under b+ b+ L forallbe D@ 0. By
hypothesis, B is SA-M-injective. Injectivity of K; implies that B = K; © A
for some submodule A of B, so A= (K, + K»)/K, = Ky/K1N Ky = F/D. By
Proposition 2.3(5), F'/D is S A-M-injective. O

Theorem 2.11 implies the following result.
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Corollary 2.12. The following statements are equivalent.

(1) The class SAIg is closed under quotient.

(2) Every quotient of an injective module is S A-injective.

(3) For any module N, if Ny and Ny are submodules of N with N1, No € SAIR,
then N1 + No € SAIR.

(4) For any module N, if N1 and Na are injective submodules of N, then
N1+ Ny € SAIR.

(5) If I C** Rp, then I is projective.

Theorem 2.13. If M is a finitely generated module, then the following state-
ments are equivalent.

(1) Sa(M) is noetherian.

(2) The class of SA-M -injective modules is closed under direct sums.

(3) Direct sums of injective modules are SA-M -injective.

(4) If K is injective module, then K is SA-M-injective for any index set S,

(5) If K is injective module, then K™ is SA-M-injective.

Proof. (2) = (3) = (4) = (5) Clear.
(1) = (2) Let E = @M;, where M; are SA-M-injective modules and f :
i€l
K — FE be a homomorphism with K C** M. Since Sa(M) is a noetherian
module, we have K is finitely generated and hence f(K) C € M;, for some

jely
finite subset I; of I and hence @ M; is SA-injective. Then f can be extended
JEI|
to a homomorphism g : M — F and so E is SA-injective.
(5) = (1) Let K3 C K3 C ... be a chain of submodules of Sa(M). For each
i=1

j=1 j=1
J#i

is injective. By hypothesis, @M; = (BF;) ® (DI F;) is SA-M-injective and
i=1

i=1 i=1j=1

i
hence Proposition 2.3(1) implies that F' it self is S A-M-injective.
Define f : H = |JK; — F by f(a) = (a + K;);. Clearly, fis a well defined

i=1

homomorphism. Since Sa(M) C** M (by [9, p. 238]), we have GKZ- Csa
i=1

M and hence f can be extended to a homomorphism ¢ : M — F. Since

M is finitely generated, we have g(M) C @E(M/K;) for some n and hence

i=1

f(UK;) € @EM/K;). Since m;f(xz) = mi(x + Kj);51 = = + K;, for all
i=1 i=1

z €H and i > 1, where m; : @E(M/K;) — E(M/K,) is the projection map,

jz1

mif(H) = H/K; forall i > 1. Since f(H) C éE(M/Ki), H/K; = mf(H) =0,
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forall i >n+1,so0o H = K; for all i > n+1 and hence the chain K; C K5 C ...
terminates at K, ;1. Thus Sa(M) is a noetherian module. O

Proposition 2.14. The following statements are equivalent.
(1) Sa(Rg) is noetherian.

(2) The class SAIR is closed under direct sums.

(3) Any direct sum of injective modules is S A-injective.

(4) If K is injective module, then K) is SA-injective for any index set S.
(5) If K is injective module, then K™ is S A-injective.

(6) The class SAIg is closed under pure submodules.

(7) All FP-injective modules are S A-injective.

Proof. By applying Theorem 2.13, we have the equivalent of (1),(2), (3),(4)
and (5).

(1) = (6). Let N € SAIR and K a pure submodule of N. Let C C** Rp,
thus the hypothesis implies that C' is finitely generated and so R/C' is a finitely
presented. Hence the sequence Homg(R/C, N) — Homg(R/C,N/K) — 0 is
exact. By [8, Theorem XII1.4.4 (4), p. 491], the sequence Homg(R/C,N) —

Hompg(R/C,N/K) — Ext'(R/C, K) — Ext!(R/C, N) is exact. Thus Ext!(R/C, K) =

0 and hence K € SAIr. Therefore, the class SAIg is closed under pure sub-
modules.

(6) = (7). If M is any F P-injective module, then M is a pure submodule
of a SA-injective module. By hypothesis, M € SAIg.

(7) = (1). Let I be a submodule of Sa(Rg), thus I C°* Rp. Let a: I — M
be a homomorphism, where M is a F'P-injective module. By hypothesis, M
is SA-injective and hence « extends to Ri. By [6], I is finitely generated and
hence Sa(Rp) is a noetherian module. O

3. DEFINABILITY OF THE CLASS SAIg

If X C Mod-R, then we write X® = {M € R-Mod | M* =Homz(M,Q/Z) €
X} and X = {M € Mod-R | M is a pure submodule of a module in X'} .

Lemma 3.1. The pair ((SAIR)®,SAIR) is an almost dual pair over a ring R.
Proof. By Corollary 2.4 and [12, Proposition 4.2.11, p. 72]. O

Corollary 3.2. Consider the following conditions for the class SAIr over a

Then (1) < (2),(1) = (3),(1) = (5) and (3) & (4). Moreover, if Sa(RRr) is
noetherian, then all five conditions are equivalent.
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Proof. (1) & (2). By Lemma 3.1 and [12, Proposition 4.3.8, p. 89].

(1) = (3). Since SAIR is a definable class, it is closed under pure submod-
ules and hence (SAIg)t = SAIg. Since ((SAIR)®,SAIR) is an almost dual
(by Lemma 3.1), it follows from [12, Theorem 4.3.2, p. 85], that (SAIr)* C
(SAIR)®.

(1) = (5). By [16, 3.4.8, p. 109].

(3) = (4). By Lemma 3.1 and [12, Theorem 4.3.2, p. 85].

(4) = (1) and (5) = (1). Suppose that Sa(Rpr) is a noetherian module. By
Proposition 2.14, the class SAIg is closed under pure submodules and hence
(SAIR)"T = SAIg. Thus the results follow from [12, Theorem 4.3.2, p. 85]. O

Corollary 3.3. If every SA-injective modules is pure-injective, then the fol-
lowing statements are equivalent for a class SAIr over a ring R.

(1) SAIR is definable.

(2) The class SAIg is closed under direct sums.

(3) (SAIR)t = SAIR

(4) Sa(Rpg) is a noetherian module.

Proof. By Proposition 2.14, Lemma 3.1 and [12, Theorem 4.5.1, p. 103]. O

If A is a a right R-module and B is a left R-module, then Tor; (A, B) is
defined as the first left derived functor of the tensor product A ® g B (see [4,
Ch. VI] for more details).

Lemma 3.4. A left R-module M € (SAIR)® iff Tor,(R/I, M) = 0, for any
semi-artinian right ideal I of a ring R.

Proof. Let M be a left R-module and I C** Ri. By [7, Theorem 3.2.1, p. 75],
Ext!(R/I,M*) = (Tori(R/I, M))*, so that Tor;(R/I, M) = 0 if and only if
M* € SAIR. Hence (RSAF, SAIR) is an almost dual, where pSAF = {M € R-
Mod| Tori(R/I, M) = 0, for any semi-artinian right ideal I of a ring R}. By
[12, Proposition 4.2.11, p. 72], (SAIR)® =g SAF. |

A module M is called n-presented if there is an exact sequence F,, — F,,_1 —
-+« — Fy = M — 0, with each F; is a finitely generated free modules [5].

Theorem 3.5. The following statements are equivalent for a class SAIg over
a ring R.

(1) SAIR is definable.

(2) The class SAIR is closed under pure submodules and pure homomorphic
images.

(3) Every semi-artinian right ideal in R is finitely presented.

(4) A module M € SAIg iff M* € (SAIR)®.

(5) A module M € SAIR iff M** € SAIR.

Proof. (1) = (2). By [16, 3.4.8, p. 109].
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(2) = (3). Let N be any FP-injective module, thus there is an injective

module H with pure exact sequence 0 - N ANy & N H/N — 0. By hypothesis,
H/N € SAIg. Let K C*% Ry, thus Ext'(R/K, H/N)
=0. By [8, Theorem 4.4 (4), p. 491], the sequence 0 =Ext!(R/K,H/N) —
Ext?’(R/K,N) —
Ext?(R/K,H) = 0 is exact and hence Ext?(R/K, N) = 0. By [8, Theorem 4.4
(3), p. 491], the sequence 0 =Ext!(R, N) — Ext!(K, N) — Ext?(R/K,N) =0
is exact, so that Ext'(K, N) = 0. By hypothesis, SAIg is closed under pure
submodules, so that K is finitely generated by Proposition 2.14 and hence [6,
Proposition, p. 361] implies that K is finitely presented.

(3) = (1). Let M € SAIR. Let K C*® Rp, thus K is finitely presented (by
hypothesis) and hence there is an exact sequence Fy 2R 4K 0, where
F1, Fy are finitely generated free modules. Let 8 = iy, where i : K — R
is the inclusion mapping, thus the sequence Fy %3 Fy AR R/K — 0 is
exact, where 7 : R — R/K is the natural epimorphism. Hence R/K is a 2-
presented module, so that from [5, Lemma 2.7 (2)] we have Tor; (R/K, M*) =
(Ext!(R/K,M))* = 0. By Lemma 3.4, M* € (SAIR)® and hence (SAIr)* C
(SAIR)®. By hypothesis, every semi-artinian right ideal in R is finitely gen-
erated, so that Sa(Rpg) is noetherian. By Corollary 3.2, SAIg is a definable
class.

(1) = (4). By Corollary 3.2, (SAIg,(SAIR)®) is an almost dual pair and
hence a module M € SAIg iff M* € (SAIR)®.

(4) = (5). By hypothesis, (SAIg)* C (SAIR)®. By Corollary 3.2, (SAIr)** C
SAIg. Hence for any module M, if M € SAIg, then M** € SAIR.
Conversely, if M** € SAIg, then M* € (SAIR)®. By hypothesis, M € SAIg.

(5) = (1). Let N be a FP-injective module, thus there is a pure exact
sequence 0 - N — E — E/N — 0, where F is an injective module. By [21,
34.5, p. 286], the sequence 0 — N** — E** — (E/N)** — 0 is split. By
hypothesis, E** € SAIr and hence N** € SAIg. By hypothesis, N € SAlr
so that Sa(Rpg) is noetherian by Proposition 2.14. Thus S ATl is definable class
by Corollary 3.2. O

Note that if the class SAIR is closed under pure submodules, then (SAIg)" =
SAIgr. Thus we have the following corollary.

Corollary 3.6. The class SAIg is a definable if and only if it is closed under
pure submodules and the class (SAIR)™ is a definable.

Corollary 3.7. If the class SAIg is a definable, then the following are equiv-
alent.

(1) The class of flat left R-modules and the class (SAIR)® are coincide.

(2) Every module in SAIg is F P-injective.

(3) Every pure-injective module in SAIg is injective.
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Proof. (1) = (2). Let M € SAIg, thus M* € (SAIR)® by Corollary 3.2. By
hypothesis, M* is a flat left R-module and hence [10, Theorem, p. 239] implies
that M** is injective. Since M is a pure submodule in M**, we have M is
F P-injective by [21, 35.8, p. 301].

(2) = (3). Let M be any pure-injective module in SAIr. Let £: 0 — M —
N — K — 0 be an exact sequence. By hypothesis, M is F P-injective. By [17,
Proposition 2.6], the sequence £ is pure and hence pure-injectivity of M implies
that the sequence & is split by [21, 33.7, p. 279]. Therefore, M is injective.

(3) = (1). Let M be a flat left R-module, thus Tory (N, M) = 0, for any right
R-module N. By Lemma 3.4, M € (SAIR)®. Conversely, if M € (SAIR)®,
then M* € SAIg. By [16, Proposition 4.3.29, p. 149], M* is a pure injective
module. By hypothesis, M* is injective and hence M is flat by [10, Theorem,
p. 239]. O

4. RELATIONS BETWEEN SA-INJECTIVITY AND CERTAIN GENERALIZATIONS
OF INJECTIVITY

A right R-module M is called quasi-injective if, for every submodule N of
M, every right R-homomorphism from N to M can be extended to a right
R-endomorphism of M [3, p. 169].

In general, if M is S A-injective right R-module, then M need not be quasi-
injective, for example Z as Z-module is S A-injective (by Example 2.2(1)) but
it is not quasi-injective. Also, the converse is not true in general, for example
in the ring Zg4, the ideal I =< 2 > is a quasi-injective Z4-module but it is not
S A-injective Z4-module.

The following theorem gives a relation between S A-injective modules and
quasi-injective modules.

Theorem 4.1. The following statements are equivalent for a ring R.
(1) R is a right semi-artinian ring.

(2) Every SA-injective right R-module is injective.

(3) Every SA-injective right R-module is quasi-injective.

(4) Every cyclic S A-injective right R-module is quasi-injective.

Proof. (1) = (2) Let M be any SA-injective right R-module. Let I be any
right ideal of a ring R and f : I — M be any right R-homomorphism. Since R
is a right semi-artinian ring (by hypothesis), it follows from [9, Exercise 7(8),
p. 238] that I is a semi-artinian right ideal of R. Since M is an SA-injective
right R-module (by hypothesis), f extends to R and hence M is an injective
right R-module.

(2) = (3) and (3) = (4) are clear.
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(4) = (1) Let M be any nonzero cyclic right R-module. We will prove that
Soc(M) # 0. Assume that Soc(M) = 0. Let N be a nonzero submodule of
M. Thus Soc(N) = 0 and hence from Example 2.2(4) that M and N are SA-
injective right R-modules. By Corollary 2.4, N & M is an SA-injective right
R-module. By hypothesis, N & M is a quasi-injective right R-module. By [15,
Proposition 1.17, p. 8], N is an M-injective right R-module and hence N is a
direct summand of M. Thus M is semisimple and hence M =Soc(M) = 0 and
this is a contradiction. Thus Soc(M) # 0 for any nonzero cyclic right R-module
M and hence from [18, p. 183] we have that R is a right semi-artinian ring. 0O

Since every left perfect ring is right semi-artinian [9, Theorem 11.6.3, p.
294], we have the following corollary immediately from Theorem 4.1.

Corollary 4.2. If R is a left perfect ring, then every SA-injective right R-
module is injective (quasi-injective).

In the following proposition, we give another connection between S A-injective
modules and quasi-injective modules.

Proposition 4.3. A commutative ring R is semisimple if and only if R is a
semi-artinian ring and every quasi-injective R-module is S A-injective.

Proof. (=) By Corollary 2.10.

(<) Let M be any quasi-injective R-module. By hypothesis, M is S A-injective.
Since R is a semi-artinian ring (by hypothesis), it follows from Theorem 4.1 that
M is injective and hence from [19, Corollary 2.2] we get that R is a semisimple
ring. (I

The following corollary is immediately from Theorem 4.1 and Proposition 4.3.

Corollary 4.4. The following statements are equivalent for a commutative
ring R.

(1) R is semisimple.

(2) For each R-module M, M is S A-injective if and only if it is quasi-injective

A right R-module M is called P-injective (resp. F-injective) if, for ev-
ery principally (resp. finitely generated) right ideal I of R, every right R-
homomorphism from I to M can be extended to a right R-homomorphism
from R into M (see, for example [11] and [22]).

If M is SA-injective right R-module, then M need not be P-injective (resp.
F-injective) in general, for example Z as Z-module is SA-injective (by Exam-
ple 2.2(1)) but it is not P-injective (resp. F-injective). Also, the converse is not
true in general, for example: let F' = Zy be the field of two elements, F,, = F
forn=1,2,..., Q =[[.2, Fi, S = ®2,F,. If R is the subring of @ generated
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by 1 and S, then R is a F-injective right R-module (by [1, Example 4.5]) and
hence Rp is a P-injective module. Thus Example 4.5 in [1] implies that R is
not a soc-injective right R-module and so R is not a S A-injective module. Thus
R is F-injective (P-injective) right R-module but it is not S A-injective.

The following proposition gives a condition under which every F-injective
right R-module is S A-injective.

Proposition 4.5. Let R be a ring. Then Sa(Rg) is a noetherian right R-
module if and only if every F-injective right R-module is S A-injective.

Proof. (=) Let M be any F-injective right R-module. Let I be a semi-artinian
right ideal of R and let f : I — M be any right R-homomorphism. Since
Sa(Rp) is noetherian and I C Sa(Rg), it follows that I is a finitely generated
right ideal. By F-injectivity of M, f extends to a right R-homomorphism from
R into M and hence M is SA-injective.

(<) Let {M;}icr be a family of injective right R-modules. Thus M; are F-
injective modules. By [22, Proposition 2.1(c)], @,.; M; is an F-injective mod-
ule. By hypothesis, @, ;
sition 2.14 we get that Sa(Rg) is a noetherian right R-module. O

M; is a S A-injective module and hence from Propo-

Directly from Proposition 4.5 and Proposition 2.14, we have the following
corollary.

Corollary 4.6. Let R be a ring. Then every F-injective right R-module is
S A-injective if and only if every FP-injective right R-module is S A-injective.

A ring R is called (von Neumann) regular if for any a € R, there is b € R
such that a = aba [9, p. 38].

Proposition 4.7. The following statements are equivalent.

(1) R is a (von Neumann) regular ring and every P-injective right R-module is
S A-injective.

(2) R is a (von Neumann) regular ring and Sa(Rg) is a noetherian right R-
module.

(3) Every SA-injective right R-module is P-injective and every semi-artinian
right ideal of R is a direct summand of Rp.

Proof. (1) = (2) Since every F-injective right R-module is P-injective, we have
from hypothesis that every F-injective right R-module is SA-injective. By
Proposition 4.5, Sa(Rp) is a noetherian right R-module.

(2) = (3) Since R is a (von Neumann) regular ring, it follows from [14, Lemma
2] that every SA-injective right R-module is P-injective. Let I be any semi-
artinian right ideal of R. Thus I C Sa(Rp). Since Sa(Rpg) is a noetherian right
R-module (by hypothesis), we have that I is a finitely generated right ideal.
By [9, Exercise 13, p. 38], I is a direct summand of Rpg.
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) = (1) Since every semi-artinian right ideal of R is a direct summand of Rp

(by hypothesis), it follows that from Corollary 2.8 that every right R-module is
S A-injective and hence every P-injective right R-module is S A-injective. Since
every SA-injective right R-module is P-injective (by hypothesis), we have that
every right R-module is P-injective. By [14, Lemma 2], R is a (von Neumann)

regular ring. O
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