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Abstract. The purpose of the paper is to derive some interesting impli-

cations associated with some differential inequalities, for certain analytic

functions in the open unit disk. Connections to previously well known

results are also established.

Keywords: Analytic functions, Subordination, Carathéodory functions.
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1. Introduction and Preliminaries

Let ∆ := {z ∈ C : |z| < 1} be the open unit disk. An analytic function p in

∆ with p(0) = 1 is said to be a Carathéodory function of order α if it satisfies

Re[p(z)] > α (0 ≤ α < 1, z ∈ ∆).

We denote by P(α) the class of all Carathéodory functions of order α in ∆

and P = P(0). Let A denote the class of analytic functions f defined in ∆

normalized by f(0) = 0 and f ′(0) = 1. Further we denote by S∗(α) and K(α)
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the subclasses of A consisting of starlike and convex functions of order α in ∆,

respectively. That is, a function f ∈ A belongs to the classes S∗(α) and K(α)

if f satisfies Re
(
zf ′(z)
f(z)

)
> α and Re

(
1 + zf ′′(z)

f ′(z)

)
> α, respectively in ∆.

Let f and g be analytic in ∆, then we say that f is subordinate to g in ∆

written f ≺ g, if there exists an analytic function w in ∆, such that w(0) = 0,

|w(z)| < 1, (z ∈ ∆) and f(z) = g(w(z)), (z ∈ ∆).

If g is univalent in ∆ then the subordination f ≺ g is equivalent to f(0) =

g(0) and f(∆) ⊂ g(∆).

Let Q denote the set of all functions q that are analytic and injective on

∆\E(q), where

E(q) = {ζ ∈ ∂∆ : lim
z→ζ

q(z) =∞},

and are such that q′(ζ) 6= 0 for ζ ∈ ∂∆\E(q). Further, let the subclass of Q
for Q(0) ≡ a be denoted by Q(a), Q(0) ≡ Q0 and Q ≡ Q1.

As of late various geometric properties of Carathéodory functions are being

studied by researchers in the field of geometric function theory. Several impli-

cations have been put up by various authors [5, 7, 1, 2, 6, 3, 11, 12, 13, 14, 15]

for functions to be starlike and convex of certain order or belong to the class

of Carathéodory functions etc.,.In this article we intend to study more about

the Carathéodory class of functions with the aid of differential subordination

and Jack’s Lemma. And the consequently obtained results, further simplifies

and supplements the already existing and well known results of [1, 2]. The

following results will be needed for the planned study.

Lemma 1.1. [4] Suppose that function w is analytic for |z| ≤ r, w(0) = 0 and

|w(z0)| = max
|z|=r

|w(z)|,

then z0w
′(z0) = kw(z0), where k is a real number with k ≥ 1.

We recall the following Lemma from the theory of differential subordinations,

developed by Miller and Mocanu[9, 10],

Lemma 1.2. [9, 10] Let Ω be a set in the complex plane C and let q be a

univalent function on ∆. Suppose that the function H : C2 ×∆ → C satisfies

the condition

H[q(ζ),mζq′(ζ); z] /∈ Ω, whenever z ∈ ∆, |ζ| = 1 and m ≥ n.

If the function p ∈ H[q(0), n] satisfies H[p(z), zp′(z); z] ∈ Ω for all z ∈ ∆, then

p(z) ≺ q(z).

Lemma 1.3. [8] Let q be univalent in ∆ and let θ and φ be analytic in a domain

D containing q(∆) with φ(w) 6= 0, w ∈ q(∆). Set Q(z) = zq′(z)φ(q(z)), h(z) =

θ(q(z)) +Q(z), and suppose that

(1) Q is starlike in ∆.
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(2) Re
(
zh′(z)
Q(z)

)
= Re

(
θ′(q(z))
φ(q(z)) + zQ′(z)

Q(z)

)
> 0, (z ∈ ∆).

If p is analytic in ∆ and satisfies θ(p(z))+zp′(z)φ(p(z)) ≺ θ(q(z))+zq′(z)φ(q(z)),

then p(z) ≺ q(z) and q is the best dominant.

2. Main Results

In the following Theorems we try to explore the Lemma’s due to Jack[4] and

Miller and Mocanu[6] to its fullest capacity and check the effects on the suffi-

cient conditions for an analytic function, f(z) to belong to the Carathéodory

class and also Re(af(z)) to be positive, for a ∈ C with Re(a) > 0.

Theorem 2.1. Let p be analytic in ∆ with p(0) = 1. If

Re{(1− α)p(z) + αp2(z) + βzp′(z)} >

(1− α)δ + α(δ2 − y2)− Re(β)

2(1− δ)
(1− 2δ + |p(z)|2) (2.1)

for 0 ≤ δ < 1, α ∈ R and β ∈ C, with Re(β) ≥ 0, then p ∈ P (δ).

Proof. Let w be an analytic function in ∆ with w(0) = 0 and

p(z) =
1 + (1− 2z)w(z)

1− w(z)
, (z ∈ ∆).

Suppose there exist a point z0 in ∆ such thatRe p(z) > δ for |z| < |z0| and Re p(z0) = δ,

then we have w(z) < 1 for |z| < |z0| and w(z0) = 1. By using Lemma 1.1, we

have

z0w
′(z0) = kw(z0)

where k is a real number and k ≥ 1. Now,

z0p
′(z0) =

2k(1− δ)w(z0)

(1− w(z0))2
.

Hence,
1

2k(1− δ)
z0p
′(z0) =

2(Re w(z0)− 1)

|1− w(z0)|4
.

As Re{w(z0)} ≤ 1, taking p(z0) = δ + iy, we observe z0p
′(z0) to be a non

positive real number, since

w(z0) = 1− 2(1− δ)2

(1− δ)2 + y2
+ i

2(1− δ)y
(1− δ)2 + y2

and

z0p
′(z0) = −k (1− δ)2 + y2

2(1− δ)
. (2.2)
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From (2.2), we obtain

Re{(1− α)p(z0) + αp2(z0) + βz0p
′(z0)}

= (1− α)δ + α(δ2 − y2)− k((1− δ)2 + y2)Re{β}
2(1− δ)

≤ (1− α)δ + α(δ2 − y2)− (1− 2δ + |p(z0)|2)

2(1− δ)
Re{β},

which is a contradiction to the assumption (2.1) and hence we conclude the

proof. �

Theorem 2.2. If p is an analytic function in ∆ with p(0) = 1. If for 0 ≤ α < 1

and a, β ∈ C

Re((1− α)p(z) + αp2(z) + βzp′(z)) >

(Im(a))2(1− α+ L)2 − L(L|a|2 + 2α[(Re(a))2 − (Im(a))2])

2(L|a|2 + 2α[(Re(a))2 − (Im(a))2]
(2.3)

where L = Re{āβ}
Re{a} with Re(āβ) > 0 and Re(a) > 0, then Re{ap(z)} > 0.

Proof. Let q(z) = ap(z) and h(z) = a+āz
1−z , we observe that the functions q(z)

and h(z) are analytic functions in ∆ with q(0) = h(0) = a ∈ C with h(∆) =

{w;Re{w} > 0}. Now suppose that q(z) 6≺ h(z), then by using Lemma 1.2,

there exist points z0 ∈ ∆ and ζ0 ∈ ∂∆\{1}, such that, q(z0) = h(ζ0) and

z0q
′(z0) = mζ0h

′(ζ0), m ≥ n ≥ 1, with

ζ0 = h−1(q(z0)) =
q(z0)− a
q(z0)− ā

and ζ0h
′(ζ0) = − |q(z0)− a|2

2Re((a)− q(z0))
.

Since we have h(ζ0) = ρi (ρ ∈ R), we observe that

Re{(1− α)p(z0) + αp2(z0) + βz0p
′(z0)}

= Re

{
(1− α)

h(ζ0)

a
+ α

(
h(ζ0)

a

)2

+ βm
ζ0h
′(ζ0)

a

}

= Re

{
(1− α)

ρi

a

}
+Re

{
α

(
ρi

a

)2
}
− m(ρi− a)2

2Re(a)
Re

{
β

a

}

≤ (1− α)Re

{
ρi

a

}
+ αRe

{(
ρi

a

)2
}
− |ρi− a|

2

2Re(a)
Re

{
β

a

}
= Aρ2 +Bρ+ C

= g(ρ) (2.4)

 [
 D

O
I:

 1
0.

61
18

6/
ijm

si
.1

8.
2.

12
7 

] 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.ir

 o
n 

20
26

-0
2-

19
 ]

 

                             4 / 11

http://dx.doi.org/10.61186/ijmsi.18.2.127
http://ijmsi.ir/article-1-1599-en.html


On Some Differential Inequalities for Certain Analytic Functions 131

where A = − 1

|a|2

[
L

2
+

α

|a|2
[(Re(a))2 − (Im(a))2]

]
,

B =
Im(a)

|a|2
(1− α+ L) and

C = −L
2

here L is given by the quantity Re(āβ)/Re(a).The function g(ρ) takes the

maximum value at ψ, given by

ψ =
Im(a)(1− α+ L)

L+ 2α
|a|2 [(Re(a))2 − (Im(a))2]

which results in,

Re{(1− α)p(z0) + αp2(z0) + βz0p
′(z0)} ≤ g(ψ)

=
(Im(a))2(1− α+ L)2 − L(L|a|2 + 2α[(Re(a))2 − (Im(a))2])

2(L|a|2 + 2α[(Re(a))2 − (Im(a))2])

contradicting the fact (2.3) holds, therefore Re(ap(z)) > 0. �

Theorem 2.3. Let p(z) be a nonzero analytic function in ∆ with p(0) = 1.

For β, γ ∈ R, if

t1 < Im

(
1− β(1− p(z)) + (1− γ)

zp′(z)

p(z)

)
< t2, (2.5)

where

t1 =
−
√

(1− γ)(
√

(1− γ)|a|2 + 2β(Re(a))2)− (1− γ)Im(a)

Re(a)

and

t2 =

√
(1− γ)(

√
(1− γ)|a|2 + 2β(Re(a))2) + (1− γ)Im(a)

Re(a)

then Re(ap(z)) > 0 where Re(a) > 0.

Proof. Proceeding similarly as the proof of the above Theorem we observe that,

Im

(
1− β(1− p(z0) + (1− γ)

zp′(z0)

p(z0)

)
= Im

(
1− β(1− q(z0)) + (1− γ)

z0q
′(z0)

q(z0)

)
= Im

(
1− β

(
1− ρi

a

)
+ (1− γ)

m|ρi− a|2

2ρRe(a)

)
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For the case ρ > 0, we obtain

Im

[
1− β(1− p(z0)) + (1− γ)

z0p
′(z0)

p(z0)

]
≥ βρ

|a|2
Re(a) +

(1− γ)|ρi− a|2

2ρRe(a)

=
1

2ρRe(a)

[(
2β(Re(a))2

|a|2
+ (1− γ)

)
ρ2 − 2(1− γ)Im(a)ρ+ (1− γ)|a|2

]
= g(ρ). (2.6)

The function g(ρ) in (2.6) takes the minimum value at η1 given by

η1 =

√
(1− γ)|a|2√

(1− γ)|a|2 + 2β(Re(a))2
,

which yields,

Im

[
1− β(1− p(z0)) + (1− γ)

zp′(z0)

p(z0)

]
≥ g(η1) = t2,

a contradiction.Therefore we have Re(ap(z)) > 0.

Now for the case where ρ < 0, we obtain

Im

(
1− β(1− p(z0)) + (1− γ)

zp′(z0)

p(z0)

]
≤ βρ

|a|2
Re(a) +

(1− γ)|ρi− a|2

2ρRe(a)

=
1

2ρRe(a)

[(
2β(Re(a))2

|a|2
+ (1− γ)

)
ρ2 − 2(1− γ)Im(a)ρ+ (1− γ)|a|2

]
= g(ρ). (2.7)

The function g(ρ) in (2.7), takes the maximum value at η2 given by

η2 = −
√

(1− γ)|a|2√
|a|2(1− γ) + 2β(Re(a))2

,

which implies

Im

[
1− β(1− p(z0)) + γ

z0p
′(z0)

p(z0)

]
≤ g(η2) = t1,

a contradiction. Therefore we have Re(ap(z)) > 0. �

The proof of the next theorem is much akin to the Theorem 2.3, hence

omitted.

Theorem 2.4. Let p(z) be an analytic function in ∆ and p(0) = 1. If

t1 < Im

(
1 + γ

zp′(z)

p(z)
+ βp(z)

)
< t2, (γ, β ∈ R) (2.8)
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where

t1 =
−√γ

√
γ|a|2 + 2β(Re(a))2 − γIm(a)

Re(a)

and

t2 =

√
γ
√
γ|a|2 + 2β(Re(a))2 − γIm(a)

Re(a)
,

then

Re(ap(z)) > 0 (Re(a) > 0).

Theorem 2.5. Let p be non zero analytic function in ∆ with p(0) = 1. If∣∣∣∣arg(λp(z) +
zp′(z)

p(z) + µ

)∣∣∣∣ < π

2
χ(λ,A,B,C), (2.9)

for −1 ≤ B < A ≤ 1, λ > 0, µ ≥ 0, |A + Bµ| < |1 + µ| and χ(λ,A,B,C) is
given by

χ(λ,A,B,C) = 1 +
2

π
arctan


λ+ λ(B + C) + −λC(A+B) + (λ(A+ C) + (C −B))(B + C)

+λABC2

[λ(B + C)(1 −AC) − (λ(A+ C) + (C −B))(1 −BC)]


(2.10)

then | arg p(z)| < arctan

[
A−B

1 +AB +A+B

]
.

Proof. Choosing

q(z) =
1 +Az

1 +Bz
, θ(w) = λw and φ(w) =

1

w + µ
. (2.11)

we observe that q is univalent (convex) in ∆ and Re(q(z)) > 0, (z ∈ ∆).

Further, θ and φ are analytic in q(∆) and φ(w) 6= 0 (w ∈ q(∆)).The function

Q(z) = zq′(z)φ(q(z))

=
(C −B)z

(1 +Bz)(1 + Cz)
, where C =

A+Bµ

1 + µ

is univalent and starlike in ∆, because

Re

(
zQ′(z)

Q(z)

)
= Re

[
1−

(
Cz

1 + Cz
+

Bz

1 +Bz

)]
>

(
1

1 + |B|

)
+

(
1

1 + |C|

)
− 1 =

1− |B||C|
(1 + |B|)(1 + |C|)

> 0.

(2.12)

Further, we have

h(z) = θ(q(z)) +Q(z) = λ

(
1 +Az

1 +Bz

)
+

(C −B)z

(1 +Bz)(1 + Cz)
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and

Re

{
zh′(z)

Q(z)

}
= Re

[
λ(1 + µ)

(
1 + Cz

1 +Bz

)
+
zQ′(z)

Q(z)

]
= λ(1 + µ)Re

(
1 + Cz

1 +Bz

)
+Re

(
zQ′(z)

Q(z)

)
≥ λ(1 + µ)

(
1− |C|
1− |B|

)
> 0. (2.13)

Now, it follows from (2.9) to (2.11) that

θ(p(z)) + zp′(z)φ(p(z)) ≺ θ(q(z)) + zq′(z)φ(q(z)) = h(z).

We also note that h(0) = λ and

h(eiθ) = λ

(
1 +Aeiθ

1 +Beiθ

)
+

(C −B)eiθ

(1 +Beiθ)(1 + Ceiθ)

=

{
eiπ/2λ[(A−B)(1 + C2)] sin θ + (C −B) sin θ + 2λ(A−B)C sin θ cos θ

−i
(
λ[(A+B)(1 + C2) + 2C(1 +AB)] cos θ

+2λ(A+B) cos2 θ + λ[(1 + C2)(1 +AB) + (A−B)(1− C)]
)}

(1 + (B + C) cos θ +BC(cos 2θ)2 + (B + C) sin θ + (BC sin 2θ)2
.

Therefore,

arg(heiθ) =
π

2
+ arctan


λ+ λ(B + C) + [(λ(A+ C) + (C −B))(1 +BC)] cos θ

+λC(A+B) cos 2θ + (λ(A+ C) + (C −B))(B + C) + λABC2

[λ(B + C)(1−AC)− (λ(A+ C) + (C −B))(1−BC)] sin θ

−λC(A− C) sin 2θ



≥ 1 +
2

π
arctan


λ+ λ(B + C) +−λC(A+B) + (λ(A+ C) + (C −B))(B + C)

+λABC2

[λ(B + C)(1−AC)− (λ(A+ C) + (C −B))(1−BC)]


=
π

2
χ(λ,A,B,C),

where χ(λ,A,B,C) is given by (2.10). Now, it follows from equations (2.12) and

(2.13) that

λp(z) +
zp′(z)

p(z) + µ
≺ h(z).

Then by virtue of Lemma 1.3, we have p(z) ≺ q(z) or equivalently

|arg p(z)| < arctan

[
(A−B)

1 +AB + (A+B)

]
(z ∈ ∆).

�
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3. Corollaries and Consequences

Taking α = 0 and β ∈ R in Theorem 2.1, we obtain the following result due

to Kim et al.[6, Theorem 2.3],

Corollary 3.1. Let p be analytic in ∆ with p(0) = 1. If

Re{p(z) + βzp′(z)} > δ − β

2(1− δ)
(1− 2δ + |p(z)|2), (0 ≤ δ < 1, β ≥ 0)

then p ∈ P (δ).

Remarks 3.2. (i) Letting α = δ = 0 and β = 1 in the above Corollary, we

obtain the result by Nunokawa et al.[12]. Also assuming p(z0) to be a

real number, α = 0 and β ∈ R in Theorem 2.1, we have the result due

to Kim et al.[6, Theorem 2.6], additionally letting β = 1 leads to [6,

Corollary 2.7].

(ii) On taking p(z) = f ′(z), α = 0 = δ in Theorem 2.1, we have the

following result. If f ∈ A,

Re{f ′(z) + βzf ′′(z)} > −Re(β)

2
(1 + |f ′(z)|2), Re(β) > 0,

then Re{f ′(z)} > 0.

(iii) Letting p(z) = f(z)
z in Theorem 2.1, with α = δ = 0 and β = 1 we get

the following result. If f ∈ A and

Re{f ′(z)} > −1

2

(
1 +

∣∣∣∣f(z)

z

∣∣∣∣2
)
,

then Re
{
f(z)
z

}
> 0.

Further for the choice of α = 1 and β = 1 in Theorem 2.2, we obtain the

following result,

Corollary 3.3. Let p(z) be a function analytic in ∆ with p(0) = 1 and

Re(p2(z) + zp′(z)) >
−3(Re(a))2 + 2(Im(a))2

6(Re(a))2 − 2(Im(a))2

then

Re(ap(z)) > 0.

Taking p(z) = zf ′(z)
f(z) and β = α in Theorem 2.2, we have the following

corollary

Corollary 3.4. Let f ∈ A and

Re

(
zf ′(z)

f(z)
+ αz2 f

′′(z)

f(z)

)
>

(Im(a))2α2|a|2

2α(3(Re(a))2 − (Im(a))2)

then

Re

(
azf ′(z)

f(z)

)
> 0.
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with Re(a) > 0.

By taking a = 1 in the above Corollary, we get the sufficient condition for

f ∈ A to be starlike. And when we take p(z) = f ′(z), we have the following

Corollary 3.5. Let f ∈ A and if

Re

{
f ′(z)

[
(1− α) + α

(
f ′(z) +

zf ′′(z)

f ′(z)

)]}
> −α

2

then Re(f ′(z)) > 0, or equivalently f ′(z) ≺ 1+z
1−z .

For example f(z) = z+ z2

4 , α = 1 in Corollary 3.5 gives Re(1+ 3z
2 + z2

4 ) > − 1
2

which implies Re(1 + z
2 ) > 0. The image of the unit disk under the above

mentioned function is as follows,

Figure 1. Image of Re(1 + z
2 ).

Now taking the values β = 1 and γ = 0 in Theorem 2.3, we have the following

result by Attiya and Nasr[1],

Corollary 3.6. Let p(z) be a nonzero analytic function in ∆ and p(0) = 1. If

γ1 < Im

(
p(z) +

zp′(z)

p(z)

)
< γ2

where

γ1 = −
√
|a|2 + 2(Re(a))2 − Im(a)

Re(a)
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and

γ2 =

√
|a|2 + 2(Re(a))2 + Im(a)

Re(a)

then Re(ap(z)) > 0, where Re(a) > 0.
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