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Abstract. The basic purpose of this article is to introduce the concept of

R− λ−G-contraction by using R-functions, lower semi-continuous func-

tions and digraphs and discuss the existence and uniqueness of points of

coincidence and common fixed points for a pair of self-mappings satisfying

such contractions in the setting of metric spaces endowed with a graph.

As some consequences of our results, we obtain several recent results in

metric spaces and partial metric spaces.
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1. Introduction

Fixed point theory is a branch of nonlinear analysis which can be applied

successfully to different fields of mathematics and applied sciences. The Banach

contraction principle [3] is a popular tool for solving existence and uniqueness

problems in nonlinear analysis. Several researchers successfully extended this

interesting result in many directions(see [4, 13, 22, 23]). Recently, a lot of ar-

ticles have been dedicated to the development of fixed point theory by using
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contractivity conditions that depend on auxiliary functions such as Geraghty

functions, altering distance functions, L-functions, simulation functions, man-

ageable functions(see [10, 14, 17, 18, 19, 28, 29]). In 1969, Meir and Keeler [21]

introduced a new class of contractive mappings that did not depend on aux-

iliary functions but have created much attention to a large number of math-

ematicians. Lim [19] proved that Meir-Keeler contractions and L-functions

are closely related to each other. Very recently, Roldán López de Hierro and

Shahzad [28] introduced the concept of R-contraction by using the notion of

R-function and studied some fixed point results satisfying such contractions.

After that, Nastasi et al.[24] introduced a new class of mappings by using R-

functions and lower semi-continuous functions and proved some fixed point

results in metric spaces and partial metric spaces.

In [16], Jungck introduced the concept of weak compatibility. Several au-

thors have obtained common fixed points by using this notion. In recent in-

vestigations, the study of fixed point theory with a graph takes a prominent

place in many aspects. In 2005, Echenique [11] studied fixed point theory by

using graphs and then Espinola and Kirk [12] applied fixed point results in

graph theory. Motivated by the ideas given in [24, 28] and some recent work on

metric spaces with a graph (see [2, 5, 6, 7]), we like to introduce the concept of

R − λ − G-contraction that includes Meir-Keeler contractions, Geraghty con-

tractions, R−λ-contractions, etc. and obtain sufficient conditions for existence

and uniqueness of points of coincidence and common fixed points for a pair of

mappings in metric spaces endowed with a digraph G. As some consequences

of this study, we obtain several recent results in metric spaces and partial met-

ric spaces. Some examples are provided to justify the validity of our results.

Finally, we give an application of our main result to homotopy theory.

2. Some Basic Concepts

In this section we present some basic notations, definitions and necessary

results in metric spaces.

Definition 2.1. [28] Let A ⊆ R be a nonempty subset and let % : A×A→ R
be a function. We say that % is an R-function if it satisfies the following two

conditions.

(%1) If (an) ⊂ (0,∞) ∩ A is a sequence such that %(an+1, an) > 0 for all

n ∈ N, then an → 0.

(%2) If (an), (bn) ⊂ (0,∞) ∩ A are two sequences converging to the same

limit L ≥ 0 and verifying that L < an and %(an, bn) > 0 for all n ∈ N, then
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L = 0.

We denote by RA the family of all R-functions whose domain is A×A.

In some cases, given a function % : A×A→ R, we will consider the following

property.

(%3) If (an), (bn) ⊂ (0,∞) ∩ A are two sequences such that bn → 0 and

%(an, bn) > 0 for all n ∈ N, then an → 0.

Example 2.2. [28] Given k ∈ (0, 1), let % : [0, 1] × [0, 1] → R be the function

given by %(s, t) = ks− t for all t, s ∈ [0, 1]. Then % is an R-function, but it is

not a simulation function neither a manageable function because its domain is

neither [0,∞)× [0,∞) nor R× R.

Example 2.3. [28] Let % : [0,∞)× [0,∞)→ R be the function defined, for all

t, s ∈ [0,∞), by

%(t, s) =


1
2s− t, if t < s,

0, if t ≥ s.
Then % is an R-function on [0,∞) which also satisfies condition (%3).

Example 2.4. [31] The following items are some examples of R-functions each

of which satisfies condition (%3).

(a) %(t, s) = sφ(s) − t, where φ : [0,∞) → [0, 1) is a mapping such that

lim sup
t→r+

ϕ(t) < 1, for all r ∈ (0,∞).

(b) %(t, s) = s
t+1 − t.

(c) %(t, s) = s
et − t.

Proposition 2.5. [28] If % ∈ RA, then %(a, a) ≤ 0 for all a ∈ (0,∞) ∩A.

Proposition 2.6. [28] If %(t, s) ≤ s − t for all t, s ∈ A ∩ (0,∞), then (%3)

holds.

Definition 2.7. [14] A Geraghty function is a function φ : [0,∞)→ [0, 1) such

that if (tn) ⊂ [0,∞) and φ(tn)→ 1, then tn → 0.

Definition 2.8. [14] A Geraghty contraction is a mapping T : (X, d)→ (X, d)

such that

d(Tx, Ty) ≤ φ(d(x, y))d(x, y) for all x, y ∈ X,
where φ is a Geraghty function.

Definition 2.9. [21] A Meir-Keeler contraction is a mapping T : X → X from

a metric space (X, d) into itself such that for all ε > 0, there exists δ > 0

verifying that if x, y ∈ X and ε ≤ d(x, y) < ε+ δ, then d(Tx, Ty) < ε.
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Lim characterized this kind of mappings by using the notion of the following

class of auxiliary functions.

Definition 2.10. [19] A function φ : [0,∞) → [0,∞) will be called an L-

function if

(a) φ(0) = 0,

(b) φ(t) > 0 for all t > 0, and

(c) for all ε > 0, there exists δ > 0 such that φ(t) ≤ ε for all t ∈ [ε, ε+ δ].

Theorem 2.11. [19] Let (X, d) be a metric space and let T : X → X be a

self mapping. Then T is a Meir-Keeler mapping if and only if there exists an

(nondecreasing, right-continuous) L-map φ such that

d(Tx, Ty) < φ(d(x, y)) for all x, y ∈ X verifying d(x, y) > 0.

Theorem 2.12. [28] Given an L-function φ : [0,∞)→ [0,∞), let %φ : [0,∞)×
[0,∞)→ R be the function defined by

%φ(t, s) = φ(s)− t for all t, s ∈ [0,∞).

Then %φ is an R-function on [0,∞). Furthermore, %φ satisfies condition (%3).

Lemma 2.13. [28] If φ : [0,∞) → [0, 1) is a Geraghty function, then %′φ :

[0,∞)× [0,∞)→ R, defined by

%′φ(t, s) = φ(s)s− t for all t, s ∈ [0,∞),

is an R-function on [0,∞) satisfying condition (%3).

Let (X, d) be a metric space and < be a binary relation over X. Denote

S = < ∪ <−1. Then

x, y ∈ X, xSy ⇔ x<y or y<x.

Definition 2.14. [30] We say that (X, d, S) is regular if the following condition

holds:

If the sequence (xn) in X and the point x ∈ X are such that xnSxn+1 for

all n ≥ 1 and lim
n→∞

d(xn, x) = 0, then there exists a subsequence (xni
) of (xn)

such that xni
Sx for all i ≥ 1.

Let (X, d) be a metric space. We denote the range of d by

ran(d) = {d(x, y) : x, y ∈ X} ⊂ [0,∞).

Definition 2.15. [28] Let (X, d) be a metric space and let T : X → X be a

mapping. We will say that T is an R-contraction if there exists an R-function

% : A×A→ R such that ran(d) ⊂ A and

%(d(Tx, Ty), d(x, y)) > 0 for all x, y ∈ X such that x 6= y.

In such a case, we will say that T is an R-contraction with respect to(w.r.t.) %.
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A real valued function f defined on a metric space (X, d) is said to be

lower semi-continuous at a point x0 in X if lim inf
xn→x0

f(xn) = ∞ or f(x0) ≤
lim inf
xn→x0

f(xn), whenever xn ∈ X for each n ∈ N and xn → x0. We denote by Λ

the family of all lower semi-continuous functions λ : (X, d)→ [0,∞). If λ ∈ Λ,

then we will use the following notation

D(u, v;λ) := d(u, v) + λ(u) + λ(v) for all u, v ∈ X.

Definition 2.16. [24] Let (X, d) be a metric space and let T : X → X be a

mapping. The mapping T is called an R− λ-contraction w.r.t. % if there exist

an R-function % : [0,∞)× [0,∞)→ R and a function λ ∈ Λ such that

%(D(Tx, Ty;λ), D(x, y;λ)) > 0 for all x, y ∈ X with D(x, y;λ) > 0.

Definition 2.17. [1] Let T and S be self mappings of a set X. If y = Tx = Sx

for some x in X, then x is called a coincidence point of T and S and y is called

a point of coincidence of T and S.

Definition 2.18. [16] The mappings T, S : X → X are weakly compatible, if

for every x ∈ X, the following holds:

T (Sx) = S(Tx) whenever Sx = Tx.

Proposition 2.19. [1] Let S and T be weakly compatible selfmaps of a nonempty

set X. If S and T have a unique point of coincidence y = Sx = Tx, then y is

the unique common fixed point of S and T .

We next review some basic notions in graph theory.

Let (X, d) be a metric space and G a directed graph such that the vertex set

V (G) = X and the set E(G) of its edges contains all the loops, i.e., ∆ ⊆ E(G)

where ∆ = {(x, x) : x ∈ X}. We also assume that E(G) contains no parallel

edges. So we can identify G with the pair (V (G), E(G)). We denote the

conversion of a graph G by G−1, that is, the graph obtained from G by reversing

the direction of the edges i.e., E(G−1) = {(x, y) ∈ X × X : (y, x) ∈ E(G)}.
Let G̃ denote the undirected graph obtained from G by ignoring the direction

of edges. Actually, it will be more convenient for us to treat G̃ as a digraph for

which the set of its edges is symmetric. Under this convention,

E(G̃) = E(G) ∪ E(G−1).

Our graph theory notations and terminology are standard and can be found

in all graph theory books, like [8, 9, 15]. If x, y are vertices of the digraph G,

the direction of edge (x, y) is the inverse of the direction of edge (y, x), that

is, (x, y) 6= (y, x). A path of length n (n ∈ N) in G from x to y is a sequence

(xi)
n
i=0 of n+1 distinct vertices such that x0 = x, xn = y and (xi−1, xi) ∈ E(G)

for i = 1, 2, · · · , n. A graph G is connected if there is a path between any two

vertices of G. G is weakly connected if G̃ is connected.
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Definition 2.20. Let (X, d) be a metric space endowed with a graph G =

(V (G), E(G)). A mapping f : X → X is called an R−λ−G-contraction w.r.t.

% if there exist an R-function % : [0,∞) × [0,∞) → R and a function λ ∈ Λ

such that

%(D(fx, fy;λ), D(x, y;λ)) > 0

for all x, y ∈ X with (x, y) ∈ E(G) and D(x, y;λ) > 0.

Definition 2.21. Let (X, d) be a metric space and let f, g : X → X be

mappings. Then f is called an R − λ-contraction w.r.t. g and % if there exist

an R-function % : [0,∞)× [0,∞)→ R and a function λ ∈ Λ such that

%(D(fx, fy;λ), D(gx, gy;λ)) > 0

for all x, y ∈ X with D(gx, gy;λ) > 0.

Definition 2.22. Let (X, d) be a metric space endowed with a graph G =

(V (G), E(G)) and let f, g : X → X be mappings. Then f is called an R−λ−G-

contraction w.r.t. g and % if there exist an R-function % : [0,∞)× [0,∞)→ R
and a function λ ∈ Λ such that

%(D(fx, fy;λ), D(gx, gy;λ)) > 0

for all x, y ∈ X with (gx, gy) ∈ E(G) and D(gx, gy;λ) > 0.

Remark 2.23. If f is an R−λ−G-contraction w.r.t. g and %, then f is also an

R − λ − G−1-contraction w.r.t. g and % and hence an R − λ − G̃-contraction

w.r.t. g and %.

Remark 2.24. If f is an R − λ-contraction w.r.t. g and %, then f is also

an R − λ − G0-contraction w.r.t. g and %, where G0 is the complete graph

(X,X ×X). But if f is an R − λ − G-contraction w.r.t. g and %, it may not

be an R− λ-contraction w.r.t. % (see Remark 3.15).

Definition 2.25. Let (X, d) be a metric space and let f, g : X → X be

mappings. Then f is called continuous w.r.t. g if given x ∈ X and a sequence

(gxn)n∈N,

gxn → gx implies fxn → fx.

Definition 2.26. Let (X, d) be a metric space endowed with a graph G =

(V (G), E(G)). A mapping f : X → X is called G-continuous if given x ∈ X
and a sequence (xn)n∈N,

xn → x and (xn, xn+1) ∈ E(G) for n ∈ N imply fxn → fx.

Definition 2.27. Let (X, d) be a metric space endowed with a graph G =

(V (G), E(G)) and let f, g : X → X be mappings. Then f is called G-

continuous w.r.t. g if given x ∈ X and a sequence (gxn)n∈N,

gxn → gx and (gxn, gxn+1) ∈ E(G) for n ∈ N imply fxn → fx.
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3. Main Results

In this section we assume that (X, d) is a metric space and G is a reflexive

digraph such that V (G) = X and G has no parallel edges. Let the mappings

f, g : X → X be such that f(X) ⊆ g(X). Let x0 ∈ X be arbitrary. Since

f(X) ⊆ g(X), there exists an element x1 ∈ X such that fx0 = gx1. Continuing

in this way, we can construct a sequence (gxn) such that gxn = fxn−1, n =

1, 2, 3, · · ·.

Definition 3.1. Let (X, d) be a metric space endowed with a graph G and

f, g : X → X be such that f(X) ⊆ g(X). We define Cgf the set of all elements

x0 of X such that (gxn, gxm) ∈ E(G̃) for m, n = 0, 1, 2, · · · and for every

sequence (gxn) such that gxn = fxn−1.

Taking g = I, the identity map on X, Cgf becomes Cf which is the collec-

tion of all elements x of X such that (fnx, fmx) ∈ E(G̃) for m, n = 0, 1, 2, · · · .

Before presenting our main result, we state a property of the graph G, call

it property (∗).

Property (∗):
If (gxn) is a sequence in X such that gxn → x and (gxn, gxn+1) ∈ E(G̃)

for all n ≥ 1, then there exists a subsequence (gxni
) of (gxn) such that

(gxni
, x) ∈ E(G̃) for all i ≥ 1.

Taking g = I, the above property reduces to property (∗)́ which may be

stated as follows:

Property (∗)́: If (xn) is a sequence in X such that xn → x and (xn, xn+1) ∈
E(G̃) for all n ≥ 1, then there exists a subsequence (xni) of (xn) such that

(xni
, x) ∈ E(G̃) for all i ≥ 1.

Theorem 3.2. Let (X, d) be a metric space endowed with a graph G and let

f, g : X → X be mappings. Suppose f is an R − λ − G-contraction w.r.t. g

and %, f(X) ⊆ g(X), g is one to one and g(X) is a complete subspace of X.

Assume that at least one of the following conditions holds:

(i) f is G̃-continuous w.r.t. g.

(ii) The graph G has the property (∗) and the R-function % satisfies condi-

tion (%3).

(iii) The graph G has the property (∗) and %(t, s) ≤ s−t for all t, s ∈ (0,∞).

If Cgf 6= ∅, then f and g have a point of coincidence u in X such that λ(u) = 0

and for any choice of the starting point x0 ∈ Cgf , the sequence (gxn) defined by

gxn = fxn−1 for each n ∈ N converges to the point u. Moreover, f and g have
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a unique point of coincidence in X if the graph G has the following property:

(∗∗) If x, y are points of coincidence of f and g in X, then (x, y) ∈ E(G̃).

Furthermore, if f and g are weakly compatible, then f and g have a unique

common fixed point in X.

Proof. Suppose that Cgf 6= ∅. We choose an x0 ∈ Cgf and keep it fixed. Since

f(X) ⊆ g(X), there exists a sequence (gxn) such that gxn = fxn−1, n =

1, 2, 3, · · · and (gxn, gxm) ∈ E(G̃) for m, n = 0, 1, 2, · · · .

If gxj+1 = gxj for some j ∈ N∪ {0}, then fxj = gxj+1 = gxj which implies

that gxj is a point of coincidence of f and g. We now show that λ(gxj) = 0.

First note that gxj+1 = gxj implies gxi = gxj for all i ∈ N ∪ {0} with i ≥ j.

As g is one to one, gxj+1 = gxj implies xj+1 = xj and so gxj+2 = fxj+1 =

fxj = gxj+1 = gxj . Thus, in general, gxi = gxj for all i ∈ N ∪ {0} with i ≥ j.
If possible, suppose λ(gxj) > 0. Let ti := D(gxj+i, gxj+i+1;λ) for all i ∈ N.

Then ti > 0 and (gxj+i, gxj+i+1) i.e., (gxj , gxj) ∈ E(G̃). Taking into account

that f is an R− λ−G-contraction w.r.t. g and %, we have

%(ti+1, ti) = %(D(fxj+i, fxj+i+1;λ), D(gxj+i, gxj+i+1;λ)) > 0

for all i ∈ N. By (%1), it follows that ti → 0 as i → ∞ and hence λ(gxj) =

λ(gxj+i)→ 0 as i→∞. This gives that λ(gxj) = 0, which is a contradiction.

Therefore, λ(gxj) = 0 if gxj+1 = gxj for some j ∈ N ∪ {0}.

We now assume that gxn 6= gxn−1 for every n ∈ N.

We first show that

lim
n→∞

d(gxn−1, gxn) = 0 and lim
n→∞

λ(gxn) = 0. (3.1)

Let us put tn := D(gxn−1, gxn;λ) for all n ∈ N. Then the sequence (tn) ⊂
(0,∞). As f is an R− λ−G-contraction w.r.t. g and %, we get

%(tn+1, tn) = %(D(gxn, gxn+1;λ), D(gxn−1, gxn;λ))

= %(D(fxn−1, fxn;λ), D(gxn−1, gxn;λ))

> 0 for all n ∈ N.

By using (%1), it follows that tn → 0 as n→∞. Therefore, d(gxn−1, gxn)→
0 and λ(gxn)→ 0 as n→∞. Consequently, condition (3.1) holds.

We now show that the sequence (gxn) is Cauchy in g(X).

Suppose (gxn) is not a Cauchy sequence. Then there exist ε > 0 and two
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subsequences (gxnk
) and (gxmk

) of (gxn) with k ≤ nk < mk and

d(gxnk
, gxmk−1) ≤ ε < d(gxnk

, gxmk
) for all k ∈ N.

So, it must be the case that

ε < d(gxnk
, gxmk

) ≤ d(gxnk
, gxmk−1) + d(gxmk−1, gxmk

)

≤ ε+ d(gxmk−1, gxmk
).

As lim
n→∞

d(gxn−1, gxn) = 0, taking limit as k → ∞, it follows from above

that

lim
k→∞

d(gxnk
, gxmk

) = lim
k→∞

d(gxnk−1, gxmk−1) = ε.

Taking into account λ(gxn)→ 0 as n→∞, we have

lim
k→∞

D(gxnk
, gxmk

;λ) = lim
k→∞

D(gxnk−1, gxmk−1;λ) = ε.

This allows us to assume that D(gxnk−1, gxmk−1;λ) > 0 for each k ∈ N.

Further note that (gxnk−1, gxmk−1) ∈ E(G̃) for all k ∈ N. Let us consider two

sequences (tk) and (sk) such that

tk := D(gxnk
, gxmk

;λ) and sk := D(gxnk−1, gxmk−1;λ) for all k ∈ N.

Then, (tk), (sk) ⊂ (0,∞) and lim
k→∞

tk = lim
k→∞

sk = ε. Since f is an R− λ−G-

contraction w.r.t. g and %, we get

%(tk, sk) = %(D(gxnk
, gxmk

;λ), D(gxnk−1, gxmk−1;λ))

= %(D(fxnk−1, fxmk−1;λ), D(gxnk−1, gxmk−1;λ))

> 0 for all k ∈ N.

Moreover, ε < d(gxnk
, gxmk

) ≤ D(gxnk
, gxmk

;λ) = tk for all k ∈ N. Thus,

condition (%2) guarantees that ε = 0, which is a contradiction. Consequently,

it follows that (gxn) is a Cauchy sequence in g(X). As g(X) is complete,

there exists u ∈ g(X) such that gxn → u = gv for some v ∈ X. The lower

semi-continuity of λ and condition (3.1) imply that

0 ≤ λ(u) ≤ lim inf
n→∞

λ(gxn) = 0.

This gives that, λ(u) = 0.

We now show that u is a point of coincidence of f and g in X. Let us allow

to consider the following three cases.

Case-I: Assume that hypothesis (i) holds, i.e., f is G̃-continuous w.r.t. g.

In this case, gxn → gv ⇒ fxn → fv, that is, gxn+1 → fv and so, gv = fv = u.

This shows that u is a point of coincidence of f and g.

Case-II: Assume that hypothesis (ii) holds, i.e., the graph G has the prop-

erty (∗) and the R-function % satisfies condition (%3).
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If there exists a subsequence (gxni
) of (gxn) such that fxni

= fv for all i ∈ N,

then gxni+1 = fv for all i ∈ N and hence gv = fv = u. Thus, u is a point of

coincidence of f and g in X.

If this does not happen, then we can assume that xn 6= v and fxn 6= fv for

all n ∈ N. Since g is one to one, it follows that gxn 6= gv and fxn 6= fv for all

n ∈ N. By property (∗), there exists a subsequence (gxni
) of (gxn) such that

(gxni , gv) ∈ E(G̃).

Let us consider the sequences (ti) and (si) given by

ti := D(fxni
, fv;λ) and si := D(gxni

, gv;λ) for all i ∈ N.

Such a choice ensures that (ti), (si) ⊂ (0,∞). Obviously, si → 0 as i → ∞.

Since f is an R− λ−G-contraction w.r.t. g and %,

%(ti, si) = %(D(fxni , fv;λ), D(gxni , gv;λ)) > 0

for all i ∈ N. Condition (%3) guarantees that ti → 0 as i→∞. This allows us

to obtain that

d(gxni+1, fv) = d(fxni
, fv)→ 0 as i→∞

which implies that, d(gv, fv) = 0 and hence gv = fv = u. Thus, u is a point

of coincidence of f and g in X.

Case-III: Assume that hypothesis (iii) holds, i.e., the graph G has the

property (∗) and %(t, s) ≤ s− t for all t, s ∈ (0,∞).

In this case, Proposition 2.6 ensures that condition (%3) holds and hence Case-

II is also applicable.

Thus, in any case, u is a point of coincidence of f and g in X.

The next is to show that the point of coincidence is unique. Assume that

there exists u∗ in X such that fx = gx = u∗ for some x ∈ X and u 6= u∗. By

property (∗∗), we have (u, u∗) ∈ E(G̃). As u 6= u∗, we have

tn := D(u, u∗;λ) > 0 for all n ∈ N.

Then,

%(tn+1, tn) = %(D(u, u∗;λ), D(u, u∗;λ))

= %(D(fv, fx;λ), D(gv, gx;λ))

> 0 for all n ∈ N.

Using condition (%1), we obtain tn → 0 as n→∞, which gives that d(u, u∗) =

0, contradicts the fact that u 6= u∗. Therefore, u = u∗ and so f and g have a

unique point of coincidence in X.
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If f and g are weakly compatible, then by Proposition 2.19, f and g have a

unique common fixed point in X. �

Corollary 3.3. Let (X, d) be a complete metric space endowed with a graph G

and let f : X → X be an R− λ−G-contraction w.r.t. %. Assume that at least

one of the following conditions holds:

(i) f is G̃-continuous.

(ii) The graph G has the property (∗)́ and the R-function % satisfies condi-

tion (%3).

(iii) The graph G has the property (∗)́ and %(t, s) ≤ s−t for all t, s ∈ (0,∞).

If Cf 6= ∅, then f has a fixed point u in X such that λ(u) = 0 and for any

choice of the starting point x0 ∈ Cf , the sequence (xn) defined by xn = fxn−1
for each n ∈ N converges to the point u. Moreover, f has a unique fixed point

in X if the graph G has the following property:

(∗ ∗ )́ If x, y are fixed points of f in X, then (x, y) ∈ E(G̃).

Proof. The proof can be obtained from Theorem 3.2 by considering g = I, the

identity map on X. �

Corollary 3.4. Let (X, d) be a metric space and let f, g : X → X be mappings.

Suppose f is an R − λ-contraction w.r.t. g and %, f(X) ⊆ g(X), g is one to

one and g(X) is a complete subspace of X. Assume that at least one of the

following conditions holds:

(i) f is continuous w.r.t. g.

(ii) The R-function % satisfies condition (%3).

(iii) %(t, s) ≤ s− t for all t, s ∈ (0,∞).

Then f and g have a unique point of coincidence u in X such that λ(u) = 0

and for any choice of the starting point x0 ∈ X, the sequence (gxn) defined by

gxn = fxn−1 for each n ∈ N converges to the point u. Moreover, if f and g

are weakly compatible, then f and g have a unique common fixed point in X.

Proof. The proof follows from Theorem 3.2 by taking G = G0, where G0 is the

complete graph (X,X ×X).

�

The following corollary is the Theorem 3.1 of Nastasi et al.[24].

Corollary 3.5. [24] Let (X, d) be a complete metric space and let f : X → X

be an R − λ-contraction w.r.t. %. Assume that at least one of the following

conditions holds:

(i) f is continuous.

(ii) The R-function % satisfies condition (%3).

(iii) %(t, s) ≤ s− t for all t, s ∈ (0,∞).
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Then f has a unique fixed point u in X such that λ(u) = 0 and for any choice

of the starting point x0 ∈ X, the sequence (xn) defined by xn = fxn−1 for each

n ∈ N converges to the point u.

Proof. The proof can be obtained from Theorem 3.2 by considering g = I and

G = G0. �

Corollary 3.6. Let (X, d) be a complete metric space endowed with a binary

relation < over X and let S = <∪<−1. Suppose f : X → X is such that there

exist an R-function % on [0,∞) and a function λ ∈ Λ satisfying

%(D(fx, fy;λ), D(x, y;λ)) > 0

for all x, y ∈ X with xSy and D(x, y;λ) > 0. Suppose also that the following

conditions hold:

(i) (X, d, S) is regular and the R-function % satisfies condition (%3);

(ii) there exists x0 ∈ X such that (fnx0, f
mx0) ∈ S for all m, n = 0, 1, 2, · · · .

Then f has a fixed point u in X such that λ(u) = 0. Moreover, f has a unique

fixed point in X if the following property holds:

If x, y are fixed points of f in X, then xSy.

Proof. The proof follows from Theorem 3.2 by taking g = I andG = (V (G), E(G)),

where V (G) = X, E(G) = {(x, y) ∈ X ×X : xSy} ∪∆. �

Corollary 3.7. Let (X, d) be a metric space and let f, g : X → X be mappings.

Suppose f(X) ⊆ g(X), g is one to one and g(X) is a complete subspace of X

and there exists a λ ∈ Λ such that

D(fx, fy;λ) ≤ φ(D(gx, gy;λ))D(gx, gy;λ) (3.2)

for all x, y ∈ X with D(gx, gy;λ) > 0, where φ is a Geraghty function. Then

f and g have a unique point of coincidence u in X such that λ(u) = 0 and

for any choice of the starting point x0 ∈ X, the sequence (gxn) defined by

gxn = fxn−1 for each n ∈ N converges to the point u. Moreover, if f and g

are weakly compatible, then f and g have a unique common fixed point in X.

Proof. We define a function ϕ : [0,∞)→ [0, 1) by

ϕ(t) =
1

2
(1 + φ(t)) for all t ∈ [0,∞).

Then ϕ is also a Geraghty function. Moreover, it follows that φ(t) < ϕ(t) < 1

for all t ∈ [0,∞). Therefore, from condition (3.2), we get

D(fx, fy;λ) ≤ φ(D(gx, gy;λ))D(gx, gy;λ) < ϕ(D(gx, gy;λ))D(gx, gy;λ)

(3.3)
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for all x, y ∈ X with D(gx, gy;λ) > 0, where ϕ is a Geraghty function. By

applying Lemma 2.13, it follows that

%(t, s) = ϕ(s)s− t for all s, t ∈ [0,∞)

is an R-function on [0,∞) which satisfies condition (%3). By using condition

(3.3), we obtain

%(D(fx, fy;λ), D(gx, gy;λ)) = ϕ(D(gx, gy;λ))D(gx, gy;λ)−D(fx, fy;λ) > 0

for all x, y ∈ X withD(gx, gy;λ) > 0. This shows that f is an R−λ-contraction

w.r.t. g and %. The result now follows from Corollary 3.4. �

Remark 3.8. Geraghty’s fixed point theorem [14] can be obtained from Corol-

lary 3.7, by taking g = I and λ(x) = 0 for all x ∈ X. Therefore, Theorem 3.2

is a generalization of Geraghty’s fixed point theorem.

Corollary 3.9. Let (X, d) be a metric space and let f, g : X → X be mappings.

Suppose f(X) ⊆ g(X), g is one to one and g(X) is a complete subspace of X

and there exists a λ ∈ Λ such that

D(fx, fy;λ) < φ(D(gx, gy;λ)) (3.4)

for all x, y ∈ X with D(gx, gy;λ) > 0, where φ is an L-function. Then f

and g have a unique point of coincidence u in X such that λ(u) = 0 and

for any choice of the starting point x0 ∈ X, the sequence (gxn) defined by

gxn = fxn−1 for each n ∈ N converges to the point u. Moreover, if f and g

are weakly compatible, then f and g have a unique common fixed point in X.

Proof. If φ is an L-function, then Theorem 2.12 guarantees that %(t, s) = φ(s)−
t for all t, s ∈ [0,∞), is an R-function on [0,∞) which satisfies condition (%3).

By using condition (3.4), we obtain

%(D(fx, fy;λ), D(gx, gy;λ)) = ϕ(D(gx, gy;λ))−D(fx, fy;λ) > 0

for all x, y ∈ X withD(gx, gy;λ) > 0. This shows that f is an R−λ-contraction

w.r.t. g and %. The result now follows from Corollary 3.4. �

Remark 3.10. Meir-Keeler’s fixed point theorem [21] can be obtained from

Corollary 3.9, by taking g = I, λ(x) = 0 for all x ∈ X and using Theorem

2.11. Therefore, Theorem 3.2 is a generalization of Meir-Keeler’s fixed point

theorem.

Corollary 3.11. Let (X, d) be a metric space and let f, g : X → X be map-

pings. Suppose f(X) ⊆ g(X), g is one to one and g(X) is a complete subspace

of X and there exists a λ ∈ Λ such that

φ(D(fx, fy;λ)) < D(gx, gy;λ) (3.5)

for all x, y ∈ X with D(gx, gy;λ) > 0, where φ : [0,∞) → [0,∞) is a right

continuous function such that φ(t) > t, for all t > 0. Then f and g have a

 [
 D

O
I:

 1
0.

61
18

6/
ijm

si
.1

8.
2.

67
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.ir

 o
n 

20
26

-0
2-

19
 ]

 

                            13 / 28

http://dx.doi.org/10.61186/ijmsi.18.2.67
http://ijmsi.ir/article-1-1557-en.html


80 S. K. Mohanta, Ratul Kar

unique point of coincidence u in X such that λ(u) = 0 and for any choice of

the starting point x0 ∈ X, the sequence (gxn) defined by gxn = fxn−1 for each

n ∈ N converges to the point u. Moreover, if f and g are weakly compatible,

then f and g have a unique common fixed point in X.

Proof. We consider as R-function

%(t, s) = s− φ(t) for all s, t ∈ [0,∞)

which satisfies condition (%3). By using condition (3.5), we obtain

%(D(fx, fy;λ), D(gx, gy;λ)) = D(gx, gy;λ)− ϕ(D(fx, fy;λ)) > 0

for all x, y ∈ X withD(gx, gy;λ) > 0. This shows that f is an R−λ-contraction

w.r.t. g and %. The result now follows from Corollary 3.4. �

Corollary 3.12. Let (X, d) be a metric space and let f, g : X → X be map-

pings. Suppose f(X) ⊆ g(X), g is one to one and g(X) is a complete subspace

of X and there exists a λ ∈ Λ such that

D(fx, fy;λ) ≤ φ(D(gx, gy;λ))D(gx, gy;λ)

for all x, y ∈ X with D(gx, gy;λ) > 0, where φ : [0,∞) → [0, 1) is a function

such that lim sup
t→r+

φ(t) < 1, for all r > 0. Then f and g have a unique point of

coincidence u in X such that λ(u) = 0 and for any choice of the starting point

x0 ∈ X, the sequence (gxn) defined by gxn = fxn−1 for each n ∈ N converges

to the point u. Moreover, if f and g are weakly compatible, then f and g have

a unique common fixed point in X.

Proof. We define a function ϕ : [0,∞)→ [0, 1) by

ϕ(t) =
1

2
(1 + φ(t)) for all t ∈ [0,∞).

Then ϕ is a function such that lim sup
t→r+

ϕ(t) < 1, for all r > 0. Moreover, it

follows that φ(t) < ϕ(t) < 1 for all t ∈ [0,∞). By an argument similar to that

used in Corollary 3.7 and taking

%(t, s) = ϕ(s)s− t for all s, t ∈ [0,∞)

as R-function which satisfies condition (%3), the desired result follows from

Corollary 3.4. �

Corollary 3.13. Let (X, d) be a metric space and let f, g : X → X be map-

pings. Suppose f(X) ⊆ g(X), g is one to one and g(X) is a complete subspace

of X and there exists a λ ∈ Λ such that

D(fx, fy;λ) <
D(gx, gy;λ)

1 +D(fx, fy;λ)

for all x, y ∈ X with D(gx, gy;λ) > 0. Then f and g have a unique point of

coincidence u in X such that λ(u) = 0 and for any choice of the starting point
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x0 ∈ X, the sequence (gxn) defined by gxn = fxn−1 for each n ∈ N converges

to the point u. Moreover, if f and g are weakly compatible, then f and g have

a unique common fixed point in X.

Proof. Considering

%(t, s) =
s

1 + t
− t for all s, t ∈ [0,∞)

as R-function on [0,∞) which satisfies condition (%3), the desired result can be

obtained from Corollary 3.4. �

We furnish some examples in favour of our main result.

Example 3.14. Let X = R and define d : X ×X → R by d(x, y) =| x− y | for

all x, y ∈ X. Then (X, d) is a complete metric space. Let G be a digraph such

that V (G) = X and E(G) = ∆ ∪ {(0, 1
n ) : n = 1, 2, 3, · · · }. Let f, g : X → X

be defined by

fx =


x
5 , if x 6= 2

5 ,

1, if x = 2
5

and gx = 8x for all x ∈ X. Obviously, f(X) ⊆ g(X) = X and g is one to one.

Let % : [0,+∞)× [0,+∞)→ R be defined by

%(t, s) =


1
2s− t, if t < s,

0, if t ≥ s.

Then % is an R-function on [0,∞) which also satisfies (%3). We define the lower

semi-continuous function λ : X → [0,∞) by λ(x) =| x | for all x ∈ X.

If x = 0, y = 1
8n , n ∈ N, then gx = 0, gy = 1

n and so (gx, gy) ∈ E(G) and

D(gx, gy;λ) > 0 with D(fx, fy;λ) < D(gx, gy;λ). Then, for x = 0, y = 1
8n ,

we have

%(D(fx, fy;λ), D(gx, gy;λ)) =
1

2
D(gx, gy;λ)−D(fx, fy;λ)

=
1

2
(| gx− gy | + | gx | + | gy |)

−(| fx− fy | + | fx | + | fy |)

=
1

n
− 1

20n

=
19

20n
> 0.
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If x, y ∈ X with x = y 6= 0, then (gx, gy) ∈ E(G), D(gx, gy;λ) > 0 and

D(fx, fy;λ) < D(gx, gy;λ). Thus, for x = y 6= 0, we have

%(D(fx, fy;λ), D(gx, gy;λ)) =
1

2
D(gx, gy;λ)−D(fx, fy;λ)

=
1

2
(2 | gx |)− 2 | fx |

= (8 | x | −2

5
| x |) > 0 if x 6= 2

5

= (
16

5
− 2) > 0 if x =

2

5
.

Therefore,

%(D(fx, fy;λ), D(gx, gy;λ)) > 0

for all x, y ∈ X with (gx, gy) ∈ E(G) with D(gx, gy;λ) > 0 and so, f is an

R− λ−G-contraction w.r.t. g and %.

We now verify that 0 ∈ Cgf . In fact, gxn = fxn−1, n = 1, 2, 3, · · · gives

that gx1 = f0 = 0 ⇒ x1 = 0 and so gx2 = fx1 = 0 ⇒ x2 = 0. Proceeding in

this way, we get gxn = 0 for n = 0, 1, 2, · · · and hence (gxn, gxm) = (0, 0) ∈
E(G̃) for m, n = 0, 1, 2, · · · .
Also, any sequence (gxn) with the property (gxn, gxn+1) ∈ E(G̃) must be

either a constant sequence or a sequence of the following form

gxn =


0, if n is odd,

1
n , if n is even

where the words ‘odd’ and ‘even’ are interchangeable. Consequently it follows

that property (∗) holds. Furthermore, f and g are weakly compatible. Thus,

we have all the conditions of Theorem 3.2 and 0 is the unique common fixed

point of f and g in X such that λ(0) = 0.

Remark 3.15. In Example 3.14, f is not an R − λ-contraction w.r.t. %. In

fact, for x = 0, y = 2
5 , we have D(fx, fy;λ) =| fx − fy | + | fx | + | fy |=

2, D(x, y;λ) = 4
5 > 0. As D(fx, fy;λ) > D(x, y;λ), it follows that

%(D(fx, fy;λ), D(x, y;λ)) = 0.

We now examine the necessity of property (∗) in Theorem 3.2.

Example 3.16. Let X = [0,∞) and define d : X×X → R by d(x, y) =| x−y |
for all x, y ∈ X. Then (X, d) is a complete metric space. Let G be a digraph

such that V (G) = X and E(G) = ∆ ∪ {(x, y) : (x, y) ∈ (0, 1] × (0, 1], x ≥ y}.
Let f, g : X → X be defined by

fx =


x
6 , if x 6= 0,

1, if x = 0
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and gx = x
2 for all x ∈ X. Obviously, f(X) ⊆ g(X) = X and g is one to one.

Let % : [0,+∞)× [0,+∞)→ R be defined by

%(t, s) =


1
2s− t, if t < s,

0, if t ≥ s.

Then % is an R-function on [0,∞) which also satisfies (%3). We define the lower

semi-continuous function λ : X → [0,∞) by λ(x) = x for all x ∈ X.

Since for x, y ∈ X with (gx, gy) ∈ E(G) and D(gx, gy;λ) > 0 imply that

x 6= 0, y 6= 0, D(fx, fy;λ) < D(gx, gy;λ), we have

%(D(fx, fy;λ), D(gx, gy;λ)) =
1

2
D(gx, gy;λ)−D(fx, fy;λ)

=
1

2
D(gx, gy;λ)− (| fx− fy | +fx+ fy)

=
1

2
D(gx, gy;λ)− (| x

6
− y

6
| +x

6
+
y

6
)

=
1

2
D(gx, gy;λ)− 1

3
D(gx, gy;λ)

=
1

6
D(gx, gy;λ)

> 0.

Therefore, f is an R−λ−G-contraction w.r.t. g and %. Moreover, it is easy

to check that 1 ∈ Cgf i.e., Cgf 6= ∅.

We see that f and g have no point of coincidence in X. This happens due

to lack of property (∗). For instance, we consider the sequence (gxn), where

xn = 2
n . Then, gxn → 0 and (gxn, gxn+1) ∈ E(G̃) for all n ∈ N. But there

exists no subsequence (gxni
) of (gxn) such that (gxni

, 0) ∈ E(G̃).

The following two examples show that the uniqueness part of Theorem 3.2

remains invalid without property (∗∗) of the graph G.

Example 3.17. Let X = [0,∞) and define d : X×X → R by d(x, y) =| x−y |
for all x, y ∈ X. Then (X, d) is a complete metric space. Let G be a digraph

such that V (G) = X and E(G) = ∆ ∪ {(0, 1
n ) : n ∈ N}. Let f, g : X → X be

defined by

fx =


x
3 , if 0 ≤ x ≤ 1,

x2, if x > 1

and gx = 3x for all x ∈ X. Obviously, f(X) ⊆ g(X) = X and g is one to one.
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We take % : [0,+∞)× [0,+∞)→ R defined by

%(t, s) =


1
2s− t, if t < s,

0, if t ≥ s

as an R-function on [0,∞) which also satisfies (%3). We consider as lower semi-

continuous function λ(x) = 0 for all x ∈ X.

If x = 0, y = 1
3n , n ∈ N, then gx = 0, gy = 1

n and so (gx, gy) ∈ E(G) and

D(gx, gy;λ) > 0 with D(fx, fy;λ) < D(gx, gy;λ). Then, for x = 0, y = 1
3n ,

we have

%(D(fx, fy;λ), D(gx, gy;λ)) =
1

2
D(gx, gy;λ)−D(fx, fy;λ) =

1

2n
− 1

9n
=

7

18n
> 0.

Therefore,

%(D(fx, fy;λ), D(gx, gy;λ)) > 0

for all x, y ∈ X with (gx, gy) ∈ E(G) and D(gx, gy;λ) > 0 which states that,

f is an R− λ−G-contraction w.r.t. g and %.

Moreover, 0 ∈ Cgf 6= ∅ and property (∗) holds. We find that 0 and 9 are

points of coincidence of f and g in X but (0, 9) /∈ E(G̃). In fact, unique point

of coincidence of f and g does not exist due to lack of property (∗∗) of the

graph G.

Example 3.18. Let X = {1, 2, 3} ∪ [4,∞) and define d : X × X → R by

d(x, y) =| x − y | for all x, y ∈ X. Then (X, d) is a complete metric space.

Let G be a digraph such that V (G) = X and E(G) = ∆ ∪ {(1, 2)}. Let

f, g : X → X be defined by

fx =



2, if x = 1, 2,

3, if x = 3,

x2, if x ≥ 4

and

gx =


x, if x = 1, 2, 3,

x+ 1, if x ≥ 4.

Obviously, f(X) ⊆ g(X), g(X) is a complete subspace of X and g is one to

one.
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We take % : [0,+∞)× [0,+∞)→ R defined by

%(t, s) =


1
2s− t, if t < s,

0, if t ≥ s

as an R-function on [0,∞) which also satisfies (%3). We consider as lower semi-

continuous function λ(x) = 0 for all x ∈ X.

If x = 1, y = 2, then gx = 1, gy = 2 and so (gx, gy) ∈ E(G) and

D(gx, gy;λ) > 0 with D(fx, fy;λ) < D(gx, gy;λ). Then, for x = 1, y = 2, we

have

%(D(fx, fy;λ), D(gx, gy;λ)) =
1

2
D(gx, gy;λ)−D(fx, fy;λ) =

1

2
> 0.

Therefore,

%(D(fx, fy;λ), D(gx, gy;λ)) > 0

for all x, y ∈ X with (gx, gy) ∈ E(G) and D(gx, gy;λ) > 0 which shows that,

f is an R− λ−G-contraction w.r.t. g and %.

It is easy to verify that property (∗) holds and Cgf 6= ∅. Thus, we have

all the conditions of Theorem 3.2 except property (∗∗). However, f and g are

weakly compatible, we can not find unique common fixed point of f and g. In

fact, 2 and 3 are common fixed points of f and g in X and hence they are also

points of coincidence of f and g in X, but (2, 3) /∈ E(G̃).

4. Common fixed points in partial metric spaces

In this section we present some common fixed point theorems in partial

metric spaces. We begin with some basic definitions and notions in partial

metric spaces that can be found in [20, 25, 26, 27].

Definition 4.1. A partial metric on a nonempty set X is a function p : X ×
X → [0,∞) such that, for all u, v, w ∈ X, we have

(i) u = v ⇔ p(u, u) = p(u, v) = p(v, v);

(ii) p(u, u) ≤ p(u, v);

(iii) p(u, v) = p(v, u);

(iv) p(u, v) ≤ p(u,w) + p(w, v)− p(w,w).

A partial metric space is a pair (X, p), where X is a nonempty set and p is

a partial metric on X.

Every partial metric p : X ×X → [0,∞) generates a T0 topology τp on X,

which has as a base the family of open p-balls {Up(u, r) : u ∈ X, r > 0}, where

Up(u, r) = {v ∈ X : p(u, v) < p(u, u) + r} for all u ∈ X and r > 0.

Definition 4.2. Let (X, p) be a partial metric space and (uj) ⊂ X. Then
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(i) (uj) converges to a point u ∈ X if and only if p(u, u) = lim
j→∞

p(u, uj);

(ii) (uj) is called a Cauchy sequence if there exists lim
i, j→∞

p(ui, uj) (and it

is finite);

(iii) (X, p) is said to be complete if every Cauchy sequence (uj) in X con-

verges, with respect to τp, to a point u ∈ X such that p(u, u) =

lim
i, j→∞

p(ui, uj).

It is elementary to verify that the function dp : X ×X → [0,∞) defined by

dp(u, v) = 2p(u, v)− p(u, u)− p(v, v)

is a metric onX whenever p is a partial metric onX. Moreover, lim
j→∞

dp(uj , u) =

0 if and only if

p(u, u) = lim
j→∞

p(uj , u) = lim
i, j→∞

p(ui, uj).

Lemma 4.3. [24] Let (X, p) be a partial metric space and let λ : X → [0,∞)

be defined by λ(u) = p(u, u) for all u ∈ X. Then the function λ is continuous

in the metric space (X, dp).

Lemma 4.4. [20, 25] Let (X, p) be a partial metric space. Then

(i) (uj) is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence

in the metric space (X, dp);

(ii) a partial metric space (X, p) is complete if and only if the metric space

(X, dp) is complete.

Theorem 4.5. Let (X, p) be a partial metric space endowed with a graph G

and let f, g : X → X be mappings. Suppose there exists an R-function % :

[0,∞)× [0,∞)→ R such that

%(p(fx, fy), p(gx, gy)) > 0 (4.1)

for all x, y ∈ X with gx 6= gy and (gx, gy) ∈ E(G). Suppose also that f(X) ⊆
g(X), g is one to one and g(X) is a complete subspace of (X, p). Assume that

at least one of the following conditions holds:

(i) f is G̃− dp-continuous w.r.t. g.

(ii) The graph G has the property (∗) in (X, dp) and the R-function % sat-

isfies condition (%3).

(iii) The graph G has the property (∗) in (X, dp) and %(t, s) ≤ s− t for all

t, s ∈ (0,∞).

If Cgf 6= ∅, then f and g have a point of coincidence u in X such that p(u, u) =

0. Moreover, f and g have a unique point of coincidence in X if the graph G

has the property (∗∗). Furthermore, if f and g are weakly compatible, then f

and g have a unique common fixed point in X.
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Proof. Since dp(u, v) = 2 p(u, v)− p(u, u)− p(v, v), it follows that

p(u, v) =
dp(u, v) + p(u, u) + p(v, v)

2
for all u, v ∈ X. (4.2)

As g(X) is a complete subspace of (X, p), Lemma 4.4 ensures that g(X) is a

complete subspace of (X, d) where d = 1
2d
p. Let the function λ : X → [0,∞)

be defined by λ(u) = 1
2p(u, u). Then, by Lemma 4.3, λ is continuous and hence

lower semi-continuous in (X, d). From condition (4.2), we get

p(u, v) = d(u, v) + λ(u) + λ(v) = D(u, v;λ).

Thus, condition (4.1) reduces to

%(D(fx, fy;λ), D(gx, gy;λ)) > 0

for all x, y ∈ X with (gx, gy) ∈ E(G) and D(gx, gy;λ) > 0. This shows that f

is an R−λ−G-contraction w.r.t. g and %. Consequently, it follows that we have

all the conditions of Theorem 3.2 w.r.t. the metric space (X, d). Therefore, the

conclusion of Theorem 4.5 follows from Theorem 3.2 where p(u, u) = 2λ(u) =

0. �

Corollary 4.6. Let (X, p) be a complete partial metric space endowed with a

graph G and let f : X → X be a mapping. Suppose there exists an R-function

% : [0,∞)× [0,∞)→ R such that

%(p(fx, fy), p(x, y)) > 0

for all x, y ∈ X with x 6= y and (x, y) ∈ E(G). Assume that at least one of the

following conditions holds:

(i) f is G̃− dp-continuous.

(ii) The graph G has the property (∗)́ in (X, dp) and the R-function % sat-

isfies condition (%3).

(iii) The graph G has the property (∗)́ in (X, dp) and %(t, s) ≤ s− t for all

t, s ∈ (0,∞).

If Cf 6= ∅, then f has a fixed point u in X such that p(u, u) = 0. Moreover, f

has a unique fixed point in X if the graph G has the property (∗ ∗ )́.

Proof. The proof can be obtained from Theorem 4.5 by considering g = I, the

identity map on X. �

Corollary 4.7. Let (X, p) be a partial metric space and let f, g : X → X be

mappings. Suppose there exists an R-function % : [0,∞)× [0,∞)→ R such that

%(p(fx, fy), p(gx, gy)) > 0

for all x, y ∈ X with gx 6= gy. Also, suppose that f(X) ⊆ g(X), g is one to

one and g(X) is a complete subspace of (X, p). Assume that at least one of the

following conditions holds:

(i) f is dp-continuous w.r.t. g.
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(ii) The R-function % satisfies condition (%3).

(iii) %(t, s) ≤ s− t for all t, s ∈ (0,∞).

Then f and g have a unique point of coincidence u in X such that p(u, u) = 0.

Moreover, if f and g are weakly compatible, then f and g have a unique common

fixed point in X.

Proof. The proof can be obtained from Theorem 4.5 by considering G = G0.

�

Corollary 4.8. [24] Let (X, p) be a complete partial metric space and let f :

X → X be a mapping. Suppose that there exists an R-function % : [0,∞) ×
[0,∞)→ R such that

%(p(fx, fy), p(x, y)) > 0

for all x, y ∈ X with x 6= y. Assume that at least one of the following conditions

holds:

(i) f is dp-continuous.

(ii) The R-function % satisfies condition (%3).

(iii) %(t, s) ≤ s− t for all t, s ∈ (0,∞).

Then f has a unique fixed point u in X such that p(u, u) = 0.

Proof. The proof can be obtained from Theorem 4.5 by considering g = I and

G = G0. �

Corollary 4.9. Let (X, p) be a partial metric space and let f, g : X → X

be mappings. Suppose f(X) ⊆ g(X), g is one to one and g(X) is a complete

subspace of X such that

p(fx, fy) ≤ φ(p(gx, gy)) p(gx, gy)

for all x, y ∈ X with gx 6= gy, where φ is a Geraghty function. Then f

and g have a unique point of coincidence u in X such that p(u, u) = 0 and

for any choice of the starting point x0 ∈ X, the sequence (gxn) defined by

gxn = fxn−1 for each n ∈ N converges to the point u. Moreover, if f and g

are weakly compatible, then f and g have a unique common fixed point in X.

Proof. By an argument similar to that used in Corollary 3.7, we can obtain the

desired result from Theorem 4.5. �

The following is the Matthews fixed point theorem [20].

Corollary 4.10. [20] Let (X, p) be a complete partial metric space and let

f : X → X be a mapping. Suppose that there exists k ∈ [0, 1) such that

p(fx, fy) ≤ k p(x, y) (4.3)

for all x, y ∈ X with x 6= y. Then f has a unique fixed point u ∈ X such that

p(u, u) = 0.
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Proof. Given k ∈ [0, 1), we can find k′ ∈ (0, 1) such that k < k′. Then, we

obtain from condition (4.3) that

p(fx, fy) ≤ k p(x, y) < k′ p(x, y)

for all x, y ∈ X with x 6= y. Considering as R-function %(t, s) = k′s− t for all

t, s ∈ [0,∞) with k′ ∈ (0, 1), the result follows from Corollary 4.8. �

Remark 4.11. Geraghty type fixed point theorem in partial metric spaces can

be obtained from Corollary 4.9, by taking g = I. Several existing fixed point

results in the setting of partial metric spaces can also be obtained from Theorem

4.5 by considering suitable R-functions.

5. An application

In this section, we present a homotopy result for operators on a nonempty

set endowed with a metric and a digraph. Let Γ denote the family of all

nondecreasing upper semi-continuous functions ρ : [0,∞) → [0,∞) such that

ρ(s) < s for all s > 0 with the following property:

lim
i,j→∞

[si,j − ρ(si,j)] = 0 implies lim
i,j→∞

si,j = 0 (5.1)

for every sequence (si,j) ⊂ [0,∞).

Lemma 5.1. If ρ ∈ Γ, then % : [0,∞)× [0,∞)→ R defined by

%(t, s) = ρ(s)− t for all t, s ∈ [0,∞)

is an R-function on [0,∞) satisfying condition (%3).

Proof. (%1) Assume that (an) ⊂ (0,∞) is a sequence such that %(an+1, an) > 0

for all n ∈ N. Then,

0 < %(an+1, an) = ρ(an)− an+1.

Since an > 0 and ρ(s) < s for all s > 0, we have

an+1 < ρ(an) < an for all n ∈ N.

Hence, (an) is a strictly decreasing sequence of positive real numbers and so

it is convergent. Let L ≥ 0 be its limit. If possible, suppose that L > 0.

Therefore,

0 < L < an+1 < ρ(an) < an for all n ∈ N.

Taking limit as n→∞, we get lim
n→∞

ρ(an) = L. As ρ is upper semi-continuous,

ρ(L) ≥ lim sup
r→L

ρ(r) = lim
n→∞

ρ(an) = L.

This contradicts the fact that ρ(s) < s for all s > 0. Therefore, L = 0.
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(%2) Assume that (an), (bn) ⊂ (0,∞) converging to the same limit L ≥ 0

and verifying that L < an and %(an, bn) > 0 for all n ∈ N. In order to prove

that L = 0, we assume that L > 0. Therefore,

0 < %(an, bn) = ρ(bn)− an for all n ∈ N.

So, it must be the case that

L < an < ρ(bn) < bn for all n ∈ N.

Letting n→∞, we deduce that lim
n→∞

ρ(bn) = L. As ρ is upper semi-continuous,

ρ(L) ≥ lim sup
r→L

ρ(r) = lim
n→∞

ρ(bn) = L.

This again contradicts the fact that ρ(s) < s for all s > 0. Therefore, L = 0.

(%3) Let (an), (bn) ⊂ (0,∞) be two sequences such that bn → 0 and

%(an, bn) > 0 for all n ∈ N. Therefore,

0 < %(an, bn) = ρ(bn)− an < bn − an for all n ∈ N.

So,

0 < an < bn for all n ∈ N,
which implies that an → 0. �

Theorem 5.2. Let (X, d) be a complete metric space endowed with a graph G,

let U be an open subset of X such that (x, y) ∈ E(G̃) for all x, y ∈ U and V

be a closed subset of X with U ⊂ V . Suppose the graph G has the property (∗)́.
Assume that the operator T : V × [0, 1]→ X satisfies the following conditions:

(i) u 6= T (u, s) for each u ∈ V \ U and all s ∈ [0, 1];

(ii) there exists ρ ∈ Γ such that for each s ∈ [0, 1] and all u, v ∈ V with

(u, v) ∈ E(G), we have

d(T (u, s), T (v, s)) ≤ ρ(d(u, v));

(iii) there exists a continuous function f : [0, 1]→ R such that

d(T (u, t), T (u, s)) ≤| f(t)− f(s) | for all t, s ∈ [0, 1] and every u ∈ V .

Then T (·, 1) has a fixed point if T (·, 0) has a fixed point and CT (·,s) 6= ∅ for

every fixed s ∈ [0, 1] with the property that T (·, s) is a self mapping on a closed

subset of U .

Proof. We first note that if ρ ∈ Γ, then ρ1 : [0,∞) → [0,∞) defined by

ρ1(s) = 1
2 (s+ ρ(s)) satisfies ρ(s) < ρ1(s) for all s > 0 and ρ1 ∈ Γ.

Suppose that T (·, 0) has a fixed point. We consider the set S := {s ∈ [0, 1] :

u = T (u, s) for some u ∈ U}. As T (·, 0) has a fixed point, hypothesis (i)

guarantees that there exists u ∈ U such that u = T (u, 0) and so 0 ∈ S. This

implies that S is nonempty. We shall show that S is both open and closed in
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[0, 1]. As [0, 1] is connected, it follows that S = [0, 1].

We now prove that S is a closed subset of [0, 1]. Let (sj) ⊂ S be a sequence

such that sj → s0 ∈ [0, 1] as j →∞. Since (sj) ⊂ S, for each j ∈ N, there exists

uj ∈ U such that uj = T (uj , sj). As (ui, uj) ∈ E(G̃), by using hypotheses (ii)

and (iii), we obtain

d(ui, uj) = d(T (ui, si), T (uj , sj))

≤ d(T (ui, si), T (ui, sj)) + d(T (ui, sj), T (uj , sj))

≤ | f(si)− f(sj) | +ρ(d(ui, uj))

which implies that

d(ui, uj)− ρ(d(ui, uj)) ≤| f(si)− f(sj) |

for all i, j ∈ N. Taking limit as i, j →∞, we get

lim
i,j→∞

[d(ui, uj)− ρ(d(ui, uj))] = 0.

Condition (5.1) ensures that d(ui, uj)→ 0 as i, j →∞ and consequently it fol-

lows that (uj) is a Cauchy sequence. Since (X, d) is complete and V is closed,

there exists u ∈ V such that uj → u. By property (∗)́ of the graph G, there

exists a subsequence (ujk) of (uj) such that (ujk , u) ∈ E(G̃).

Then, assuming d(ujk , u) > 0, we get

d(ujk , T (u, s0)) = d(T (ujk , sjk), T (u, s0))

≤ d(T (ujk , sjk), T (ujk , s0)) + d(T (ujk , s0), T (u, s0))

≤ | f(sjk)− f(s0) | +ρ(d(ujk , u))

< | f(sjk)− f(s0) | +d(ujk , u).

If d(ujk , u) = 0, then ujk = u = T (u, sjk) and so

d(ujk , T (u, s0)) = d(T (u, sjk), T (u, s0))

≤ | f(sjk)− f(s0) |
= | f(sjk)− f(s0) | +d(ujk , u).

Thus, in any case, we have

d(ujk , T (u, s0)) ≤ | f(sjk)− f(s0) | +d(ujk , u).

Taking limit as k →∞, we get

d(u, T (u, s0)) = lim
k→∞

d(ujk , T (u, s0)) = 0.

This shows that u = T (u, s0) and by hypothesis (i), we get u ∈ U . Therefore,

s0 ∈ S and consequently, it follows that S is closed.
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Finally, we show that S is an open subset of [0, 1]. Let s0 ∈ S be arbitrary.

Then there exists u0 ∈ U such that u0 = T (u0, s0). As U is open in (X, d), one

finds r > 0 such that B[u0, r] = {x ∈ X : d(u0, x) ≤ r} ⊂ U . Using continuity

of f at s0, corresponding to ε = r − ρ(r) > 0, there exists δ = δ(ε) > 0 such

that | f(s)− f(s0) |< ε for all s ∈ (s0 − δ, s0 + δ). For s ∈ (s0 − δ, s0 + δ) and

u ∈ B[u0, r], we have

d(T (u, s), u0) = d(T (u, s), T (u0, s0))

≤ d(T (u, s), T (u, s0)) + d(T (u, s0), T (u0, s0))

≤ | f(s)− f(s0) | +ρ(d(u, u0))

≤ r − ρ(r) + ρ(d(u, u0))

≤ r, as ρ is nondecreasing.

This shows that T (·, s) is a self mapping on B[u0, r] for every fixed s ∈
(s0 − δ, s0 + δ). Let % : [0,∞) × [0,∞) → R be defined by %(t, s) = ρ1(s) − t
for all t, s ≥ 0. By Lemma 5.1, it follows that % is an R-function on [0,∞)

satisfying condition (%3). Hypothesis (ii) ensures that T (·, s) is an R− λ−G-

contraction w.r.t. % on the closed ball B[u0, r], where λ ∈ Λ defined by λ(x) = 0

for all x ∈ B[u0, r]. Thus, all hypotheses of Corollary 3.3 are satisfied which

ensures that T (·, s) has a fixed point in B[u0, r] and hence in U . Consequently,

it follows that (s0−δ, s0+δ) ⊂ S and so S is an open subset of [0, 1]. Preceding

discussion guarantees that S = [0, 1] and so 1 ∈ S which gives that there exists

u∗ ∈ U such that u∗ = T (u∗, 1) i.e., u∗ is a fixed point of T (·, 1). �

Remark 5.3. It is worth mentioning that Theorem 5.1 of Nastasi et al.[24] can

be obtained from Theorem 5.2 by considering G = G0.
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