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ABSTRACT. The basic purpose of this article is to introduce the concept of
R — X\ — G-contraction by using R-functions, lower semi-continuous func-
tions and digraphs and discuss the existence and uniqueness of points of
coincidence and common fixed points for a pair of self-mappings satisfying
such contractions in the setting of metric spaces endowed with a graph.
As some consequences of our results, we obtain several recent results in

metric spaces and partial metric spaces.
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1. INTRODUCTION

Fixed point theory is a branch of nonlinear analysis which can be applied
successfully to different fields of mathematics and applied sciences. The Banach
contraction principle [3] is a popular tool for solving existence and uniqueness
problems in nonlinear analysis. Several researchers successfully extended this
interesting result in many directions(see [4, 13, 22, 23]). Recently, a lot of ar-
ticles have been dedicated to the development of fixed point theory by using

*Corresponding Author

Received 09 March 2019; Accepted 31 July 2022
(©2023 Academic Center for Education, Culture and Research TMU
67


http://dx.doi.org/10.61186/ijmsi.18.2.67
http://ijmsi.ir/article-1-1557-en.html

[ Downloaded from ijmsi.ir on 2026-02-19 ]

[ DOI: 10.61186/ijmsi.18.2.67 ]

68 S. K. Mohanta, Ratul Kar

contractivity conditions that depend on auxiliary functions such as Geraghty
functions, altering distance functions, L-functions, simulation functions, man-
ageable functions(see [10, 14, 17, 18, 19, 28, 29]). In 1969, Meir and Keeler [21]
introduced a new class of contractive mappings that did not depend on aux-
iliary functions but have created much attention to a large number of math-
ematicians. Lim [19] proved that Meir-Keeler contractions and L-functions
are closely related to each other. Very recently, Rolddn Loépez de Hierro and
Shahzad [28] introduced the concept of R-contraction by using the notion of
R-function and studied some fixed point results satisfying such contractions.
After that, Nastasi et al.[24] introduced a new class of mappings by using R-
functions and lower semi-continuous functions and proved some fixed point
results in metric spaces and partial metric spaces.

In [16], Jungck introduced the concept of weak compatibility. Several au-
thors have obtained common fixed points by using this notion. In recent in-
vestigations, the study of fixed point theory with a graph takes a prominent
place in many aspects. In 2005, Echenique [11] studied fixed point theory by
using graphs and then Espinola and Kirk [12] applied fixed point results in
graph theory. Motivated by the ideas given in [24, 28] and some recent work on
metric spaces with a graph (see [2, 5, 6, 7]), we like to introduce the concept of
R — A\ — G-contraction that includes Meir-Keeler contractions, Geraghty con-
tractions, R — A-contractions, etc. and obtain sufficient conditions for existence
and uniqueness of points of coincidence and common fixed points for a pair of
mappings in metric spaces endowed with a digraph G. As some consequences
of this study, we obtain several recent results in metric spaces and partial met-
ric spaces. Some examples are provided to justify the validity of our results.
Finally, we give an application of our main result to homotopy theory.

2. SOME BAsic CONCEPTS

In this section we present some basic notations, definitions and necessary
results in metric spaces.

Definition 2.1. [28] Let A C R be a nonempty subset and let p: A x A = R
be a function. We say that g is an R-function if it satisfies the following two
conditions.

(01) If (an) C (0,00) N A is a sequence such that o(an+1,a,) > 0 for all
n € N, then a,, — 0.

(02) If (an), (bn) C (0,00) N A are two sequences converging to the same
limit L > 0 and verifying that L < a,, and ¢(ay,b,) > 0 for all n € N, then
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L=0.

We denote by R4 the family of all R-functions whose domain is A x A.

In some cases, given a function g : Ax A — R, we will consider the following
property.

(03) If (an), (bn) C (0,00) N A are two sequences such that b, — 0 and
o(an,b,) > 0 for all n € N, then a,, — 0.

EXAMPLE 2.2. [28] Given k € (0,1), let ¢ : [0,1] x [0,1] — R be the function
given by o(s,t) = ks —t for all ¢, s € [0,1]. Then p is an R-function, but it is
not a simulation function neither a manageable function because its domain is
neither [0, 00) x [0,00) nor R x R.

EXAMPLE 2.3. [28] Let g : [0, 00) x [0,00) — R be the function defined, for all
t, s € [0,00), by
%s —t, if t<s,
oft,s) =
0, if t>s.

Then p is an R-function on [0, 00) which also satisfies condition (g3).

EXAMPLE 2.4. [31] The following items are some examples of R-functions each
of which satisfies condition (g3).
(a) o(t,s) = s¢(s) —t, where ¢ : [0,00) — [0,1) is a mapping such that
limsup p(¢) < 1, for all r € (0, 00).
t—r+
(b) ot,s) = g7 —t
(c) o(t,s) = F —t

Proposition 2.5. [28] If o € Ra, then o(a,a) <0 for all a € (0,00) N A.

Proposition 2.6. [28] If o(t,s) < s —t for allt, s € AN (0,00), then (o3)
holds.

Definition 2.7. [14] A Geraghty function is a function ¢ : [0, 00) — [0, 1) such
that if (¢,) C [0,00) and ¢(t,) — 1, then ¢, — 0.

Definition 2.8. [14] A Geraghty contraction is a mapping T": (X, d) — (X, d)
such that
d(Tz, Ty) < ¢(d(x,y))d(z,y) for all z,y € X,
where ¢ is a Geraghty function.
Definition 2.9. [21] A Meir-Keeler contraction is a mapping 7' : X — X from

a metric space (X,d) into itself such that for all € > 0, there exists § > 0
verifying that if z, y € X and € < d(z,y) < e + 0, then d(Tx,Ty) < e.
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Lim characterized this kind of mappings by using the notion of the following
class of auxiliary functions.

Definition 2.10. [19] A function ¢ : [0,00) — [0,00) will be called an L-
function if

(a) ¢(0) =0,
(b) ¢(t) > 0 for all ¢ > 0, and
(c) for all € > 0, there exists § > 0 such that ¢(t) < e for all t € [e, e + 4].

Theorem 2.11. [19] Let (X,d) be a metric space and let T : X — X be a
self mapping. Then T is a Meir-Keeler mapping if and only if there exists an
(nondecreasing, right-continuous) L-map ¢ such that

d(Tz, Ty) < ¢(d(x,y)) for all x, y € X verifying d(z,y) > 0.

Theorem 2.12. [28] Given an L-function ¢ : [0,00) — [0,00), let gy : [0, 00) X
[0,00) — R be the function defined by

04(t,s) = ¢(s) —t forall t, s € [0,00).
Then 04 is an R-function on [0,00). Furthermore, g4 satisfies condition (o3).

Lemma 2.13. [28] If ¢ : [0,00) — [0,1) is a Geraghty function, then oy, :
[0,00) x [0,00) = R, defined by

0y (t,s) = ¢(s)s —t for all t, s € [0,00),
is an R-function on [0,00) satisfying condition (o3).

Let (X,d) be a metric space and R be a binary relation over X. Denote

S =RUR"L Then
z,y € X, xSy < xRy or yRx.

Definition 2.14. [30] We say that (X, d, S) is regular if the following condition
holds:

If the sequence (z,) in X and the point € X are such that z,Sxz,;1 for
all n > 1 and li_>m d(xn,x) = 0, then there exists a subsequence (x,,) of (x,)

n oo

such that x,,Sx for all i > 1.

Let (X, d) be a metric space. We denote the range of d by

ran(d) = {d(z,y) : z, y € X} C [0, 00).

Definition 2.15. [28] Let (X, d) be a metric space and let T : X — X be a

mapping. We will say that T' is an R-contraction if there exists an R-function
0:Ax A— R such that ran(d) C A and

o(d(Tz,Ty),d(z,y)) >0 for all z, y € X such that x # y.

In such a case, we will say that T is an R-contraction with respect to(w.r.t.) o.
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A real valued function f defined on a metric space (X,d) is said to be

lower semi-continuous at a point xg in X if liminf f(z,) = oo or f(zg) <
Ty —>T0

liminf f(x,), whenever x,, € X for each n € N and x,, — xy. We denote by A

T —>T0
the family of all lower semi-continuous functions A : (X,d) — [0,00). If A € A,

then we will use the following notation
D(u,v; A) :== d(u,v) + Au) + A(v) for all u, v e X.

Definition 2.16. [24] Let (X, d) be a metric space and let T : X — X be a
mapping. The mapping T is called an R — A-contraction w.r.t. o if there exist
an R-function g : [0,00) x [0,00) — R and a function A € A such that

o(D(Tx, Ty; N), D(z,y; X)) > 0 for all z, y € X with D(z,y; \) > 0.

Definition 2.17. [1] Let T' and S be self mappings of aset X. If y = Tz = Sx
for some x in X, then x is called a coincidence point of 7" and S and y is called
a point of coincidence of T and S.

Definition 2.18. [16] The mappings 7,5 : X — X are weakly compatible, if
for every z € X, the following holds:

T(Sz) = S(Tz) whenever Sx = Tx.

Proposition 2.19. [1] Let S and T be weakly compatible selfmaps of a nonempty
set X. If S and T have a unique point of coincidence y = Sx =Tz, then y is
the unique common fized point of S and T.

We next review some basic notions in graph theory.

Let (X, d) be a metric space and G a directed graph such that the vertex set
V(G) = X and the set E(G) of its edges contains all the loops, i.e., A C E(Q)
where A = {(z,z) : € X}. We also assume that E(G) contains no parallel
edges. So we can identify G with the pair (V(G), E(G)). We denote the
conversion of a graph G by G~1, that is, the graph obtained from G by reversing
the direction of the edges i.e., E(G™!) = {(z,y) € X x X : (y,2) € E(G)}.
Let G denote the undirected graph obtained from G by ignoring the direction
of edges. Actually, it will be more convenient for us to treat G as a digraph for
which the set of its edges is symmetric. Under this convention,

E(G) = E(G)UE(G™).

Our graph theory notations and terminology are standard and can be found
in all graph theory books, like [8, 9, 15]. If x, y are vertices of the digraph G,
the direction of edge (z,y) is the inverse of the direction of edge (y,x), that
is, (x,y) # (y,x). A path of length n (n € N) in G from z to y is a sequence
(@)1 of n+1 distinct vertices such that zo = z, =, = y and (z;_1, ;) € E(G)
fori=1,2,---,n. A graph G is connected if there is a path between any two
vertices of G. G is weakly connected if G is connected.
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Definition 2.20. Let (X, d) be a metric space endowed with a graph G =
(V(G), E(G)). A mapping f: X — X is called an R — A — G-contraction w.r.t.
o if there exist an R-function ¢ : [0,00) x [0,00) — R and a function A € A
such that

o(D(fx, fy; A), D(w,y: X)) > 0
for all z,y € X with (z,y) € E(G) and D(z,y;\) > 0.

Definition 2.21. Let (X,d) be a metric space and let f, g : X — X be
mappings. Then f is called an R — A-contraction w.r.t. g and p if there exist
an R-function g : [0,00) X [0,00) — R and a function A € A such that

o(D(fz, fy; A), D(gz, gy; A)) > 0
for all z,y € X with D(gx, gy; \) > 0.

Definition 2.22. Let (X, d) be a metric space endowed with a graph G =
(V(G),E(G)) and let f, g : X — X be mappings. Then f is called an R—\—G-
contraction w.r.t. g and p if there exist an R-function g : [0,00) x [0,00) — R
and a function A € A such that

o(D(fz, fy; A), D(gz, gy; A)) > 0
for all z,y € X with (gz, gy) € E(G) and D(gx, gy; A) > 0.

Remark 2.23. If f is an R — X\ — G-contraction w.r.t. g and p, then f is also an
R — X\ — G~ !-contraction w.r.t. g and ¢ and hence an R — X\ — G-contraction
w.r.t. g and p.

Remark 2.24. If f is an R — A-contraction w.r.t. ¢ and p, then f is also
an R — A\ — Gp-contraction w.r.t. ¢ and p, where Gy is the complete graph
(X, X x X). But if f is an R — X\ — G-contraction w.r.t. g and p, it may not
be an R — A-contraction w.r.t. ¢ (see Remark 3.15).

Definition 2.25. Let (X,d) be a metric space and let f, g : X — X be
mappings. Then f is called continuous w.r.t. g if given x € X and a sequence
(gxn)nel\h

gx, — gr implies fx, — fx.

Definition 2.26. Let (X,d) be a metric space endowed with a graph G =
(V(G), E(G@)). A mapping f : X — X is called G-continuous if given x € X
and a sequence (Zp)nenN,

Ty = x and (T, Tny1) € E(G) for n € Nimply fo, — fx.

Definition 2.27. Let (X, d) be a metric space endowed with a graph G =
(V(G),E(G)) and let f,g : X — X be mappings. Then f is called G-
continuous w.r.t. g if given z € X and a sequence (g, )nen,

9Tn — gz and (gTy, gTnt1) € E(G) for n € Nimply fx, — fz.
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3. MAIN RESULTS

In this section we assume that (X, d) is a metric space and G is a reflexive
digraph such that V(G) = X and G has no parallel edges. Let the mappings
fyg: X — X be such that f(X) C g(X). Let g € X be arbitrary. Since
f(X) C g(X), there exists an element x1 € X such that fxg = gx;. Continuing
in this way, we can construct a sequence (gx,) such that gz, = fx,_1, n =
1,2,3,---

Definition 3.1. Let (X, d) be a metric space endowed with a graph G and
f, 9: X — X besuch that f(X) C g(X). We define Cyy the set of all elements

xo of X such that (gx,,g2,) € E(G) for m,n = 0,1,2, --- and for every
sequence (gx,) such that gz, = fa,_1.

Taking g = I, the identity map on X, Cyy becomes Cy which is the collec-

tion of all elements x of X such that (f"z, f™z) € E(G) for m, n=10,1,2, ---.

Before presenting our main result, we state a property of the graph G, call
it property (x).

Property (x):
If (gx,) is a sequence in X such that gz, — = and (gn,9zns1) € E(G)
for all n > 1, then there exists a subsequence (gz,,) of (gx,) such that

(92n,;,z) € E(GQ) for all + > 1.

Taking g = I, the above property reduces to property (*) which may be
stated as follows:

’

Property (x): If (x,) is a sequence in X such that z,, — = and (2, Zp41) €

E(G) for all n > 1, then there exists a subsequence (x,,) of (z,) such that

(Zn;,x) € BE(Q) for all i > 1.

Theorem 3.2. Let (X,d) be a metric space endowed with a graph G and let
f,9: X — X be mappings. Suppose f is an R — XA — G-contraction w.r.t. g
and o, f(X) C g(X), g is one to one and g(X) is a complete subspace of X.
Assume that at least one of the following conditions holds:

(i) f is G-continuous w.r.t. g.
(ii) The graph G has the property (x) and the R-function o satisfies condi-
tion (o3).
(iii) The graph G has the property (x) and o(t,s) < s—t for allt, s € (0,00).
If Cyr #0, then f and g have a point of coincidence w in X such that A\(u) =0
and for any choice of the starting point xg € Cyy, the sequence (gz,) defined by
gxn = fxn_1 for each n € N converges to the point u. Moreover, f and g have
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a unique point of coincidence in X if the graph G has the following property:
(%) If z, y are points of coincidence of f and g in X, then (x,y) € E(G')

Furthermore, if f and g are weakly compatible, then f and g have a unique
common fized point in X.

Proof. Suppose that Cyy # 0. We choose an z¢ € Cyy and keep it fixed. Since
f(X) C g(X), there exists a sequence (gz,) such that gz, = fr,_1, n =

1,2, 3, -+ and (92, gzm) € E(G) for m,n=10,1,2, ---.

If gz;41 = gx; for some j € NU{0}, then fz; = gz;11 = gx; which implies
that gz; is a point of coincidence of f and g. We now show that A(gz;) = 0.
First note that gaj;1 = gx; implies gz; = gx; for all i € NU {0} with i > j.
As g is one to one, gz;1 = gz; implies x;11 = ; and so gzrji2 = frj41 =
fx; = grj41 = gxj. Thus, in general, gz; = gz, for all i € NU {0} with i > j.
If possible, suppose A(gx;) > 0. Let t; := D(g9x;ti,92j+it1;A) for all i € N.
Then t; > 0 and (92 j44, 9%j4i41) i-e., (gz;, gx;) € E(C;') Taking into account
that f is an R — A\ — G-contraction w.r.t. g and g, we have

o(tiv1,ti) = o(D(fxjtis [Tjrit1; ), D(gj4i, 9T j1iy13 A)) > 0

for all i € N. By (01), it follows that ¢, — 0 as ¢ — oo and hence A(gz;) =
A(gxj+i) = 0 as ¢ — oo. This gives that A(gx;) = 0, which is a contradiction.
Therefore, A(gz;) = 0 if gxj41 = gx; for some j € NU {0}.

We now assume that gx,, # gx,_1 for every n € N.
We first show that

lim d(g2n—1,9%,) =0 and lim A(gz,) = 0. (3.1)

n—o0 n— oo

Let us put t,, := D(gzp—1,92n; A) for all n € N. Then the sequence (t,,) C
(0,00). As f is an R — A\ — G-contraction w.r.t. g and o, we get

o(tni1,tn) = 0(D(gTn, 9Tni1;N), D(9Tn—1,gTn; )
= Q(D<fxn717fmn7)‘)7D(gxnflagxn7)\))
> 0 forallneN.

By using (01), it follows that ¢, — 0 as n — oo. Therefore, d(gzp—1, 92n) —
0 and A(gz,) — 0 as n — oo. Consequently, condition (3.1) holds.

We now show that the sequence (gx,,) is Cauchy in g(X).
Suppose (gz,) is not a Cauchy sequence. Then there exist ¢ > 0 and two
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subsequences (gzy, ) and (g2, ) of (gz,) with & < nj < my and
A(9Zny, 9Tmy—1) < € < d(gTn,, gTm,) for all k € N.
So, it must be the case that

€< d(gxnkagxmk) < d(gxnkagxmkfl) +d(gxmkflvgxmk)
S 6+d(g‘xmk—1)g$mk)'
As lim d(g9xp—1,9z,) = 0, taking limit as k — oo, it follows from above
n— o0
that
lim d(gxn,, 9%m,) = lm d(gzn,—1,9%Tm,—1) = €.
k—oo k—oo
Taking into account \(gz,) — 0 as n — oo, we have
lim D(gn,, 9Tm,;A) = m D(gZn, —1,9Tm,—1; A) = €.
k—oco k—oo

This allows us to assume that D(gTn,—1,9%m,—1;A) > 0 for each k € N.

Further note that (g9, —1,9%m,—1) € E(G) for all k € N. Let us consider two
sequences (tx) and (sg) such that
ti = D(gZn,, 9Tm,; A) and si := D(9Zn, —1, 9Tm,—1; A) for all k € N.
Then, (tx), (sx) C (0,00) and lim ¢ = lim s; =e. Since f isan R — X\ — G-
k—o0 k—o0

contraction w.r.t. g and o, we get

o(tk,sk) = 0(D(9%ny, 9Tmys N)s D(9Zny—1, 9Tmy—1:N))
= Q(D(fxn,rhffcm,ru/\),D(gxnr1,g$mr1;)\))
> 0 forall ke N.

Moreover, € < d(gZn, , 9Tm,) < D(9Tn,, gTm,; A) = t for all k € N. Thus,
condition (g2) guarantees that ¢ = 0, which is a contradiction. Consequently,
it follows that (gz,) is a Cauchy sequence in g(X). As g(X) is complete,
there exists u € g(X) such that gz, — u = gv for some v € X. The lower
semi-continuity of A and condition (3.1) imply that

0 < Au) < lirginf/\(gxn) =0.

This gives that, A(u) = 0.
We now show that u is a point of coincidence of f and ¢ in X. Let us allow
to consider the following three cases.

Case-I: Assume that hypothesis (i) holds, i.e., f is G-continuous w.r.t. g.
In this case, gz, — gv = fz, — fv, that is, gz,41 — fv and so, gv = fv = w.
This shows that u is a point of coincidence of f and g.

Case-II: Assume that hypothesis (i¢) holds, i.e., the graph G has the prop-
erty () and the R-function g satisfies condition (g3).
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If there exists a subsequence (gx,,) of (gz,) such that fx,, = fv for alli € N,
then gxn,11 = fov for all © € N and hence gv = fv = uw. Thus, u is a point of
coincidence of f and ¢ in X.

If this does not happen, then we can assume that z,, # v and fx, # fv for
all n € N. Since g is one to one, it follows that gz, # gv and fx, # fv for all
n € N. By property (x), there exists a subsequence (gx,,) of (gz,) such that

(9n;, gv) € E(G).
Let us consider the sequences (¢;) and (s;) given by
t; = D(fxn,, fv;\) and s; := D(gxn,,gv; A) for all i € N.
Such a choice ensures that (¢;), (s;) C (0,00). Obviously, s; — 0 as i — oo.
Since f is an R — A — G-contraction w.r.t. g and p,
Q(tiu Si) = Q(D(fxnmfvv >‘)v D(gxni»gv; >‘)) >0
for all ¢ € N. Condition (g3) guarantees that t; — 0 as ¢ — co. This allows us
to obtain that
d(gxn,+1, fv) = d(fan,, fv) = 0asi— oo

which implies that, d(gv, fv) = 0 and hence gv = fv = u. Thus, u is a point
of coincidence of f and ¢ in X.

Case-IIT: Assume that hypothesis (7i¢) holds, i.e., the graph G has the
property () and o(t,s) < s—t for all ¢, s € (0, 00).
In this case, Proposition 2.6 ensures that condition (e3) holds and hence Case-
IT is also applicable.

Thus, in any case, u is a point of coincidence of f and g in X.

The next is to show that the point of coincidence is unique. Assume that
there exists ©* in X such that fx = g = u* for some z € X and u # u*. By

property (xx), we have (u,u*) € E(G). As u # u*, we have
tn = D(u,u*;\) >0 for all n € N.
Then,
o(tni1stn) = o(D(u,u™;A), D(u, u™;A))
= o(D(fv, fz; A), D(gv, gz; A))
> 0 forall n e N.

Using condition (91), we obtain ¢, — 0 as n — oo, which gives that d(u,u*) =
0, contradicts the fact that u # u*. Therefore, u = v* and so f and g have a
unique point of coincidence in X.
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If f and g are weakly compatible, then by Proposition 2.19, f and g have a
unique common fixed point in X. O

Corollary 3.3. Let (X,d) be a complete metric space endowed with a graph G
and let f: X — X be an R — A\ — G-contraction w.r.t. 9. Assume that at least
one of the following conditions holds:

(i) f is G-continuous.
(ii) The graph G has the property (*) and the R-function o satisfies condi-
tion (03).

(iii) The graph G has the property (*) and o(t,s) < s—t for allt, s € (0,00).
If Cy # 0, then f has a fized point w in X such that A(u) = 0 and for any
choice of the starting point xo € Cy, the sequence (x,,) defined by x,, = fxn_1
for each n € N converges to the point u. Moreover, f has a unique fized point
in X if the graph G has the following property:

(% *) If z, y are fized points of f in X, then (z,y) € E(G).
Proof. The proof can be obtained from Theorem 3.2 by considering g = I, the
identity map on X. O

Corollary 3.4. Let (X,d) be a metric space and let f, g : X — X be mappings.
Suppose f is an R — A-contraction w.r.t. g and o, f(X) C g(X), g is one to
one and g(X) is a complete subspace of X. Assume that at least one of the
following conditions holds:

(i) f is continuous w.r.t. g.
(ii) The R-function o satisfies condition (gs3).
(iii) o(t,s) < s—t forallt, s € (0,00).
Then f and g have a unique point of coincidence u in X such that A(u) = 0
and for any choice of the starting point xo € X, the sequence (gx,) defined by
gxn, = faxn_1 for each n € N converges to the point u. Moreover, if f and g
are weakly compatible, then f and g have a unique common fized point in X.

Proof. The proof follows from Theorem 3.2 by taking G = G, where G is the
complete graph (X, X x X).
O

The following corollary is the Theorem 3.1 of Nastasi et al.[24].

Corollary 3.5. [24] Let (X,d) be a complete metric space and let f : X — X
be an R — A-contraction w.r.t. o. Assume that at least one of the following
conditions holds:

(i) f is continuous.
(ii) The R-function o satisfies condition (gs3).
(iii) oft,s) < s—t forallt, s € (0,00).
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Then f has a unique fixed point u in X such that A(u) = 0 and for any choice
of the starting point xg € X, the sequence (x,,) defined by x,, = fx,_1 for each
n € N converges to the point u.

Proof. The proof can be obtained from Theorem 3.2 by considering g = I and
G = Gy. O

Corollary 3.6. Let (X,d) be a complete metric space endowed with a binary
relation ® over X and let S = RUR™L. Suppose f: X — X is such that there
exist an R-function ¢ on [0,00) and a function A € A satisfying

o(D(fx, fy; A), D(z,y; 1)) > 0

for all xz, y € X with xSy and D(x,y; \) > 0. Suppose also that the following
conditions hold:

(i) (X,d,S) is reqular and the R-function o satisfies condition (g3);
(ii) there exists xg € X such that (f"xo, f™xo) € S forallm, n=20,1,2,---.

Then f has a fized point u in X such that A(u) = 0. Moreover, f has a unique
fized point in X if the following property holds:

If x, y are fixed points of f in X, then xSy.

Proof. The proof follows from Theorem 3.2 by taking g = I and G = (V(G), E(G)),

where V(G) = X, E(G) = {(z,y) € X x X : 2Sy} UA. O

Corollary 3.7. Let (X,d) be a metric space and let f, g : X — X be mappings.
Suppose f(X) C g(X), g is one to one and g(X) is a complete subspace of X
and there exists a A € A such that

D(fx, fy; \) < ¢(D(gz, gy; \)) D(g, gy; N) (3.2)

for all x, y € X with D(gx, gy; \) > 0, where ¢ is a Geraghty function. Then
f and g have a unique point of coincidence u in X such that M(u) = 0 and
for any choice of the starting point xo € X, the sequence (gx,) defined by
gxy = fxp—1 for each n € N converges to the point u. Moreover, if f and g
are weakly compatible, then [ and g have a unique common fized point in X.

Proof. We define a function ¢ : [0,00) — [0,1) by

1

= 5(L+ (1) for all t € [0, c0).

©(t)

Then ¢ is also a Geraghty function. Moreover, it follows that ¢(t) < ¢(t) < 1
for all ¢ € [0, 00). Therefore, from condition (3.2), we get

D(fxz, fy; A) < ¢(D(gx, gy; N)) D(gz, gy; A) < ¢(D(gx, gy; N)) D(gx, gy; A)
(3.3)
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for all x, y € X with D(gx,gy; A\) > 0, where ¢ is a Geraghty function. By
applying Lemma 2.13, it follows that

o(t,s) =p(s)s—t forall s,t € [0,00)
is an R-function on [0,00) which satisfies condition (g3). By using condition
(3.3), we obtain
o(D(fz, fy; N), D(gx, gy; \)) = o(D(gx, gy; A)) D(gx, gy; ) — D(fx, fy; A) > 0

for all z, y € X with D(gx, gy; \) > 0. This shows that f is an R—A-contraction
w.r.t. g and p. The result now follows from Corollary 3.4. ]

Remark 3.8. Geraghty’s fixed point theorem [14] can be obtained from Corol-
lary 3.7, by taking g = I and A(z) = 0 for all € X. Therefore, Theorem 3.2
is a generalization of Geraghty’s fixed point theorem.

Corollary 3.9. Let (X,d) be a metric space and let f, g : X — X be mappings.
Suppose f(X) C g(X), g is one to one and g(X) is a complete subspace of X
and there exists a A € A such that

D(fz, fy; A) < (D(gz, gy; M) (3.4)
for all x,y € X with D(gx,gy; \) > 0, where ¢ is an L-function. Then f
and g have a unique point of coincidence u in X such that AM(u) = 0 and

for any choice of the starting point xo € X, the sequence (gx,) defined by
gxn, = faxn_1 for each n € N converges to the point u. Moreover, if f and g
are weakly compatible, then [ and g have a unique common fized point in X.

Proof. If ¢ is an L-function, then Theorem 2.12 guarantees that o(t, s) = ¢(s)—
t for all ¢, s € [0,00), is an R-function on [0, c0) which satisfies condition (g3).
By using condition (3.4), we obtain

o(D(fz, fy; A), D(gz, gy; N)) = ¢(D(gz, gy; A)) — D(fz, fy; A) >0

for all z, y € X with D(gx, gy; \) > 0. This shows that f is an R—A-contraction
w.r.t. g and g. The result now follows from Corollary 3.4. (|

Remark 3.10. Meir-Keeler’s fixed point theorem [21] can be obtained from
Corollary 3.9, by taking g = I, AM(z) = 0 for all z € X and using Theorem
2.11. Therefore, Theorem 3.2 is a generalization of Meir-Keeler’s fixed point
theorem.

Corollary 3.11. Let (X,d) be a metric space and let f, g : X — X be map-
pings. Suppose f(X) C g(X), g is one to one and g(X) is a complete subspace
of X and there exists a A € A such that

d(D(fz, fy; N) < D(gz, gy; \) (3.5)

for all x,y € X with D(gx,gy; \) > 0, where ¢ : [0,00) — [0,00) is a right
continuous function such that ¢(t) > t, for all t > 0. Then f and g have a
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unique point of coincidence u in X such that A(u) = 0 and for any choice of
the starting point xo € X, the sequence (gx,,) defined by gz, = fx,—1 for each
n € N converges to the point u. Moreover, if f and g are weakly compatible,
then f and g have a unique common fixed point in X .

Proof. We consider as R-function
o(t,s) =s—¢(t) for all s, t € [0,00)
which satisfies condition (g3). By using condition (3.5), we obtain

o(D(fx, fy; A), D(gx, gy; A)) = D(gz, gy; A) — o(D(fz, fy; ) > 0
for all z, y € X with D(gx, gy; A\) > 0. This shows that f is an R—A-contraction
w.r.t. g and p. The result now follows from Corollary 3.4. (]

Corollary 3.12. Let (X,d) be a metric space and let f, g : X — X be map-
pings. Suppose f(X) C g(X), g is one to one and g(X) is a complete subspace
of X and there exists a A € A such that

D(fz, fy; A) < ¢(D(g, gy; A)) D(g, gy; A)
for all x, y € X with D(gz, gy; \) > 0, where ¢ : [0,00) — [0,1) is a function
such that limsup ¢(t) < 1, for all v > 0. Then f and g have a unique point of

t—rt
coincidence u in X such that A(u) = 0 and for any choice of the starting point

xo € X, the sequence (gx,,) defined by gx, = frn_1 for each n € N converges
to the point u. Moreover, if f and g are weakly compatible, then f and g have
a unique common fived point in X.

Proof. We define a function ¢ : [0,00) — [0, 1) by
1
p(t) = 5(1 + ¢(t)) for all t € ]0,00).
Then ¢ is a function such that limsup () < 1, for all » > 0. Moreover, it

t—srt

follows that ¢(t) < ¢(t) < 1 for all ¢ € [0,00). By an argument similar to that
used in Corollary 3.7 and taking

o(t,s) = ¢(s)s —t for all s, t € [0,00)

as R-function which satisfies condition (g3), the desired result follows from
Corollary 3.4. O

Corollary 3.13. Let (X,d) be a metric space and let f, g : X — X be map-
pings. Suppose f(X) C g(X), g is one to one and g(X) is a complete subspace
of X and there exists a A € A such that

D(fx, fy; \) < — 219799 )

L+ D(fz, fy; A)
for all x, y € X with D(gz,gy; \) > 0. Then f and g have a unique point of
coincidence u in X such that A(u) = 0 and for any choice of the starting point
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xo9 € X, the sequence (gx,,) defined by gx, = fx,—1 for each n € N converges
to the point u. Moreover, if f and g are weakly compatible, then f and g have
a unique common fized point in X .

Proof. Considering

o(t,s) = %—i—t —t forall s,t€0,00)

as R-function on [0, 00) which satisfies condition (p3), the desired result can be
obtained from Corollary 3.4. |

We furnish some examples in favour of our main result.

EXAMPLE 3.14. Let X =R and define d : X x X — R by d(z,y) =| z —y | for
all z, y € X. Then (X, d) is a complete metric space. Let G be a digraph such
that V(G) = X and E(G) = AU{(0,+):n=1,2,3,---}. Let f, g: X - X
be defined by

g, ifz#i

Jr=
e 2
L, ifrx=%

and gz = 8z for all x € X. Obviously, f(X) C g(X) = X and g is one to one.

Let ¢ : [0,400) x [0,400) — R be defined by

%s—t, if t<s,
olt,s) =

0, if t>s.

Then p is an R-function on [0, 00) which also satisfies (93). We define the lower
semi-continuous function A : X — [0,00) by A(z) =| « | for all z € X.

Ifz=0y= 8%1, n € N, then gz =0, gy = % and so (gz,gy) € E(G) and
D(gz,gy; A) > 0 with D(fz, fy; \) < D(gz,gy; ). Then, for x =0, y = 8%7
we have

1
o(D(fz, fy: A), D(gz,9y; A)) = 5D(gz,9y;A) — D(fz, fy; A)

1

= Slgr—gyl+lgz|+]gyl)
(I fe=fyl+1fel+]fyl)

11

T n 20n

Y]

T 20n

> 0.
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If 2,y € X with x = y # 0, then (9z,9y) € E(G), D(gx,9y;\) > 0 and
D(fz, fy; \) < D(gzx, gy; A). Thus, for x = y # 0, we have

o(D(fx, fy; A), D(g, gy; N)) %D(gw,gy; A) = D(fx, fy; \)

1
= 5@lgz) -2z

= Blel-2le)>0ifa# ]

16 ) 2
= (372)>Ozfa::g.
Therefore,
o(D(fz, fy; A), D(gz, gy; A)) > 0
for all z,y € X with (gz, gy) € E(G) with D(gz,gy; \) > 0 and so, f is an
R — X\ — G-contraction w.r.t. g and p.

We now verify that 0 € Cyy. In fact, gz, = frn—1, n=1,2,3, - gives
that gz;1 = f0 =0 = 21, = 0 and so gzs = fry = 0 = x5 = 0. Proceeding in
this way, we get gx,, = 0 for n =0, 1, 2, --- and hence (gz,, gzn) = (0,0) €
E(G’) form,n=20,1,2, ---.

Also, any sequence (gz,) with the property (gzn,gzni1) € E(G) must be
either a constant sequence or a sequence of the following form

0, if nisodd,

gTn =

l?
where the words ‘odd’ and ‘even’ are interchangeable. Consequently it follows
that property (*) holds. Furthermore, f and g are weakly compatible. Thus,
we have all the conditions of Theorem 3.2 and 0 is the unique common fixed
point of f and g in X such that A(0) = 0.

if nis even

Remark 3.15. In Example 3.14, f is not an R — A-contraction w.r.t. o. In
fact, for @ = 0,y = 2, we have D(fa, fy: A) =| fa — fy | + | fo | + | fy |=
2, D(z,y; \) = % > 0. As D(fz, fy; \) > D(x,y; \), it follows that

o(D(fx, fy; A), D(z, y; A)) = 0.
We now examine the necessity of property (x) in Theorem 3.2.

EXAMPLE 3.16. Let X = [0,00) and defined : X x X — R by d(z,y) =| x—y |
for all z, y € X. Then (X,d) is a complete metric space. Let G be a digraph
such that V(G) = X and E(G) = AU {(z,y) : (z,y) € (0,1] x (0,1], x > y}.
Let f, g : X — X be defined by

L ifa#to,

fr=
1, ifz=0
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and gr = § for all z € X. Obviously, f(X) C g(X) = X and g is one to one.

Let ¢ : [0, 400) x [0, +00) — R be defined by

%s—t, if t<s,
o(t,s) =
0, if t>s.

Then p is an R-function on [0, 00) which also satisfies (93). We define the lower

semi-continuous function A : X — [0,00) by A(z) = x for all x € X.

Since for z,y € X with (gz,gy) € E(G) and D(gz,gy; A\) > 0 imply that
x#0, y#0, D(fz, fy; \) < D(gz, gy; A), we have

o(D(fx, fy; A), D(gx, gy; N)) = %D(gx,gy;/\) - D(fx, fy; \)
= %D(gfv,gy; A= (| fz—fyl|+fx+ fy)
1
= SDlow.gyN) — (g ¢l +5+¢)

T
6
1 1
= §D(gx,gy;k) - gD(gﬂc?gy; A)

1
= gD(yx, gy; N)
> 0.

Therefore, f is an R — A — G-contraction w.r.t. g and o. Moreover, it is easy
to check that 1 € Cyr ie., Cyp # 0.

We see that f and g have no point of coincidence in X. This happens due
to lack of property (x). For instance, we consider the sequence (g, ), where
Ty = % Then, gz, — 0 and (gxn, grp+1) € E(G) for all n € N. But there

exists no subsequence (gz,,) of (g, ) such that (gz,,,0) € E(G).
The following two examples show that the uniqueness part of Theorem 3.2
remains invalid without property (xx) of the graph G.

EXAMPLE 3.17. Let X = [0,00) and defined : X x X — R by d(z,y) =|x—y |
for all z, y € X. Then (X,d) is a complete metric space. Let G be a digraph
such that V(G) = X and E(G) = AU{(0,1) :n e N}. Let f, g: X — X be
defined by

3, if0<z<,

Jr=

22, ifx>1

and gz = 3z for all x € X. Obviously, f(X) C g(X) = X and g is one to one.
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We take g : [0, +00) x [0, +00) — R defined by

%s—t, if t<s,
olt,s) =
0, ift>s

as an R-function on [0, c0) which also satisfies (¢3). We consider as lower semi-
continuous function A(z) =0 for all z € X.

Ifz =0, y=3, neN,then gr =0, gy = L and so (gz, gy) € E(G) and

3In?
D(gx,gy; A) > 0 with D(fz, fy; \) < D(gx,gy; ). Then, for x =0, y = 3%”
we have
(D(fx, fy; A), D(g ')\))le( z,gy; \)—D(fx, f ~)\)7i,ifi >
0 » J Y5 ) 9z, gy; - 2 9z, gy; yJ Y3 - o 9n - 180
Therefore,

o(D(fz, fy; A), D(gz, gy; A)) > 0

for all z,y € X with (gz,9y) € E(G) and D(gz, gy; A) > 0 which states that,
fis an R — A\ — G-contraction w.r.t. g and p.

Moreover, 0 € Cyr # 0 and property (*) holds. We find that 0 and 9 are
points of coincidence of f and g in X but (0,9) ¢ E(G). In fact, unique point
of coincidence of f and g does not exist due to lack of property (xx) of the
graph G.

EXAMPLE 3.18. Let X = {1, 2,3} U[4,00) and define d : X x X — R by
d(z,y) =| x —y | for all z, y € X. Then (X,d) is a complete metric space.
Let G be a digraph such that V(G) = X and E(G) = AU {(1,2)}. Let
f, 9: X = X be defined by

2, ifxz=1,2,

fx=1<¢ 3, if x =3,
22, ifx>4
and
x, ifx=1,2 3,
gxr =

z+1, ifx>4.

Obviously, f(X) C ¢g(X), g(X) is a complete subspace of X and g is one to
one.

0.
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We take g : [0, +00) x [0, +00) — R defined by
%s —t, if t<s,

Q(tv S) =

0, ift>s

as an R-function on [0, c0) which also satisfies (¢3). We consider as lower semi-
continuous function A(z) =0 for all z € X.

If x =1,y = 2, then gr = 1, gy = 2 and so (gz,9y) € E(G) and
D(gz, gy; \) > 0 with D(fz, fy; \) < D(gz,gy; \). Then, for z =1, y =2, we
have

1 1
o(D(fz, fy; A), D(gz, 9y; A)) = 5 D(gz, 9y; A) — D(fz, fy; A) = 5 > 0.
Therefore,
o(D(fx, fy; A), D(gz, gy; A)) > 0
for all z,y € X with (gz,gy) € E(G) and D(gx, gy; A) > 0 which shows that,
fis an R — A\ — G-contraction w.r.t. g and p.

It is easy to verify that property (*) holds and C,; # 0. Thus, we have
all the conditions of Theorem 3.2 except property (xx). However, f and g are
weakly compatible, we can not find unique common fixed point of f and g. In
fact, 2 and 3 are common fixed points of f and g in X and hence they are also
points of coincidence of f and g in X, but (2,3) ¢ E(G).

4. COMMON FIXED POINTS IN PARTIAL METRIC SPACES

In this section we present some common fixed point theorems in partial
metric spaces. We begin with some basic definitions and notions in partial
metric spaces that can be found in [20, 25, 26, 27].

Definition 4.1. A partial metric on a nonempty set X is a function p : X x
X — [0, 00) such that, for all u, v, w € X, we have
(i) u=v < p(u,u) = p(u,v) = p(v,v);
(i) p(u,u) < p(u, v);
(iii) p(u,v) = p(v,w);
v)

(iv) p(u,v) < p(u, w) + p(w,v) = p(w, w).

A partial metric space is a pair (X, p), where X is a nonempty set and p is
a partial metric on X.

Every partial metric p : X x X — [0, 00) generates a Ty topology 7, on X,
which has as a base the family of open p-balls {U,(u,r) : v € X, r > 0}, where
Up(u,r) ={v e X :p(u,v) < pu,u) +r} for all w € X and r > 0.

Definition 4.2. Let (X, p) be a partial metric space and (u;) C X. Then
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(1) (u;) converges to a point u € X if and only if p(u,u) = lim p(u,u;);
j—o0

(ii) (u;) is called a Cauchy sequence if there exists lim p(u;,u;) (and it
i, j—00

is finite);

(iii) (X,p) is said to be complete if every Cauchy sequence (u;) in X con-
verges, with respect to 7,, to a point v € X such that p(u,u) =
im - p(ug, uy).

i, j—00
It is elementary to verify that the function dP : X x X — [0, 00) defined by
dp(uv 1)) = 2p(u7 'U) - p(“v ’U,) - p(v, ’U)

is a metric on X whenever p is a partial metric on X. Moreover, lim d”(u;,u) =
J]—00

0 if and only if

p(ua U) = hIIl p(’UJj/LL) = hm p(ui7uj)'
j—o0o i, j—00
Lemma 4.3. [24] Let (X,p) be a partial metric space and let A : X — [0, 00)
be defined by AM(u) = p(u,u) for allw € X. Then the function X is continuous
in the metric space (X, dP).

Lemma 4.4. [20, 25] Let (X, p) be a partial metric space. Then
(i) (u;) is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence
in the metric space (X, dP);
(ii) a partial metric space (X, p) is complete if and only if the metric space
(X, dP) is complete.

Theorem 4.5. Let (X,p) be a partial metric space endowed with a graph G
and let f, g : X — X be mappings. Suppose there exists an R-function o :
[0,00) x [0,00) = R such that

o(p(fz, fy),p(gz, gy)) >0 (4.1)

for all x, y € X with gx # gy and (g, gy) € E(G). Suppose also that f(X) C
g(X), g is one to one and g(X) is a complete subspace of (X,p). Assume that
at least one of the following conditions holds:

(i) f is G — dP-continuous w.r.t. g.
(ii) The graph G has the property (%) in (X,dP) and the R-function o sat-
isfies condition (03).
(iii) The graph G has the property (%) in (X,dP) and o(t,s) < s —t for all
t, s € (0,00).
IfCyr # 0, then f and g have a point of coincidence u in X such that p(u,u) =
0. Moreover, f and g have a unique point of coincidence in X if the graph G
has the property (xx). Furthermore, if f and g are weakly compatible, then f
and g have a unique common fized point in X.
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Proof. Since dP(u,v) = 2p(u,v) — p(u,u) — p(v,v), it follows that
_dP(u,v) + p(u,u) + p(v,v)
- 2

As ¢g(X) is a complete subspace of (X, p), Lemma 4.4 ensures that g(X) is a
complete subspace of (X, d) where d = 2dP. Let the function A : X — [0, c0)
be defined by A\(u) = %p(u, u). Then, by Lemma 4.3, X is continuous and hence
lower semi-continuous in (X, d). From condition (4.2), we get

p(u,v) = d(u,v) + Au) + A(v) = D(u,v; N).

p(u,v) forall u, ve X. (4.2)

Thus, condition (4.1) reduces to

o(D(fz, fy; A), D(g9z, gy; A)) > 0

for all z, y € X with (gz,gy) € E(G) and D(gz, gy; \) > 0. This shows that f
is an R—\—G-contraction w.r.t. g and g. Consequently, it follows that we have
all the conditions of Theorem 3.2 w.r.t. the metric space (X, d). Therefore, the
conclusion of Theorem 4.5 follows from Theorem 3.2 where p(u,u) = 2 A\(u) =
0. |

Corollary 4.6. Let (X,p) be a complete partial metric space endowed with a
graph G and let f : X — X be a mapping. Suppose there exists an R-function
0:]0,00) x [0,00) = R such that
olp(fz, fy), p(z,y)) > 0
forallx,y € X with x #y and (z,y) € E(G). Assume that at least one of the
following conditions holds:
(i) f is G — dP-continuous.
(ii) The graph G has the property (*) in (X,dP) and the R-function o sat-
isfies condition (03).
(iii) The graph G has the property (*) in (X,dP) and o(t,s) < s —t for all
t, s € (0,00).
IfCy # 0, then f has a fized point w in X such that p(u,u) = 0. Moreover, f
has a unique fized point in X if the graph G has the property (x % )

Proof. The proof can be obtained from Theorem 4.5 by considering g = I, the
identity map on X. O

Corollary 4.7. Let (X,p) be a partial metric space and let f, g : X — X be
mappings. Suppose there exists an R-function g : [0,00) X [0,00) — R such that

o(p(fx, fy),p(gr,gy)) >0

for all z, y € X with gz # gy. Also, suppose that f(X) C g(X), g is one to
one and g(X) is a complete subspace of (X,p). Assume that at least one of the
following conditions holds:

(i) f is dP-continuous w.r.t. g.
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(ii) The R-function o satisfies condition (g3).

(iii) o(t,s) <s—t for allt, s € (0,00).
Then f and g have a unique point of coincidence u in X such that p(u,u) = 0.
Moreover, if f and g are weakly compatible, then f and g have a unique common
fixed point in X.

Proof. The proof can be obtained from Theorem 4.5 by considering G = GY.
O

Corollary 4.8. [24] Let (X,p) be a complete partial metric space and let f :
X — X be a mapping. Suppose that there exists an R-function o : [0,00) X
[0,00) = R such that
olp(fz, fy), p(z,y)) >0

forallz, y € X with x # y. Assume that at least one of the following conditions
holds:

(i) f is dP-continuous.

(ii) The R-function o satisfies condition (gs3).

(ili) o(t,s) <s—t forallt, s € (0,00).
Then f has a unique fized point u in X such that p(u,u) = 0.

Proof. The proof can be obtained from Theorem 4.5 by considering g = I and
G = Gy. O

Corollary 4.9. Let (X,p) be a partial metric space and let f, g : X — X
be mappings. Suppose f(X) C g(X), g is one to one and g(X) is a complete
subspace of X such that

p(fz, fy) < é(p(gz, gy)) p(97, gy)

for all x, y € X with gr # gy, where ¢ is a Geraghty function. Then f
and g have a unique point of coincidence u in X such that p(u,u) = 0 and
for any choice of the starting point xo € X, the sequence (gx,) defined by
gxn, = faxn_1 for each n € N converges to the point u. Moreover, if f and g
are weakly compatible, then f and g have a unique common fized point in X.

Proof. By an argument similar to that used in Corollary 3.7, we can obtain the
desired result from Theorem 4.5. (]

The following is the Matthews fixed point theorem [20].

Corollary 4.10. [20] Let (X,p) be a complete partial metric space and let
f: X — X be a mapping. Suppose that there exists k € [0,1) such that

p(fz, fy) < kp(z,y) (4.3)

for all x, y € X with x #y. Then f has a unique fired point u € X such that
p(u,u) = 0.
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Proof. Given k € [0,1), we can find ¥’ € (0,1) such that & < k. Then, we
obtain from condition (4.3) that

p(fx, fy) < kp(z,y) <k p(z,y)
for all z, y € X with & # y. Considering as R-function o(t, s) = k’s — ¢ for all
t, s € [0,00) with k¥’ € (0,1), the result follows from Corollary 4.8. O

Remark 4.11. Geraghty type fixed point theorem in partial metric spaces can
be obtained from Corollary 4.9, by taking g = I. Several existing fixed point
results in the setting of partial metric spaces can also be obtained from Theorem
4.5 by considering suitable R-functions.

5. AN APPLICATION

In this section, we present a homotopy result for operators on a nonempty
set endowed with a metric and a digraph. Let I' denote the family of all
nondecreasing upper semi-continuous functions p : [0,00) — [0, 00) such that
p(s) < s for all s > 0 with the following property:

lim [s; ; — p(si;)] =0 implies lim s;; =0 (5.1)

1,j—00 i,j—00
for every sequence (s; ;) C [0, 00).
Lemma 5.1. If p € T, then p: [0,00) X [0,00) = R defined by
o(t,s) = p(s) —t forall t, s € [0,00)

is an R-function on [0,00) satisfying condition (03).
Proof. (01) Assume that (a,) C (0,00) is a sequence such that o(an+1,a,) >0
for all n € N. Then,

0 < o(ant1,an) = plan) — ant1-
Since a,, > 0 and p(s) < s for all s > 0, we have

any1 < play) < a, for all n € N.

Hence, (ay) is a strictly decreasing sequence of positive real numbers and so
it is convergent. Let L > 0 be its limit. If possible, suppose that L > 0.
Therefore,

0< L <ant1 <plan) < ayn for all n € N,

Taking limit as n — oo, we get lim p(a,) = L. As p is upper semi-continuous,
n—oo

p(L) = limsup p(r) = lim p(a,) = L.

r—L

This contradicts the fact that p(s) < s for all s > 0. Therefore, L = 0.
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(02) Assume that (a,), (bn) C (0,00) converging to the same limit L > 0
and verifying that L < a,, and o(an,b,) > 0 for all n € N. In order to prove
that L = 0, we assume that L > 0. Therefore,

0 < g(an,b,) = p(by) — an, for all n € N.
So, it must be the case that
L <a, < p(b,) <by for all n € N.

Letting n — oo, we deduce that lim p(b,) = L. As p is upper semi-continuous,
n—oo
p(L) > limsup p(r) = lim p(b,) = L.
r—L n—oo

This again contradicts the fact that p(s) < s for all s > 0. Therefore, L = 0.

(03) Let (an), (bp) C (0,00) be two sequences such that b, — 0 and
o(an,b,) > 0 for all n € N. Therefore,

0 < o(an,by) = p(by) —an < by, —a, for all n € N.

So,
0<a,<b, forallneN,
which implies that a,, — 0. O

Theorem 5.2. Let (X, d) be a complete metric space endowed with a graph G,
let U be an open subset of X such that (z,y) € E(é) forallxz,y € U and V
be a closed subset of X with U C V. Suppose the graph G has the property (*)
Assume that the operator T : V x [0,1] — X satisfies the following conditions:
(i) u # T(u,s) for each u € V\U and all s € [0,1];
(ii) there exists p € I’ such that for each s € [0,1] and all u, v € V with
(u,v) € E(G), we have
d(T'(u,s), T(v, s)) < p(d(u, v));
(iii) there exists a continuous function f :[0,1] = R such that
d(T(u,t),T(u,s)) <| f(t) — f(s) | for allt, s € [0,1] and every u € V.
Then T(-,1) has a fized point if T(-,0) has a fived point and Cp(. g # O for

every fixed s € [0, 1] with the property that T(-, s) is a self mapping on a closed
subset of U.

Proof. We first note that if p € T, then p; : [0,00) — [0,00) defined by
p1(s) = (s + p(s)) satisfies p(s) < py(s) for all s > 0 and p; €.

Suppose that T'(+,0) has a fixed point. We consider the set S := {s € [0,1] :
u = T(u,s) for someu € U}. As T(-,0) has a fixed point, hypothesis (4)
guarantees that there exists w € U such that v = T'(u,0) and so 0 € S. This
implies that S is nonempty. We shall show that S is both open and closed in
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[0,1]. As [0,1] is connected, it follows that S = [0, 1].

We now prove that S is a closed subset of [0,1]. Let (s;) C S be a sequence
such that s; — so € [0,1] as j — oo. Since (s;) C S, for each j € N, there exists
uj € U such that u; = T'(uj,s;). As (u;,u;) € E(G), by using hypotheses (i)
and (4i1), we obtain

d(uivuj) = ( (Uz,SZ

A
A
A
S
En

; ( )) d(T'(us, s5), T'(ug,55))
+p(d(ug, uj))

IN
/—\

®
&
S~—
kh
—~

)
<.
~—"

which implies that
d(ug,uj) — p(d(ui, uz)) <[ f(si) = f(s5) |

for all i, j € N. Taking limit as i, j — oo, we get

lim {d(us, uz) — p(d(us, uyz))] = 0.

1,j—00
Condition (5.1) ensures that d(u;,u;) — 0 as i, j — oo and consequently it fol-
lows that (u;) is a Cauchy sequence. Since (X, d) is complete and V' is closed,
there exists u € V such that u; — u. By property (*) of the graph G, there
exists a subsequence (uj, ) of (u;) such that (uj,,u) € E(G).

Then, assuming d(u,,,u) > 0, we get
d(ujk , T'(u, SO)) = d(T(ujk ) Sjk) (ua 80))
(T(ujk ) Sjk) (ujk’ 50)) + d(T(ujk ) sO)v T(uv 30))
| f(s.) = f(s0) | +p(d(uj,,w))
| f(sjk) f(s()) | +d<ujk’u)'
If d(u;, ,u) = 0, then u;, =u=T(u,s;,) and so
d(uj,,, T(u,s0)) = d(T'(u,s;,),T(u,s0))
< [ f(s) = f(s0) |
| f(SJk) (50) | +d(u]k7 )

ININA

<

Thus, in any case, we have
d(“jva(uv s0)) < | f(s]k) — f(s0) | +d(ujk7u)'
Taking limit as k — oo, we get

d(u, T(u, sg)) = kli_>n010 d(uj,, T (u, so)) = 0.

This shows that u = T'(u, sg) and by hypothesis (i), we get u € U. Therefore,
sp € S and consequently, it follows that S is closed.
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Finally, we show that S is an open subset of [0, 1]. Let sg € S be arbitrary.
Then there exists ug € U such that ug = T'(ug, So). As U is open in (X, d), one
finds r > 0 such that Blug,r] = {z € X : d(ug,z) <r} C U. Using continuity
of f at sg, corresponding to € = r — p(r) > 0, there exists § = d(¢) > 0 such
that | f(s) — f(so) |< € for all s € (sg — d, 50 + 0). For s € (s9 — 0,50 + ¢) and
u € Blug, r], we have

d(T(u, s),up)

d(T(u7 5)7 T(“Ov 30))

< d(T(u,s),T(u,s0)) + d(T(u,s0), T (uo; 50))
< [ f(s) = f(s0) | +p(d(u,u0))

< 7 —=p(r) + p(d(u, uo))

< 7, as p is nondecreasing.

This shows that T'(-,s) is a self mapping on Blug,r] for every fixed s €
(so — 0,80 + d). Let g :[0,00) x [0,00) — R be defined by o(t,s) = p1(s) — ¢
for all ¢, s > 0. By Lemma 5.1, it follows that ¢ is an R-function on [0, c0)
satisfying condition (g3). Hypothesis (i7) ensures that T'(-,s) is an R — XA — G-
contraction w.r.t. g on the closed ball Blug, 7], where A € A defined by A(z) =0
for all € Blug,r]. Thus, all hypotheses of Corollary 3.3 are satisfied which
ensures that T'(+, s) has a fixed point in Blug, 7] and hence in U. Consequently,
it follows that (sg—d, s9+9) C S and so S is an open subset of [0, 1]. Preceding
discussion guarantees that S = [0,1] and so 1 € S which gives that there exists
u* € U such that v* = T'(u*,1) i.e., u* is a fixed point of T'(-,1). O

Remark 5.3. It is worth mentioning that Theorem 5.1 of Nastasi et al.[24] can
be obtained from Theorem 5.2 by considering G = Gy.
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