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ABSTRACT. In this paper, we initiate the concept of proximal weak com-
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1. INTRODUCTION

In Mathematics, the fixed point theory is a key to identify the solutions of
equations of the form A¢ = £ for a given mapping A : X — X, where X is
assumed as metric space with metric D or normed linear space. Suppose M
and N are subsets of X and the map A from M to N, then the equation A = £
need not have a solution. In such a situation, we seek an element &, which tends
that D(&, Af) is minimum. Hence the best proximity point theorems are helpful
to find the sufficient conditions to minimize the quantity D(&,A). In other
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words, the results on best proximity point theorem give sufficient conditions to
find an £ € M, such that D(§,A§) = D(M, N), called best proximity point.

One can refer for such a existence results of best proximity point for different
nature of contractions in [2, 3, 5, 7, 12, 15, 16, 17]. Recently, the existence of
best proximity point for A : MUN — MUN, relatively non expansive mappings
were proved by Eldered et al [6]. In [4], Anuradha and Veeramani have given
an existence proof of best proximity point for proximal pointwise contraction
mappings.

Jungck [10], obtained an existence result of common fixed point for commut-
ing mappings which is generalization of Banach’s fixed point thoerem. Sessa
[18] introduced weak commutativity and derived common fixed point theorem.
Later, Jungck [11] defined compatibility and obtained sufficient conditions for
existence of common fixed point. On the other hand, Renu Chugh and Sanjay
Kumar [14] have established the results on common fixed point for compatible
mappings in weak sense. For four mappings, Parvaneh Lo'lo’ et al [13] have
investigated common best proximity point theorems in metric type space.

Motivated by the work of Parvaneh Lo'lo’ et al [13], in this article, we es-
tablish the concept of proximal weak commute mappings. Also, we obtain
sufficient conditions and claimed existence of common best proximity point for
proximal weak commute mappings. Further, our results are more general for
non-self mappings to the corresponding results of self mappings in [13].

2. PRELIMINARIES

We first give some tools which help to our work: We consider (X, D) is
metric space and M, N C X.

D(M,N) = inf{D(&n): £ € M,ne€ N}
My ={{€ M:D(,n") =dist(M,N)for somen’ € N};
No={neN:D(,n)=dist(M,N) for some¢ € M}.

Here one can note that the pair (My, Ng) may be empty. For, if M =
(0,1), N = (2,3) in the metric space (R, D) where D(£,n) = |£ — n|. Then
there are no £ € M and n € N such that D(¢,n) = 1 = dist(M, N). Suppose
(M, N) is a bounded, closed and convex pair in a reflexive Banach space X,

then (My, Np) is also nonempty, closed and convex (see [8]), it enssures the pair
(Mp, Np) is nonempty.

Definition 2.1. An element £ € M is called a common best proximity point
of &1, Py, ..., P, : M — N if it satisfies,

D(§, ®18§) = D(§, ®28) = ... = D(&, Pnk) = D(M, N).
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Definition 2.2. ([16]) The mappings I': M — N and A : M — N are said to
be commute proximally if they satisfy,

[D(v,T¢) = D(v,A§) = D(M,N)| = Tv =Av
where &, v,v € M.
Here, we introduce the proximal weak commute mappings.

Definition 2.3. Let I' : M — N and A : M — N be two nonself mappings.
Then the pair {T", A} is said to be proximal weak commute if they satisfy,

¢ = Ag
D(v,T¢)=D(M,N) =Tv=Av
D(v,A&) = D(M,N)
where &, v,v € M.
It is easy to observe that the notion of proximal weak commute reduces to
weakly commute mappings when the mappings are self.

The following example shows that proximal weak commute mappings need
not possess the condition of commute proximally mappings.

EXAMPLE 2.4. Let X = [0, 1] X [27 20] Define D1 ((61, 52), (771, ’172)) = |£1 —’171|+
‘52 — 772| Let

M={(0,§eX:2<£<20}, N={(1,n) € X:2<n<20}
Then Dy(M,N)=1. Let &,V : M — N defined by

(L), £=2 (1,6), £=2
‘1)(0,5) = (176)3 2< g < 5 7\I’(Oa§) = (1, 12), 2 < 5 < 5
(1,2), £€>5 (1,6 —3), £€>5.

Choose (0,5+1) € M, then D ((0,2), ®(0,54+3)) =1=D1((0,2+1),¥(0,5+
%)) But (0,2 + %) = (1,6) and ¥(0,2) = (1,2). Therefore ® and ¥ are not
commute proximally. Now ® and ¥ are coinciding at (0,2). And the point
(0,2), which is the only point satisfying

D1((0,2),9(0,2)) =1 = D1((0,2),¥(0,2))
Clearly, ®(0,2) = ¥(0,2). Then {®, ¥} is proximal weak commute pair. Also,
one can note that ® and ¥ are fails in continuity at (0,2) and (0, 5).

Definition 2.5. ([17]) Let My # 0 then the pair (M, N) is said to have P-
property if for any &;,& € My and 11,12 € Ny

{D(gl,m = D(M,N)

D(&q, = D(n1,m2).
D(&3,m2) = D(M, N) = D(&,&2) = Dm,n2)
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EXAMPLE 2.6. ([17]) Let M, N be two nonempty closed, and convex subsets of
a Hilbert space X. Then (M, N) satisfies the P-property.

EXAMPLE 2.7. ([1]) Let M, N be two nonempty, bounded, closed, and convex
subsets of a uniformly convex Banach space X. Then (M, N) has the P-

property.

3. MAIN RESULTS

Let F be collection of all funtions y : (RT)> — RT such that y is non-
decreasing in all coordinate, upper semi-continuous and, for all s > 0,

x(s,8,0,as,0) < Bs, x(s,8,0,0,as) < Ss,
with 8 <1 fora<2,8=1 for a =2,
~v(s) = x(s, 8, 18, a8, a3s) < 8,
where y(s) : Rt — RT and a1 + as + a3 = 4.

Lemma 3.1. [19] For s > 0,7v(s) < s iff lim, v"(s) = 0, where 4™ represents
composition of v at n times.

Let M, N be two nonempty subsets of a metric space (X, D). Let ®, ¥, T
and A be non-self mappings from M to N fulfilling the following conditions:

‘I)(Mo) C Ny and \IJ(Mo) C N, (31)

CD(M()) C A(Mo) and \I/(Mo) C P(Mo), .
D(®¢, Un) < x(D(TE, An), D(DE,T€), D(¥n, An), D(PE, An), D(¥n,T¢))(3.3)

for all £&,m € M, where x € F.
Let & € My, since ®(My) C A(My), then there exists & € My such that

®(&) = A(&1). Similarly, we can pick an element & € My such that U(&) =
I'(&). Continuing this procedure, we acquire a sequence {&,} in My such that

®(€2n) = A(€2n+1) and ¥(E2n11) = [(E2n42)-
Since ®(My) C Ny and ¥(My) C Ny, there exists {v,} C My such that

D(Ugn, (I)(fgn)) = D<Z\47 N) and l)(’UQnJrl7 \If(fgnJrl)) = D(]\47 N) (34)
Therefore,

D(von, ®&n) = D(van, Aéont1) = D(vans1, ¥eani)
= D(U2n+1, F§2n+2) = D(M, N) (35)

Lemma 3.2. Let (M,N) has the P-property. Then lim, D(v,,v,41) = 0,
where {v,} is the sequence as in (3.5).
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Proof. Let D,, = D(vp,Upy1),n = 0,1,2, ... First, we show that {D,,} is non-

increasing sequence in R, that is, D,, < D,,_; forn =1,2,3, ....

From the inequality (3.3), and using P-property of (M, N), we have
D(van,vant1) = D(Pan, YEani1)

X (D(Téan, Abont1), D(®Ean, Téan), D(Aopi1, ¥ant1),

D(®on, Aéon+1), DTy, ¥ony1))

= X(Dan-1, Dan—1,D2,0, Dap—1 + Day).

IN

If D,y < D, for some n. Then we have, for some a < 2, D,,_1 + D,, = aD,,.
Since x is non-increasing in every coordinate and since 8 < 1 for some a < 2,
so we have,

D2n S X(D2naD2naD2na07aD2n) S ﬁDQn < D2n-

Similarly, the inequality Da,4+1 < Dapy1 holds. Hence, for n, D, < 8D,, < D,
which gives a contradiction. This implies that the sequence {D,,} is nonincreas-
ing in R*. Also, from (3.3) and P- property, we have
Dy = D(vy,v3) = D(P&, )

x(D(Té2, A&y), D(9&, ), D(¥E, ALy),
D(®&, A&y), D(WE,TE,))

(Do, D1, Do, Dy + D1,0)

X (Do, Do, Do, 2Dy, Do)

= (Do)
In general, we obtain D,, < ~™(Dg), which implies that, if Dy > 0, by Lemma
3.1,

IN

IA
=

lim D,, <lim~"(Dy) = 0.
n n
Therefore, we have lim,, D,, = 0. O
Lemma 3.3. The sequence {v,} defined by (3.5) is a Cauchy sequence in My.

Proof. Suppose that {va,} is not a Cauchy sequence. Then there exists an
e > 0 such that for every even integer 2, there exist even integers 2m(l) and
2n(1) with 2m(l) > 2n(l) > 21 such that

D(Vam(1ys Van()) > €. (3.6)

For each 21, let 2m(l) be the smallest even integer which is exceeding 2n(l) and
holds (3.6), that is,

D(Van (1), Vam()—2) < € and D(vap 1), Vam()) > € (3.7)
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Therefore for every even integer 2[, we derive
€ < D(vanuy, Vam())
< D(vany; Vam@)—2) + D(Vamy—2; Vam()—1) + D(Vam@)—1, Vam())-
Because of Lemma 3.2 and 3.7, we obtain
D(van(1), Vam()) — € as [ — o0. (3.8)
Since triangle inequality, we get
|D(Va2n 1), Vam(1)—1) — D(Van@), Vam@))| < D(Vam@)—1, Vam())
and
ID(Van)+1,Vam@y—1)  —  D(Van), Vam@))|
< D(Vam(1)—1, Vam)) + D(Vanys Van@)+1)-
And by Lemma 3.2 and 3.8, as | — oo,
D(van(1y, Vamy—1) = € and D(Van(y 41, Vam()—1) — € (3.9)

Therefore, by (3.3) and equation (3.5), with P-property, we obtain

D(vany, vam@)) < D(Vanys Van@y+1) + D(Van@)+15 Vam())

= D(van@ys Van)+1) + D(P€amy, YEon)+1)
< D(van@y V2n)+1) + X (DT &omy, Aon@y+1)s
(P€2m)s Tam))s D(Yany+1, Asan(t)+1),

(
(
(

O oo

Do 1), Mony41)s D(¥on)+1: Tom)))
Van(1)s Van()+1) + X(D(V2m@) =1, Van@))

|
-

D(vam(1y> Vam(i)—1)> D(Van@y+1, Van())s

D (Vam(1y, Van(1))> D(Van(0)+15 Vam(1)—1)) - (3.10)
Letting [ — oo, and since x is upper semi continuous, Lemma 3.2, (3.8),(3.9)
and (3.10), implies
€ < x(60,0,e,€) <v(e) <€

shows a contradiction. Therefore, {va,} must be Cauchy sequence in M, and
this proves {v,,} is also Cauchy. O

Theorem 3.4. Let M, N be non-empty subsets of a complete metric space
(X, D). Moreover, assume that My is non-empty, closed set. Let the non-self
mappings ®, W, ' A : M — N satisfy:

(1) {®,T} and {¥,A} are proximal weak commute pairs;

(2) the pair (M, N) has the P-property;

(3) @,U,T and A satisfy (3.2) and (3.3);

(4) F(M()) = NO and A(Mo) = No.

Then ®, U, T" and A have a unique common best proximity point.
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Proof. By Lemma 3.3, the sequence {v,} is a Cauchy in My. And since My is
complete, there exists v € My such that lim,, v, = v. From (3.4), D(vay,, ®€ap) =

D(U2n+17\:[l£2n+1) = D(M, N) and D(Uzn,Aﬁan) = D(U2n+17F£2n+2) =
D(M, N), then we have,

D(van, ®&2n) = D(vant1, Yéont1) = D(van, Al2nt1)
= D(vspi1,Déapin) = D(M, N).
Asn — o0
lim D(v, ®€2) = lim D(v, W y1) = lim D(v, Aon 1)
= 1im D(v, Téany2) = D(M, N).
Since I'(Mp) = Ny, we can choose a point 7 € My such that D(v,I'r) =

D(M,N).
Then

D(®1,v) < D(®7,P&,11) + D(Vopi1,v). (3.11)
Suppose lim,, D(®7, ¥y, 11) # 0, we have from (3.3),
D(®7,¥éspn11) < X(D(T7,Aéo2nt1), D(®7,T7), D(Wap 41, Aéonta),
D(®7,Aéopt1), D(\I/fgnJrl,PT)).
As n — oo, and by P-property, we have
D(®r,I'r) = X(O,D(CI)T,FT),O,D((I)T,FT),O)
X(D(@T, I'r), D(®7, 1), D(®7,T'7), D(®7,T'1), D(PT, FT))
< D(®7,I'T)

IN

which gives a contradiction. Then lim,, D(®7, ¥€s,,4+1) = 0. Applying limit to
equation (3.11), we get D(v, ®7) = D(M, N). Therefore, D(v,I't) = D(M,N) =
D(v, ®7). Similarly, since A(My) = Ny, there we find a point v € My such that
D(v,Av) = D(M, N). Then
D(v,Pv) < D(v,®7)+ D(®1,Tv). (3.12)
Suppose D(®7, ¥v) # 0, we have from (3.3) and by P-property,
D(®7,¥v) < x(D(T7,Av),D(®7,I'7), D(¥r,Av),
D(®1,Av), D(Yv,I'7))

= x(0,0,D(¥v, ®7),0, D(¥v, 7))
< x(D(@r,Vv),D(®1,Yv), D(Vv, @7), D(®T, ¥v), D(Vv, PT))

< D(®T,Pv)
which gives again a contradiction. Then D(®7, Uv) = 0. Therefore from (3.12),
we get D(v, Uv) = D(M, N). Therefore, D(v,Av) = D(M,N) = D(v, ¥v).
Thus D(v,I't) = D(v,®7) = D(v,Av) = D(v,¥v) = D(M, N).
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By using P-property to the above equations, we have I't = &7 = Av = Uv.
Since {®,T'} is proximal weak commute pair, which gives v = T'v.
Now we claim, v is a best proximity point of ®.

D(®v,v) < D(®Pv,Vv)+ D(Yv,v). (3.13)
Suppose D(Pv, ¥r) # 0, we have from (3.3) and by P-property,
D(®v,Vv) < x(D(Tv,Av), D(®v,Tv), D(Vv, Av), D(®v, Av), D(¥r,Tv))
= x(D(®v,¥v),0,0,D(Pv, Yv), D(Vv, Pv))
< x(D(®v, ¥v), D(®v, ¥v), D(Pv, ¥v), D(Pv, ¥v), D(Yv, Pv))
< D(dv,¥v)

which gives a contradiction. Then D(®v, Ur) = 0. Therefore from (3.13), we
get D(®v,v) = D(M,N). Also D(®v,v) = D(T'v,v) = D(M, N).

Similarly, {¥, A} is proximal weak commute pair, we have Uv = Awv.

Now, we show that v is a best proximity point of W. Then

D(v,Tv) < D(®1,Tv)+ D(PT,v). (3.14)
Suppose D(®7, Uv) # 0, we have from (3.3) and by P-property,
D(®7,Vv) < x(D(I'r,Av),D(®7,T7), D(Vv,Av), D(®T, Av), D(¥v,T'T))
(D(®1,¥v),0,0, D(®7, ¥v), D(Vv, PT))
< x(D(®1,Wv), D(®7, Tv), D(®7, ¥v), D(®r, Tv), D(Vv, br))

< D(®T,Pv)

which is a contradiction. Then D(®7, Vv) = 0. Therefore from (3.14), we get
D(Yv,v) = D(M,N). Also D(%v,v) = D(Av,v) = D(M, N).
Thus D(®v,v) = D(T'v,v) = D(Yv,v) = D(Av,v) = D(M,N), and v is a
common best proximity point of ®, ¥, T" and A.

Finally, for uniqueness of v, suppose that w is another common best proximity
point of the mappings ®, ¥, I" and A, so that

D(Pw,w) = DTw,w) = D(Yw,w) = D(Aw,w) = D(M, N).

=

By P-property,

D(v,w) = D(dv,Tw). (3.15)
Suppose D(®Pv, Pw) # 0, we have from (3.3),
D(®v,¥w) < x(D(Tv,Aw),D(®v,I'v), D(¥w, Aw), D(Pv, Aw), D(Yw,T'v))
= X(D(‘I)’U,\I/w ),0,0, D(®v, Yw), D(Pv, Yw))
< x(D(®v, Yw), D(Pv, Yw), D(Pv, Yw), D(Pv, Yw), D(Pv, Yw))
< D(Pv,Yw)
which gives a contradiction. Then D(®v, ¥w) = 0. Therefore from (3.15), we
get D(v,w) = 0. This implies that v = w. a
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Corollary 3.5. Let M, N be non-empty, closed, bounded and conver subsets
of a uniformly convexr Banach space X. Let the non-self mappings ®, ¥, I", A :
M — N satisfy:

(1) {®,T'} and {V, A} are proximal weak commute pairs;

(2) @, 9, T and A satisfy (3.2) and (3.3);

(3) F(MQ) = NO and A(Mo) = N().

Then ®, U, T and A have a unique common best proximity point.
From the following numerical example we illustrate our main result

EXAMPLE 3.6. Let X = [0, 1] X [O, 1] Define Dl((§1,§2)7 (7’]1,7]2)) = |§1 — 771| +
|€2 — 12|. Then (X, D;) is complete metric space. Let

M ={(0,§):0<£<1}, N={(L,n):0<n<1}
Then D1 (M,N) =1,My = M and Ny = N. Let &, U,T" and A be defined as

2
®(0,6) = (1,%), (0,&) = (1,5),T(0,€) = (1,€2),A(0,€) = (1, V&)

2

From ®(0,¢) = I'(0,£), we have (1,%) = (1,£2), which implies that ® and
I' are coinciding at (0,0). Also, D1((0,v),®(0,0)) = D;((0,»),T(0,0)) =
Dy(M,N) =1, we get v =0,v = 0. Then ®(0,0) = (1,0) = I'(0,0). Therefore,
{®,T'} is proximal weak commute pair. Similarly, we can prove that {¥,A} is

proximal weak commute pair. Let x(&1,82,83, &1, &) = £ max{&y, &2, &3, 5 (60 +
&)}. Clearly, x € F. Since

2 1 1
SV 2, — Vil = £ An).

Therefore, by Theorem 3.4, the mappings ®, ¥, ", and A have a unique common
best proximity point, that is (0, 0).

We give another method to prove above theorem, by changing the construc-
tion of sequence.
For arbitrary point & in My, since ®(My) C A(Myp), then one can choose
an element & in My such that ®(&y) = A(&;). Similarly, from the condition
U (M) C T'(My), there is a point {3 € My such that ¥(&;) = I'(§2). Continuing
this process and using (3.1), we can construct {n,} C Ny such that

Non = P®(&n) = A(€2n41) and
M2n+1 = \I’(§2n+l) - F(§2n+2)7 n = Oa 17 2737 (316)

Lemma 3.7. [14] lim, D(0y, Nnt1) = 0, and {n,} is a Cauchy in Ny.

Theorem 3.8. Let M and N be subsets of a complete metric space (X, D).
Assume that Ny is non-empty and closed. Let {®,T'} and {¥,A} be prozimal
weak commute pairs of non-self maps from M to N satisfying (3.1), (3.2)
and (3.3) with T'(My) and A(My) are closed and assume (M, N) satisfies P-
property. Then @, U.T" and A have a unique common best proximity point.
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Proof. By Lemma 3.7, {n,} is a Cauchy sequence in Ny. Since Ny is com-
plete, there exists 7 € Ny such that lim, n, = 7. Therefore lim, ®&;, =
lim,, As,+1 = 7 and lim,, ¥€s,, 41 = lim,, ['é5,, 42 = 7. Then

lim q)ggn = lim A§2n+1 = lim \Il£2n+1 = lim F€2n+2 =T.

Since I'(M)) is a closed set, we get 7 € I'(Mp). Then we have a point v € M)y
such that I'v = 7. Using (3.3),

D(@’U,T) S D((I)’U7 \Ilfgn+1) +D(‘I’fzn+1,7’)
< x(D(Tv,Aéant1), D(Pv,T'w), D(Vapt1, Alont1),
D(®v, Aéon+1), D(¥on41,T0)) + D(Wopny1,7).
Asn — oo,

D(dv,7) < X(07D((I)'U7T),O,D((I)U,T),0)
BD(®v,7), where 5 < 1.

IA

Therefore v =7 =Tv.
And again by A(My) is closed, we obtain 7 € A(Mj). Then we have a point
v € My such that Av = 7. And again using (3.3),

D(r,¥v) < D(®v,Tv)
< x(D(Tv,Av),D(®v,Tv), D(Yv, Av),
D(®v,Av), D(Vv,T'v))
= x(o,o D(Yv,7),0,D(Vv,T))
< x(D(r, 7, V), D(t,Vv),2D(7, Yv),2D(1, ¥v))
< D(r, \Ill/)

Therefore Vv = 7 = Av. Finally we get, dv = I'v = Vv = Av = 7. Since
®(My) C Ny, implies v, T'v € Ny. Therefore there exists vy, vo € My such that
D(v1,Pv) = D(M,N) = D(vq,T'v). Since {®,T'} is proximal weak commute
pair, we get

(I)UQ = F’U1. (317)

Since (M, N) satisfies P-property, implies that D(vy,v9) = D(®v,T'v) = 0.
Then vy = vy = £ € My. Therefore (3.17) becomes &€ = T'€.

We shall prove that £ is a best proximity point of ®.

Since we have D(vy, ®v) = D(§,7) = D(M,N) and D(vq,T'v) = D(&, Uv) =
D(M, N). Then

D(®E,€) < D(®E,Uv) + D(Ir,£). (3.18)
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Suppose D(®E, ¥v) # 0, and using (3.3), we derive
D(®E,Tv) < (D(F{,AV),D(@f,F{),D(\I/V, Av),
D(®¢, Av), D(Vv,T¢))
= x(D(®¢,7),0,0,D(®E,7), D(T, DE))
< x(D(®¢,7),D(®E,7), D(PE, 7), D(PE, 7), D(T, BE))
< D(®E,7) = D(PE, Tv)

which gives a contradiction. Then from (3.18), we obtain

D(®¢, &) = D(M,N) = D(I'¢, ).
Since ¥(My) C Ny, implies that Uv, Av € Ny. Therefore there exists v1,vy €
My such that D(vy,%v) = D(M,N) = D(vs,Av). Since {¥, A} is proximal
weak commute pair, we get

\I/I/Q = AVl. (319)
Since (M, N) satisfies P-property, implies that D(vq,v9) = D(Vr,Av) =0
Then v = vy =1 € My. Therefore (3.19) becomes ¥y = An.
We shall prove that 7 is a best proximity point of .
Since we have D(v1,%v) = D(n,®v) = D(M,N) and D(ve,Av) = D(n,7) =
D(M, N). Then
D(Un,n) < D(®v,¥n)+ D(Pv,n). (3.20)
Suppose D(®v, Un) # 0, and using (3.3), we derive
D(®v,¥n) < x(D(Tv,An), D(®v,Tv), D(¥n, An),
D(dv, An), (\Iln,FU))
= X( (Pv, ¥n),0,0, D(Dv, Up), D(\I'n,q)v))
< ( (Pv, Ip), D(<I>U,\I/77),D(<I>U,\IM7),D(<I>U,\I/n),D(CI)U,\I/n))
< D(dv,¥n)
which gives a contradiction. Then from (3.20), we get D(¥n,n) = D(M,N) =

D(An,n). For common best proximity point, we claim & = 7. Now, by (M, N)
has P-property,

D(&,n) = D(®E, ¥n). (3.21)
Suppose D(®¢, Un) # 0, and using (3.3), we obtain
D(®¢,¥n) < x(D(I'¢,An), D(®E,T€), D(¥n, An),
D(®¢, An), D(¥n,T€))
X(D(®€,¥n), 0,0, D(®E, ¥7), D(V7), BE))
X(D(®E, In), D(RE, Tn), D(RE, Tn), D(PE, Tny), D(PE, Tn))
D(®¢, Un).

AR VANl
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which gives a contradiction. So D(&,n) = 0.
Thus D(®¢,§) = D(I'€, &) = D(VE,§) = D(AE, &) = D(M, N).
It is clear to show the uniqueness of best proximity point. (I

Corollary 3.9. Let M, N be two subsets of a complete metric space (X, D).
Assume that Ny is non-empty, closed set. Let {®,T} and {¥,A} be prozimal
weak commute pairs of non-self maps from M to N satisfying (3.1), (3.2) and
(3.22),

D(®E,Tn) < hM(&n), 0<h<1,&n€e My, where
M(&n) = maz{D(TE, An), D(®E,TE), D(¥n, An),
[D(®€, An) + D(¥n,T'E)]/2}. (3.22)

Suppose T'(My) and A(My) are closed and assume (M, N) satisfies P-property.
Then ®, ¥, T" and A have a unique common best proximity point.

Corollary 3.10. Let M, N be two subsets of a complete metric space (X, D).
Assume that Ny is non-empty and closed. Let {®,T} and {¥, A} be prozimal
weak commute pairs of non-self maps from M to N satisfying (3.1), (3.2) and
(3.23),

D(®¢,¥n) = hmaz{D(®E,TE), D(¥n, An), [D(DE, An)]/2,
[D(¥n,TE)]/2, D(TE, An)}- (3.23)

for all &,mn € My, where 0 < h < 1.
Suppose T'(My) and A(My) are closed and assume (M, N) satisfies P-property.
Then ®, U, T" and A have a unique common best proximity point.

ACKNOWLEDGMENTS

The authors would like to thank the National Board for Higher Mathematics
(NBHM), DAE, Govt. of India for providing a financial support under the grant
no. 02011/22/2017/R&D 11/14080.

REFERENCES

1. A. Abkar, M. Gabeleh, Global Optimal Solutions of Noncyclic Mappings in Metric
Spaces, J. Optim. Theory Appl., 153(2), (2012), 298-305.

2. M. A. Al-Thagafi, N. Shahzad, Convegence and Existence Results for Best Proximity
Points, Nonlinear Anal., 70, (2009), 3665-3671.

3. A. Amini-Harandi, Common Best Proximity Points Theorems in Metric Spaces, Optim.
Lett., 8, (2014), 581-589.

4. J. Anuradha, P. Veeramani, Proximal Pointwise Contraction, Topology Appl., 156,
(2009), 2942-2948.

5. C. Di Bari, T. Suzuki, C. Vetro, Best Proximity Points for Cyclic Meir-Keeler Contrac-
tions, Nonlinear Anal., 69, (2008), 3790-3794.

6. A. A. Eldred, W. A. Kirk, P. Veeramani, Proximal Normal Structure and Relatively
Nonexpansive Mappings, Studia Math., 171, (2005), 283-293.


http://dx.doi.org/10.61186/ijmsi.18.2.11
http://ijmsi.ir/article-1-1548-en.html

[ Downloaded from ijmsi.ir on 2026-02-19 ]

[ DOI: 10.61186/ijmsi.18.2.11 ]

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Common Best Proximity Points for Proximal Weak Commuting Mappings in ... 23

A. A. Eldred, P. Veeramani, Existence and Convergence of Best Proximity Points, J.
Math. Anal. Appl., 323, (2006), 1001-1006.

. M. Gabeleh, Convergence of Picard’s Iteration Using Projection Algorithm for Noncyclic

Contractions, Indag. Math. (N.S.), 30(1), (2019), 227-239.

. M. Gabeleh, Best Proximity Points: Global Minimization of Multivalued Non-self Map-

pings, Optim. Lett., 8(3), (2014), 1101-1112.

G. Jungck, Commuting Maps and Fixed Points, Amer. Math. Monthly, 83, (1976), 261-
263.

G. Jungck, Compatible Mappings and Common Fixed Points, Int. J. Math. Math. Sci.,
9, (1986), 771-779.

S. Karpagam, S. Agarwal, Best Proximity Point Theorems for p—cyclic Meir-Keeler
Contractions, Fized Point Theory Appl., 2009, (2009), Article ID 197308.

P. Lo’lo’, S. M. Vaezpour, J. Esmaily, Common Best Proximity Points Theorem for Four
Mappings in Metric-type Spaces, Fized Point Theory Appl., 2015, (2015), Article ID 47.
R. Chugh, S. Kumar, Common Fixed Points for Weakly Compatible Maps, Proc. Indian
Acad. Sci. Math. Sci., 111, (2001), 241-247.

S. Sadiq Basha, Best Proximity Points: Optimal Solutions, J. Optim. Theory Appl., 151,
(2011), 210-216.

S. Sadiq Basha, Common Best Proximity Points Global Minimization of Multi-objective
Functions, J. Global Optim., 54, (2012), 367-373.

V. Sankar Raj, A Best Proximity Point Theorem for Weakly Contractive Non-self-
mappings, Nonlinear Anal., 74, (2011), 4804-4808.

S. Sessa, On a Weak Commutativity Condition of Mappings in Fixed Point Considera-
tions, Publ. Inst. Math.(Beograd)(N.S.), 32, (1982), 149-153.

S. P. Singh, B. A. Meade, On Common Fixed Point Theorems, Bull. Austral. Math. Soc.,
16, (1977), 49-53.


http://dx.doi.org/10.61186/ijmsi.18.2.11
http://ijmsi.ir/article-1-1548-en.html
http://www.tcpdf.org

