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Abstract. For a graph G = (V,E) of order n, a Roman {2}-dominating

function f : V → {0, 1, 2} has the property that for every vertex v ∈ V

with f(v) = 0, either v is adjacent to a vertex assigned 2 under f , or v

is adjacent to at least two vertices assigned 1 under f . In this paper, we

classify all graphs with Roman {2}-domination number belonging to the

set {2, 3, 4, n − 2, n − 1, n}. Furthermore, we obtain some results about

Roman {2}-domination number of some graph operations.
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1. Introduction

We study Roman {2}-dominating functions defined in [3]. We first present

some necessary terminology and notation. Let G = (V,E) be a graph with

vertex set V = V (G) and edge set E = E(G). The open neighborhood N(v) of

a vertex v consists of the vertices adjacent to v, and its closed neighborhood is

N [v] = N(v)∪{v}. The degree of v is the cardinality of its open neighborhood.
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Let ∆(G) be the maximum degree of the graph G. If S is a subset of V , then

N(S) =
⋃

x∈S N(x), N [S] =
⋃

x∈S N [x], and the subgraph induced by S in G

is denoted G[S].

A dominating set of G is a subset S of V such that every vertex in V − S
has at least one neighbor in S, in other words, N [S] = V . The domination

number γ(G) is the minimum cardinality of a dominating set of G. By [6], a

subset S ⊆ V is a 2-dominating set if every vertex of V − S has at least two

neighbors in S. The 2-domination number γ2(G) is the minimum cardinality

of a 2-dominating set of G.

Motivated by Stewart’s [10] article on defending the Roman Empire, Cock-

ayne et al. introduced Roman dominating functions in [4]. For Roman domi-

nation, each vertex in the graph model corresponds to a location in the Roman

Empire, and for protection, legions (armies) are stationed at various locations.

A location is protected by a legion stationed there. A location having no legion

can be protected by a legion sent from a neighboring location. However, this

presents the problem of leaving a location unprotected (without a legion) when

its legion is dispatched to a neighboring location. In order to prevent such prob-

lems, Emperor Constantine the Great [4] decreed that a legion cannot be sent

to a neighboring location if it leaves its original station unprotected. In other

words, every location with no legion must be adjacent to a location that has

at least two legions. This defense strategy prompted the following definition in

[4].

A function f : V (G)→ {0, 1, 2} is a Roman dominating function (RDF) on

G if every vertex u ∈ V for which f(u) = 0 is adjacent to at least one vertex v for

which f(v) = 2. The weight of an RDF is the value f(V (G)) =
∑

u∈V (G) f(u).

The Roman domination number γR(G) is the minimum weight of an RDF on

G. A vertex v with f(v) = 0 is said to be undefended with respect to f if it is

not adjacent to a vertex w with f(w) > 0.

In this paper, we study Roman {2}-dominating functions. These functions

are closely related to {2}-dominating functions introduced in [5] as follows.

For a graph G, a {2}-dominating function is a function f : V → {0, 1, 2}
having the property that for every vertex u ∈ V , f(N [u]) ≥ 2. The weight of

a {2}-dominating function is the sum f(V ) =
∑

v∈V f(v), and the minimum

weight of a {2}-dominating function f is the {2}-domination number, denoted

by γ{2}(G).

A Roman {2}-dominating function f relaxes the restriction that for every

vertex u ∈ V , f(N [u]) =
∑

v∈N [u] f(v) ≥ 2 to only requiring that this property

holds for every vertex assigned 0 under f . Formally, a Roman {2}-dominating

function f : V → {0, 1, 2} has the property that for every vertex v ∈ V with

f(v) = 0, f(N(u)) ≥ 2, that is, either there is a vertex u ∈ N(v), with

f(u) = 2, or at least two vertices x, y ∈ N(v) with f(x) = f(y) = 1. In terms

of the Roman Empire, this defense strategy requires that every location with no
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legion has a neighboring location with two legions, or at least two neighboring

locations with one legion each. Note that for a Roman {2}-dominating function

f , it is possible that f(N [v]) = 1 for some vertex with f(v) = 1. The weight of

a Roman {2}-dominating function f is defined as

w(f) = f(V ) =
∑
v∈V

f(v),

and the minimum weight of a Roman {2}-dominating function f is the Roman

{2}-domination number, denoted by γ{R2}(G).

Lemma 1.1. [3, Corollary 10] for a cycle Cn and a path Pn we have

γ{R2}(Cn) = dn2 e, γ{R2}(Pn) = dn+1
2 e.

Proposition 1.2. [3, Proposition 5] For every graph G; γ{R2}(G) 6 γ2(G).

For graphs G and H, The join of graphs G and H is the graph G ∨H with

the vertex set V = V (G) ∪ V (H) and the edge set E = E(G) ∪ E(H) ∪ {uv :

u ∈ V (G), v ∈ V (H)}.
The Corona G[H] of G and H is constructed as follows:

Choose a labeling of the vertices of G with labels 1, 2, . . . , n. Take one copy of

G and n disjoint copies of H, labeled H1, . . . ,Hn, and connect each vertex of

Hi to vertex i of G.

The Cartesian product of two graphs G and H, denoted by G�H, has vertex

set V (G�H) = V (G) × V (H), where two distinct vertices (u, v) and (x, y) of

G�H are adjacent if either

u = x and vy ∈ E(H) or v = y and ux ∈ E(G).

The grid graph Gm,n is the Cartesian product of Pm and Pn. In 1983,

Jacobson and Kinch [9] established the exact values of γ(Gm,n) for 2 6 m 6 4

which are the first results on the domination number of grids. Also, In 1993,

Chang and Clark [2] found those of γ(Gm,n) for m = 5 and 6. Fischer found

those of γ(Gm,n) for m 6 21 (see Goncalves et al. [7]). Recently, Goncalves

et al. [7] finished the computation of γ(Gm,n) when 24 6 m 6 n. In [11], the

authors have obtained the values of γ2(Gm,n) for 2 6 m 6 4. In this paper, we

will give some boundaries for γ{R2}(Gm,n) for 2 6 m 6 4.

2. Graphs with small or large Roman {2}-domination number

In this section we provide a characterization of all connected graphs G of

order n with Roman {2}-domination number belonging to {2, 3, 4, n − 2, n −
1, n}. Let f = (V0, V1, V2) be a function f : V → {0, 1, 2} on a graph G =

(V,E), where Vi = {v|f(v) = i} for i ∈ {0, 1, 2}.

Proposition 2.1. Let G be a graph. γ{R2}(G) = 2 if and only if G = Kt ∨H
for t = 1, 2 and for some graph H.
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Proof. Let f = (V0, V1, V2) be a γ{R2}(G)-function with weight 2. Hence, we

have two cases. If there exists a vertex z with z ∈ V2, then all other vertices

of G are adjacent to z. Therefore, G = K1 ∨H for some graph H. If there are

two vertices u and v in V1, then all other vertices of G are adjacent to both

vertices u and v. If u and v are adjacent, then G = K1 ∨H for some graph H,

and if u and v are not adjacent, then G = K2 ∨H for some induced subgraph

H of G. Conversely, it is not hard to see the result. �

For a graph G, define Ni(G) for i = 1, . . . , n− 1 as follows,

Ni(G) = {v ∈ V : deg(v) = i}.

Proposition 2.2. Let G be a graph. Then γ{R2}(G) = 3 if and only if one of

the following holds:

(i) ∆(G) = n− 2 and Nn−2(G) is a clique,

(ii) ∆(G) < n− 2 and γ2(G) = 3.

Proof. Let f = (V0, V1, V2) be a γ{R2}(G)-function with weight 3. By Proposi-

tion 2.1, ∆(G) 6 n−2. At first, suppose that ∆(G) = n−2. Let |Nn−2(G)| = 1,

v ∈ Nn−2(G) and u /∈ N(v). Then, set v ∈ V2 and u ∈ V1. Now, if

|Nn−2(G)| > 2. Consider two vertices u and v in Nn−2(G). If u and v are

not adjacent, then u and v are adjacent to all other vertices of G, and hence

G = K2 ∨H, which is a contradiction by Proposition 2.1. Thus, Nn−2(G) is a

clique.

If ∆(G) < n−2, then there are three vertices u, v and w in V1. Hence, {u, v, w}
is a 2-dominating set, so γ2(G) 6 3. Since γ{R2}(G) = 3, we have γ2(G) > 3.

So, γ2(G) = 3. The converse proof can be easily checked. �

Proposition 2.3. Let G be a graph. Then γ{R2}(G) = 4 if and only if ∆(G) 6
n− 3 and γ2(G) > 4 as well as G satisfies one of the following conditions,

(i) γ(G) = 2,

(ii) γ2(G) = 4,

(iii) There exists a vertex v ∈ V (G) such that γ2(G[V (G)−N [v]]) = 2.

Proof. Suppose that γ{R2}(G) = 4. By Propositions 2.1 and 2.2, we have

∆(G) 6 n − 3 and γ2(G) > 4. Let f = (V0, V1, V2) be a γ{R2}(G)-function.

We consider three cases. First case, if |V2| = 2, then γ(G) = 2. Second case,

|V1| = 4, so γ2(G) = 4. Finally, |V1| = 2 and |V2| = 1. Suppose that V1 =

{u,w} and V2 = {v}. Obviously, each vertex in (V (G)−{u,w})−N [v] must be

connected to both u and w. Hence, γ2(G[V (G) −N [v]]) = 2. Conversely, the

result is obvious if we have (i) or (ii). Now, suppose that G satisfies (iii). Since

∆(G) 6 n− 3 and γ2(G) > 4, by Propositions 2.1 and 2.2, γ{R2}(G) > 4. On

the other hand, assume that {u,w} is a 2-dominating set for G[V (G)−N [v]].

If we assign a 2 to v and a 1 to u and w, we can show that γ{R2}(G) 6 4. Thus,

γ{R2}(G) = 4. �
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Corollary 2.4. Let n1, n2, . . . , nr be the positive integers such that n1 6
n2 6 · · · 6 nr. Then Roman {2}-domination number of the nr-partite graph

Kn1,n2,...,nr
is as follows:

γ{R2}(Kn1,n2,...,nr
) =


2 if n1 = 1 or 2,

3 if n1 = 3,

4 otherwise.

Proposition 2.5. Let G be a connected graph with order n. The following

statements hold.

(a) γ{R2}(G) = n if and only if G = Kn for n = 1, 2.

(b) γ{R2}(G) = n− 1 if and only if G is a C3, P3 or P4.

Proof. For (a) it is clear that ∆(G) 6 1. For (b), if G is one of the C3, P3 or P4,

then the claim is true. Conversely, assume that γ{R2}(G) = n − 1. Obviously

∆(G) = 2. Among all γ{R2}(G)-functions, let f = (V0, V1, V2) be one with |V2|
as small as possible. It is easy to see that V2 = ∅ and |V0| = 1. Suppose that

v ∈ V0 for some vertex v ∈ V (G), so deg(v) = 2. Also, each vertex except v

can be adjacent to at most one vertex in V1. Hence, the vertices which have

the degree 2 are at most v and N(v). Therefore, we have just three graphs,

C3, P3 or P4. �

Now, we need the following graphs in Proposition 2.6. Ê6 is a tree obtained

from K1,3 by subdividing each edge exactly once. D7 is also a tree obtained

from K1,3 by subdividing one edge three times, (see [1]). We define the graph

H2 such that it is a graph with a 4-cycle and a path of order 2 joined to one of

the vertices of the 4-cycle.

Proposition 2.6. Let G be a connected graph with order n. Then γ{R2}(G) =

n− 2 if and only if G is one of the graphs listed in Fig. 1.

Proof. Suppose that γ{R2}(G) = n− 2, then the following conditions hold,

(i) ∆(G) 6 3,

(ii) each non-adjacent pair of vertices with degree 3 has exactly two com-

mon neighbours,

(iii) G does not have one of the graphs P7, C6, Ê6, D7, and H2 as subgraph.

If there exists a vertex v ∈ V (G) with degree at least 4, then γ{R2}(G) 6 n−3.

Also, if there exists a pair of nonadjacent vertices with degree 3 having zero,

one or three common neighbours, then we obtain γ{R2}(G) 6 n− 3. Moreover,

Roman {2}-domination number of each of graphs P7, C6, Ê6, D7, and H2

is n − 3. Thus, they cannot be as a subgraph of G. It is not hard to see

that all graphs which have the above three properties are listed in Fig. 1.

Conversely, it is easy to verify that for all graphs G listed in Fig. 1, we have

γ{R2}(G) = n− 2. �
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Figure 1

3. Graph products

In this section we study Roman {2}-domination on some graph products.

Also, in the following theorems we classify Roman {2}-domination for join of

two graphs.

Theorem 3.1. Let G and H be two graphs. Then γ{R2}(G∨H) 6 4. Moreover,

if k = γ{R2}(G) 6 γ{R2}(H), then we have

(a) k 6 2 if and only if γ{R2}(G ∨H) = 2,

(b) k = 3 or k = 4 and γ(G) = 2 if and only if γ{R2}(G ∨H) = 3.

Proof. The first assertion is obvious because for each graph G, γ{R2}(G) 6
2γ(G). For (a), assume that k = 1, then G = K1. It is sufficient to use

Proposition 2.1. Now, suppose k = 2. By Proposition 2.1, G ∨ H = Kt ∨ F
for t = 1 or 2, and for some graph F . Conversely, let γ{R2}(G ∨ H) = 2.

By Proposition 2.1, there exists a graph L such that G ∨ H = Kt ∨ L for

t = 1 or 2. Without loss of generality, assume that G and H are not clique
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graphs. One can check that the vertex set of Kt for t = 1, 2 is a subset of V (G)

or V (H). If t = 1 and V (K1) ⊆ V (H), then γ{R2}(H) 6 2. Also, if t = 2 and

V (K2) ⊆ V (H), then γ{R2}(H) 6 2. Similarly, one can check two other cases.

Hence, γ{R2}(G) 6 2.

For (b), if k = 3, then γ{R2}(G ∨H) 6 3. By (a), γ{R2}(G ∨H) > 3. Now,

let k = 4 and {u, v} ⊆ V (G) be a minimum dominating set for G, and w be

an arbitrary vertex in V (H). It is seen that {u, v, w} is a 2-dominating set

for G ∨ H. By Proposition 2.2 we have γ{R2}(G ∨ H) = 3. Conversely, let

γ{R2}(G ∨ H) = 3. By (a), k > 3. We consider two cases using Proposition

2.2 to complete the proof. First assume that γ2(G ∨H) = 3. Let {u, v, w} ⊆
V (G ∨ H) be a 2-dominating set on G ∨ H. Without loss of generality, we

consider two subcases,

(i) If {u, v, w} ⊆ V (G), then by (a), γ{R2}(G) = 3.

(ii) If {u, v} ⊆ V (G) and w ∈ V (H), then γ(G) = 2. So by (a), 3 6
γ{R2}(G) 6 4.

Let |V (G)| = n and |V (H)| = m. Suppose that ∆(G ∨H) = n+m− 2 and

Nn+m−2(G ∨ H) is clique. Let |Nn+m−2(G ∨ H)| = 1, v ∈ Nn+m−2(G ∨ H)

and u /∈ N(v). Since γ{R2}(G ∨ H) = 3, then {u, v} is a subset of V (G) or

V (H). Without loss of generality, let {u, v} be a subset of V (H). Hence,

γ{R2}(H) = 3, and by Proposition 2.1, γ{R2}(G) = 3. Now, assume that

|Nn+m−2(G ∨ H)| > 2. Consider two vertices u, v ∈ Nn+m−2(G ∨ H) and a

vertex w /∈ Nn+m−2(G ∨ H). By Proposition 2.1 and γ{R2}(G ∨ H) = 3, we

can check that {u, v} * V (G) and {u, v} * V (H). Finally, we can conclude

that k = 3. �

In the following theorem we obtain Roman {2}-domination number for the

Corona product of two graphs.

Theorem 3.2. Let G and H be two graphs such that the order of G is n. If

H = K1, then γ{R2}(G[H]) = n+ γ(G), otherwise γ{R2}(G[H]) = 2n.

Proof. LetH = K1. Easily we can show that for every graphG, γ{R2}(G[K1]) 6
n+ γ(G). On the other hand, assume that f = (V0, V1, V2) is a γ{R2}(G[K1])-

function. Without loss of generality, suppose that nK1 ⊆ V0 ∪ V1. Also, let

`K1 ∈ V1 and (n− `)K1 ∈ V0. Thus, V2 ⊆ V (G). Moreover, (V1 ∩ V (G)) ∪ V2
forms a dominating set for G.

w(f) = `+ |V1 ∩ V (G)|+ 2|V2|
> `+ γ(G) + |V2|
> n+ γ(G).

For the second assertion, let V (G) = {v1, v2, . . . , vn} and f be a γ{R2}(G[H])-

function. Then,

w(f) = w(f |H1) + w(f |H2) + . . .+ w(f |Hn) > 2n,
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where Hi = vi ∨H for i = 1, 2, . . . , n. So, γ{R2}(G[H]) = 2n. �

Moreover, we state a bound and some results about Cartesian product of

graphs. Let G and H be two graphs with V (G) = {v1, v2, . . . , vn} and V (H) =

{u1, u2, . . . , um}. In G�H, we define Gi and Hj for i = 1, . . . ,m and j =

1, . . . , n, as ith layer and jth layer of G and H, respectively as follows,

Gi = {(v, ui) : v ∈ V (G)}, Hj = {(vj , u) : u ∈ V (H)}.

Theorem 3.3. γ{R2}(G�H) 6 min
{
γ{R2}(G)|V (H)|, γ{R2}(H)|V (G)|

}
. Also,

this bound is sharp.

Proof. Let f be a γ{R2}-function for H. Consider each copy of H with γ{R2}-

function f in cartesian product G�H. Since we have |V (G)| copies of H, it

is easy to see that γ{R2}(G�H) 6 γ{R2}(H)|V (G)|. By a similar way, we

have γ{R2}(G�H) 6 γ{R2}(G)|V (H)|. In order to prove this bound is sharp,

consider γ{R2}(K1,n�P2) = 2γ{R2}(K1,n) = 4, for n > 3, see Proposition

2.3. �

Theorem 3.4. Let m and n be two positive integers with n 6 m. Then

γ{R2}(Kn�Km) = min{m, 2n}.

Proof. Let V (Kn) = {v1, v2, . . . , vn} and V (Km) = {u1, u2, . . . , um}. Suppose

that γ{R2}(Kn�Km) < min{m, 2n}, and let f = (V0, V1, V2) be a γ{R2}(Kn�Km)-

function. Thus, we can say that there exists the layer Ki
n for some 1 6 i 6 m,

such that w(f |Ki
n
) = 0. On the other hand, we can find a layer Kj

m for some

1 6 j 6 n, with w(f |Kj
m

) 6 1. It is easy to see that (vi, uj) ∈ V0 and

f(N(vi, uj)) 6 1. Therefore, we achieve a contradict. Now to get the equality,

consider a Roman {2}-dominating function on Kn�Km that assigns to (vi, ui)

and (v1, uj) a 1 for every i and for every j belonging to {n+ 1, ...,m}, and a 0

to the remaining vertices of the graph. �

We know that γ{R2}(Gm,n) 6 γ2(Gm,n) for all positive integers m and n.

Moreover, this bound is sharp for G2,n for each n and G3,n for n 6 13 as well

as G4,4. We recall the following results of [11].

Theorem 3.5. Let n be a positive integer. Then the following equalities hold:

(i) γ2(G2,n) = n,

(ii) γ2(G3,n) = d 4n3 e,
(iii) γ2(G4,n) = d 7n+3

4 e, for n > 3.

Proposition 3.6. γ{R2}(G2,n) = n.

Proof. We claim that the weight of each layer of P2 is at least 1. Assume that

there exists a layer with weight 0. To have a Roman {2}-dominating set for
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G2,n, the weight of the adjacent layers will be 4. The obtained Roman {2}-
domination number is not optimal because its weight is larger than γ2(G2,n).

�

Proposition 3.7.

(a) For n = 2, 3, 6, γ{R2}(G3,n) 6 b 5n+3
4 c. Otherwise, γ{R2}(G3,n) 6

d 5n+3
4 e.

(b) For n = 2, 3, 5, 6, 9, γ{R2}(G4,n) 6 b 5n+4
3 c. Otherwise, γ{R2}(G4,n) 6

d 5n+4
3 e.

Proof. Suppose that vij is the vertex in the row i and column j for 1 6 i 6 m
and 1 6 j 6 n in Gm,n. In each part we give a complete explanation about

a basic case of the product and then we can obtain upper cases using it. For

(a), for n = 2, 3, 6, it is sufficient to use part (ii) of Theorem 3.5. Now, let

n = 4k−1 for some positive integer k > 2. We define a Roman {2}-dominating

function f = (V0, V1, V2) such that vij ∈ V2 for j = 4t for some positive integer

1 6 t 6 k − 1, such that i = 1 if t is odd, otherwise i = 3. Also,

V0 = {vij : d(vij , v) = 1, 2, 4, for some v ∈ V2, and 1 6 i 6 3, 1 6 j 6 n},

where d(vij , v) is the length of shortest path between two vertices vij and v.

The label of other vertices is 1. Hence, w(f) = 5k. For n 6= 4k − 1 we obtain

the result by adding at most 3 columns to the case n = 4k − 1. By adding the

first column to the case n = 4k− 1, one can keep the previous assignments (in

case n = 4k−1). Set the label of v2(4k), 1 and the label of the other two added

vertices are zero. One can repeat this step by adding a column before the first

column in case n = 4k − 1. Now, we have to check this method for adding

the third column. It is easy to find a Roman {2}-dominating set if we add

two vertices with label 1. Finally, γ{R2}(G3,n) 6 d 5n+3
4 e. For (b), in graphs

A, B and C given in Fig. 2, a star, a black circle and a white circle denote a

vertex with label 2, 1 and 0, respectively. We want to construct G4,n for n > 7

by merging a number of graphs A, B and C. When two of these graphs merge

with each other, two of the columns turns into one column in the obtained

graph. One can prove the first part using Theorem 3.5 and graphs in Fig. 2.

Suppose that n(A), n(B) and n(C) are the number of used A,B and C in G4,n,

respectively. Consider n = 3k + i for some positive integers k and i such that

1 6 i 6 3. For G4,n assign n(A) = k − i, n(C) = i − 1 and n(B) = 1 (except

for n = 9, n(B) = 0). Note that when k 6 i, we set n(A) = 0. �
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Figure 2. Graphs A, B and C, respectively.

Acknowledgment

We would like to thank the anonymous referee for his (her) helpful comments

and suggestions.

References

1. A. E. Brouwer, W. H. Haemers, Spectra of Graphs, Universitext. Springer, New York,

2012. xiv+250 pp. ISBN: 978-1-4614-1938-9.

2. T. Y. Chang, W. E. Clark, The Domination Number of the 5×n and 6×n Grids Graphs,

J. Graph Theory, 17(1), (1993), 81–107.

3. M. Chellali, T. W. Haynes, S. T. Hedetniemi, A. A. McRae, Roman {2}-domination,

Discrete Appl. Math., 204, (2016), 22–28.

4. E. J. Cockayne, P. M. Dreyer Jr., S. M. Hedetniemi, S. T. Hedetniemi, Roman Domina-

tion in Graphs, Discrete Math., 278(1-3), (2004), 11–22.

5. G. S. Domke, S. T. Hedetniemi, R. C. Laskar, G. Fricke, Relationships Between Integer

and Fractional Parameters of Graphs, Graph theory, combinatorics, and applications,

Vol. 1 (Kalamazoo, MI, 1988), 371–387, Wiley-Intersci. Publ., Wiley, New York, 1991.

6. J. Fink, M. S. Jacobson, n-domination in Graphs, Graph theory with applications to

algorithms and computer science (Kalamazoo, Mich., 1984), 283–300, Wiley-Intersci.

Publ., Wiley, New York, 1985.

7. D. Goncalves, A. Pinlon, M. Rao, S. Thomasse, The Domination Number of Grids, SIAM

J. Discrete Math., 25(3), (2011), 1443–1453.

8. M. A. Henning, S. T. Hedetniemi, Defending the Roman Empire -A New Strategy,

The 18th British Combinatorial Conference (Brighton, 2001), Discrete Math., 266(1-

3), (2003), 239–251.

9. M. S. Jacobson, L. F. Kinch, On the Domination Number of Product of a Graph, I. Ars

Combin., 18, (1984), 33–44.

10. I. Stewart, Defend the Roman Empire!, Sci. Amer., 281(6), (1999) 136–139.

11. Y. Lu, J-M Xu, The 2-Domination and 2-Bondage Numbers of Grid Graphs, 2012,

https://arxiv.org/abs/1204.4514.

 [
 D

O
I:

 1
0.

61
18

6/
ijm

si
.1

8.
2.

11
7 

] 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.ir

 o
n 

20
26

-0
2-

19
 ]

 

Powered by TCPDF (www.tcpdf.org)

                            10 / 10

http://dx.doi.org/10.61186/ijmsi.18.2.117
http://ijmsi.ir/article-1-1604-en.html
http://www.tcpdf.org

