DOI: 10.29252/ijmsi.16.2.129

Ordered Γ -Semigroups and Fuzzy Γ -Ideals

Ahsan Mahboob a,* , Bijan Davvaz b and Noor Mohammad Khan c

 a Department of Mathematics, Madanapalle Institute of Technology & Science, Madanapalle-517325, India.

 b Department of Mathematics, Yazd University, Yazd, Iran. c Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India

 $\hbox{$\tt E$-mail: $khanahsan 560g mail.com, ahsan mahboob @mits.ac.in}\\$

E-mail: davvaz@yazd.ac.ir E-mail: nm_khan123@yahoo.co.in

ABSTRACT. We prove that fuzzy generalized bi- Γ -ideal and fuzzy interior Γ -ideal in a right weakly regular ordered Γ -semigroup are fuzzy Γ -ideal. We also show that every fuzzy generalized bi- Γ -ideal in a duo right weakly regular ordered Γ -semigroup is a fuzzy interior Γ -ideal. Then, by using fuzzy Γ -ideals, fuzzy bi- Γ -ideals, fuzzy generalized bi- Γ -ideals and fuzzy interior Γ -ideals, left simple, right simple and simple ordered Γ -semigroups have been characterized. Finally, we characterize right weakly regular ordered Γ -semigroups by its fuzzy Γ -ideals, fuzzy bi- Γ -ideals, fuzzy generalized bi- Γ -ideals and fuzzy interior Γ -ideals.

Keywords: Ordered Γ-semigroups, Right weakly regular ordered Γ-Semigroups, Fuzzy sets, Fuzzy Γ-ideals.

2010 Mathematics subject classification: 06F99, 08A72, 20N99.

^{*}Corresponding Author

1. Introduction and Preliminaries

Zadeh [20], in 1965, introduced the concept of a fuzzy set while Rosenfeld [14] first introduced and studied the notion of a fuzzy subgroup. In 1979, Kuroki [8] introduced fuzzy sets in semigroup theory while in [9, 10, 11], Kuroki studied some properties of fuzzy ideals, fuzzy bi-ideals, fuzzy generalized bi-ideals and fuzzy semiprime bi-ideals of a semigroup. Fuzzy sets in ordered semigroups were first studied by Kehayopulu and Tsingelis in [4]. In 1986, Sen and Saha [18] introduced the notion of a Γ -semigroup as follows: Let S and Γ be two non-empty sets. S is called a Γ -semigroup if there exists a mapping from $S \times \Gamma \times S$ to S which maps $(a, \alpha, b) \to a\alpha b$ satisfying $(a\gamma b)\mu c = a\gamma(b\mu c)$ for all $a,b,c \in S$ and $\gamma,\mu \in \Gamma$. Later on in 1993, the notion of an ordered Γ semigroup was introduced by Sen and Seth [19] as follow: Let S and Γ be non-empty sets. The triplet (S, Γ, \leq) is called an ordered Γ -semigroup if S is a Γ-semigroup and (S, \leq) is a partially ordered set such that $a \leq b \Rightarrow a\gamma c \leq$ $b\gamma c$ and $c\gamma a \leq c\gamma b$ for all $a,b,c\in S$ and $\gamma\in\Gamma$. The notion of a Γ -semigroups has been extended to fuzzy settings by Sardar and Majumder [15, 16, 17]. They have studied fuzzy ideals, fuzzy prime ideals, fuzzy semiprime ideals and fuzzy ideal extensions in Γ -semigroups.

In 2014, Kanlaya and Iampan [2] had proved that in a regular (left regular, right regular) ordered Γ-semigroup S, every fuzzy generalized bi-ideal of S is a fuzzy bi-ideal. They also proved that in an intra-regular (left regular, right regular) ordered Γ-semigroup, every fuzzy interior ideal of S is a fuzzy ideal. In this paper we prove that if S is right weakly regular ordered Γ-semigroup, then every fuzzy interior Γ-ideal of S is a fuzzy Γ-ideal and every fuzzy generalized bi-Γ-ideal of S is a fuzzy bi-Γ-ideal. We also prove that if S is duo right weakly regular ordered Γ-semigroup, then every fuzzy generalized bi-Γ-ideal of S is a fuzzy interior Γ-ideal. We then characterize right weakly regular ordered Γ-semigroup by fuzzy (right Γ-ideal, left Γ-ideal) Γ-ideals, fuzzy quasi Γ-ideals, fuzzy generalized bi-Γ-ideals, fuzzy bi-Γ-ideals and fuzzy interior Γ-ideals. Lastly after proving that in a right weakly regular ordered Γ-semigroup S, for each fuzzy right Γ-ideal S and fuzzy Γ-ideal S of S and fuzzy quasi Γ-ideal, we investigate some properties of fuzzy interior ideals and fuzzy generalized bi-ideals of left simple, right simple and simple ordered Γ-semigroups.

Let S be an ordered Γ -semigroup. For a subset A of S define $(A] = \{x \in S \mid x \leq a \text{ for some } a \in A\}$. A non-empty subset T of S is said to be a Γ -subsemigroup of S if for all $x, y \in T$ and $\gamma \in \Gamma$, $x\gamma y \in T$. A non-empty subset A of an ordered Γ -semigroup S is called left (right) Γ -ideal of S if $S\Gamma A \subseteq A$ ($A\Gamma S \subseteq A$) and for any $a \in A, b \in S$ such that $b \leq a$, then $b \in A$. A non-empty subset S of an ordered S-semigroup S is called a S-ideal of S if S is both a left S-ideal and a right S-ideal of S. An ordered S-semigroup S is called left (right) duo if every left (right) S-ideal of S is a S-ideal of S, and S is

called duo if it is both left and right duo. An ordered Γ -semigroup S is called left (right) simple if it does not contain any proper left (right) Γ -ideal, and S is called simple if it does not contain any proper Γ -ideal. A Γ -subsemigroup B of an ordered Γ -semigroup S is called a bi- Γ -ideal of S if $B\Gamma S\Gamma B\subseteq B$ and $a\in B, (S\ni)b\leq a\Rightarrow b\in B$. A Γ -subsemigroup I of an ordered Γ -semigroup S is called an interior Γ -ideal of S if $S\Gamma I\Gamma S\subseteq I$ and $a\in I, (S\ni)b\leq a\Rightarrow b\in I$.

Let S be an ordered Γ -semigroup and let A be any non-empty subset of S. Then by L(A), R(A), I(A), I(A) and I(A), we denote the left Γ -ideal, the right Γ -ideal, the Γ -ideal, the interior Γ -ideal and the bi- Γ -ideal of S generated by I(A) respectively. It is easy to verify that $I(A) = (A \cup S\Gamma A)$, $I(A) = (A \cup I\Gamma A)$, $I(A) = (A \cup I\Gamma A)$, $I(A) = (A \cup I\Gamma A)$, and $I(A) = (A \cup I\Gamma A)$, $I(A) = (A \cup I\Gamma A)$, $I(A) = (A \cup I\Gamma A)$, and $I(A) = (A \cup I\Gamma A)$.

If $A = \{a\}$, we write (a] instead of $(\{a\}]$, L(a) instead of $L(\{a\})$, R(a) instead of $R(\{a\})$, J(a) instead of $J(\{a\})$, I(a) instead of $I(\{a\})$ and B(a) instead of $B(\{a\})$ respectively in the sequel.

Lemma 1.1. [1] Let (S, Γ, \leq) be an ordered Γ -semigroup and A, B be non-empty subsets of S. Then

- (1) $A \subseteq (A];$
- (2) If $A \subseteq B$, then $(A] \subseteq (B]$;
- (3) ((A)] = (A);
- (4) $(A]\Gamma(B] \subseteq (A\Gamma B];$
- (5) If L is left ideal and R a right ideal of S, then the set $(L\Gamma R]$ is an ideal of S;
- (6) If A, B are ideals of S, then $(A\Gamma B]$, $(B\Gamma A]$, $A \cup B$, $A \cap B$ are ideals of S;
- (7) $(S\Gamma a]((a\Gamma S], (S\Gamma a\Gamma S])$ is a left (right, two-sided) ideal of S for each $a \in S$:
- (8) $((A]\Gamma(B)] = (A\Gamma B)$.

An ordered Γ -semigroup S is called regular (left regular, right regular) if for each $x \in S$, there exist $y \in S$ and $\alpha, \beta \in \Gamma$ such that $x \leq x\alpha y\beta x(x \leq y\alpha x\beta x, x \leq x\alpha x\beta y)$; and S is called intra-regular if for each $x \in S$, there exist $y, z \in S$ and $\alpha, \beta, \gamma \in \Gamma$ such that $x \leq y\alpha x\beta x\gamma z$; S is called right weakly regular if $x \in (x\Gamma S\Gamma x\Gamma S]$ for each $x \in S$ and S is called semisimple if for each $x \in S$, there exist $y, z, a \in S$ and $\alpha, \beta, \gamma, \delta \in \Gamma$ such that $x \leq y\alpha x\beta a\gamma x\delta z$.

Let (S, Γ, \leq) be an ordered Γ -semigroup. A mapping f from S to real closed interval [0,1] is called the fuzzy subset of S (or fuzzy set of S). We denote by f_A the characteristic function of a subset A of S, which is defined as the mapping of S into [0,1] by

$$f_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A. \end{cases}$$

So for any element a of S, characteristic function $f_{\{a\}}$ of the subset $\{a\}$ of S denoted by f_a in the sequel, is

$$f_a(x) = \begin{cases} 1 & \text{if } x = a \\ 0 & \text{if } x \neq a. \end{cases}$$

Let f and g be two fuzzy subsets of S. Then $f \cap g$, $f \cup g$ and $f \circ g$ defined as

$$(f \cap g)(x) = \min\{f(x), g(x)\} = f(x) \land g(x)$$

$$(f \cup g)(x) = \max\{f(x), g(x)\} = f(x) \lor g(x)$$

and

$$(f \circ g)(x) = \begin{cases} \bigvee_{(y,z) \in A_x} \{f(y) \land g(z)\} & \text{if } A_x \neq \phi \\ 0 & \text{if } A_x = \phi, \end{cases}$$

where A_x is a relation on S defined as $A_x = \{(y, z) \in S \times S \mid x \leq y\alpha z \text{ for some } \alpha \in \Gamma\}$. We define an order relation \leq on the set of all fuzzy subsets of S by

$$f \prec q \Leftrightarrow f(x) < q(x) \text{ for all } x \in S.$$

If f,g are fuzzy subsets of S such that $f \leq g$, then, for every fuzzy subset h of S, $f \circ h \leq g \circ h$ and $h \circ f \leq h \circ g$. We denote by 1 the fuzzy subset of S defined by $1:S \to [0,1]|x \mapsto 1(x)=1$. It may be easily checked that if S is an ordered Γ -semigroup, then the set of all fuzzy subsets of S with respect to multiplication "o" and the order " \leq " is an ordered Γ -semigroup and the fuzzy subset 1 is the greatest element of the set of all fuzzy subsets of S.

Definition 1.2. Let (S, Γ, \leq) be an ordered Γ-semigroup. A fuzzy subset f of S is called a fuzzy Γ-subsemigroup of S if for all $x, y \in S$ and $\alpha \in \Gamma$ such that

$$f(x\alpha y) \ge \min\{f(x), f(y)\}.$$

Definition 1.3. Let (S, Γ, \leq) be an ordered Γ -semigroup. A fuzzy subset f of S is called a fuzzy left (right) Γ -ideal of S if

- (1) $f(x\alpha y) \ge f(y)(f(x\alpha y) \ge f(x))$ for all $x, y \in S$ and $\alpha \in \Gamma$ and
- (2) for any $x, y \in S$, $x \le y$ implies $f(x) \ge f(y)$.

A fuzzy subset f of S is called a fuzzy Γ -ideal of S if it is both a fuzzy left and a fuzzy right Γ -ideal of S.

Definition 1.4. Let (S, Γ, \leq) be an ordered Γ-semigroup. A fuzzy Γ-subsemigroup f of S is called a fuzzy bi-Γ-ideal of S if

- (1) $f(x\alpha z\beta y) \ge \min\{f(x), f(y)\}\$ for all $x, y, z \in S$ and $\alpha, \beta \in \Gamma$ and
- (2) for any $x, y \in S$, $x \le y$ implies $f(x) \ge f(y)$.

Definition 1.5. Let (S, Γ, \leq) be an ordered Γ-semigroup. A fuzzy subset f of S is called a fuzzy generalized bi-Γ-ideal of S if

- (1) $f(x\alpha z\beta y) \ge \min\{f(x), f(y)\}\$ for all $x, y, z \in S$ and $\alpha, \beta \in \Gamma$ and
- (2) for any $x, y \in S$, $x \le y$ implies $f(x) \ge f(y)$.

Definition 1.6. Let (S, Γ, \leq) be an ordered Γ-semigroup. A fuzzy Γ-subsemigroup f of S is called a fuzzy interior Γ-ideal of S if

- (1) $f(x\alpha z\beta y) \geq f(z)$ for all $x, y, z \in S$ and $\alpha, \beta \in \Gamma$ and
- (2) for any $x, y \in S$, $x \le y$ implies $f(x) \ge f(y)$.

Definition 1.7. An ordered Γ -semigroup S is called fuzzy left (right) duo if every fuzzy left (right) Γ -ideal of S is a fuzzy Γ -ideal of S, and S is called fuzzy duo if it is both fuzzy left and fuzzy right duo.

Definition 1.8. A fuzzy subset f of an ordered Γ -semigroup S is called idempotent if $f \circ f = f$.

2. Coincidence of Fuzzy Γ -Ideals

Remark 2.1. In an ordered Γ -semigroup S every fuzzy Γ -ideal is a fuzzy interior Γ -ideal but the converse need not be true in general.

EXAMPLE 2.2. Let $S = \{0, a, b, c\}$ and $\Gamma = \{\alpha, \beta\}$ be the non-empty sets. Define binary operations as:

α	0	a	b	$^{\mathrm{c}}$	β	0	a	b	$^{\mathrm{c}}$
0	0	0	0	0	0 a b c	0	0	0	0
a	0	b	0	a	a	a	a	a	a
b	0	b	0	\mathbf{c}	b	0	0	0	0
\mathbf{c}	0	0	0	b	\mathbf{c}	a	a	a	\mathbf{c}

Define order relation on S as, $\leq = \{(0,0), (a,a), (b,b), (c,c), (0,a), (0,b), (0,c)\}$. Clearly S is an ordered Γ -semigroup. The fuzzy set $\mu: S \to [0,1]$ defined by $\mu(0) = 0.9, \mu(a) = 0.7, \mu(b) = 0.6, \mu(c) = 0.1$ is a fuzzy interior Γ -ideal of S but not a fuzzy Γ -ideal since $\mu(a\alpha a) = \mu(b) = 0.6 \ngeq \mu(a)$.

Proposition 2.3. Let (S, Γ, \leq) be a right weakly regular ordered Γ -semigroup. Then every fuzzy interior Γ -ideal of S is a fuzzy Γ -ideal of S.

Proof. Let S be a right weakly regular ordered Γ -semigroup. Let $a, b \in S$, since S is right weakly regular, there exist $x, y, u, v \in S$ and $\alpha, \beta, \gamma, \eta, \zeta, \delta \in \Gamma$ such that $a \leq a\alpha x\beta a\gamma y$ and $b \leq b\eta u\zeta b\delta v$. Now for any $\lambda \in \Gamma$, $a\lambda b \leq a\alpha x\beta a\gamma y\lambda b = (a\alpha x)\beta a\gamma (y\lambda b)$. Then for any fuzzy interior Γ -ideal f of S, we have

$$f(a\lambda b) \ge f((a\alpha x)\beta a\gamma(y\lambda b)) \ge f(a).$$

Also, as $a\lambda b \leq a\lambda b\eta u\zeta b\delta v = a\lambda b\eta (u\zeta b\delta v)$, we have

$$f(a\eta b) > f(a\lambda b\eta(u\zeta b\delta v)) > f(b).$$

Hence f is a fuzzy Γ -ideal of S.

Remark 2.4. In an ordered Γ -semigroup, every fuzzy bi- Γ -ideal is a fuzzy generalized bi- Γ -ideal but the converse need not be true in general.

EXAMPLE 2.5. Let $S = \{0, a, b, c\}$ and $\Gamma = \{\alpha\}$ be two non-empty sets. Define a binary operation as:

Also define order relation on S as, $\leq := \{(0,0), (a,a), (b,b), (c,c)(0,a), (0,b)\}$. Clearly S is an ordered Γ -semigroup. The fuzzy set $\mu : S \to [0,1]$ defined by $\mu(0) = 0.6, \mu(a) = 0, \mu(b) = 0.3, \mu(c) = 0$ is a fuzzy generalized bi- Γ -ideal of S but not a fuzzy bi- Γ -ideal since $\mu(b\alpha b) = \mu(a) = 0 \not\geq \min\{\mu(b), \mu(b)\}$.

Proposition 2.6. Let (S, Γ, \leq) be a right weakly regular ordered Γ -semigroup. Then every fuzzy generalized bi- Γ -ideal of S is a fuzzy bi- Γ -ideal of S.

Proof. Let S be a right weakly regular ordered Γ -semigroup. Let $a, b \in S$, since S is right weakly regular, there exist $x, y \in S$ and $\alpha, \beta, \gamma \in \Gamma$ such that $a \leq a\alpha x\beta a\gamma y$. Now for any $\eta \in \Gamma$, $a\eta b \leq a\alpha x\beta a\gamma y\eta b = a\alpha(x\beta a\gamma y)\eta b$. Then for any fuzzy generalized bi- Γ -ideal f of S, we have

$$f(a\eta b) \ge f(a\alpha(x\beta a\gamma y)\eta b) \ge \min\{f(a), f(b)\}.$$

Hence f is a fuzzy bi- Γ -ideal of S.

Remark 2.7. In an ordered Γ -semigroup S, every fuzzy right Γ -ideal (resp. fuzzy left Γ -ideal, fuzzy Γ -ideal) is a fuzzy generalized bi- Γ -ideal fuzzy bi- Γ -ideal) but the converse need not be true in general.

EXAMPLE 2.8. Let $S = \{0, a, b, c\}$ and $\Gamma = \{\alpha, \beta, \gamma\}$ be the non-empty sets, define binary operations as:

										γ				
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
a	a	a	a	a	a	0	a	0	0	a	0	b	0	a
b	0	0	0	b	b	0	0	b	0	a b	0	b	0	\mathbf{c}
\mathbf{c}	0	0	0	\mathbf{c}	\mathbf{c}	0	0	0	\mathbf{c}	\mathbf{c}	0	0	0	b

Define order relation on S as, $\leq := \{(0,0), (a,a), (b,b), (c,c), (a,0), (b,0), (c,0)\}$. Clearly S is an ordered Γ -semigroup. The fuzzy set $\mu : S \to [0,1]$ defined by $\mu(0) = 0.6, \mu(a) = 0.7, \mu(b) = 0.8, \mu(c) = 0.9$ is a fuzzy generalized bi- Γ -ideal (and fuzzy bi- Γ -ideal), but not a fuzzy right Γ -ideal (left Γ -ideal) of S, since $\mu(b\beta c) = \mu(0) = 0.6 \ngeq 0.8 = \mu(b)(\mu(a\alpha b) = \mu(a) = 0.7 \ngeq 0.8 = \mu(b))$.

Proposition 2.9. Let (S,Γ,\leq) be a left duo (right duo, duo) right weakly regular ordered Γ -semigroup. Then every fuzzy generalized bi- Γ -ideal of S is a fuzzy right Γ -ideal (fuzzy left Γ -ideal, fuzzy Γ -ideal) of S.

Proof. Let f be any fuzzy generalized bi- Γ -ideal of S and $x, y \in S$, $\gamma \in \Gamma$. Since S is left duo right weakly regular, $(S\Gamma x]$ is a Γ -ideal of S. Therefore

$$x\gamma y \in (x\Gamma S\Gamma x\Gamma S]\Gamma S$$

$$\subseteq (x\Gamma (S\Gamma x]\Gamma S]\Gamma S$$

$$\subseteq (x\Gamma (S\Gamma x)]\Gamma (S]$$

$$\subseteq (x\Gamma (S\Gamma x)\Gamma S]$$

$$\subseteq ((x]\Gamma (S\Gamma x)]$$

$$= (x\Gamma S\Gamma x].$$

Therefore there exist $z \in S$ and $\alpha, \beta \in \Gamma$ such that $x\gamma y \leq x\alpha z\beta x$. As f is fuzzy generalized bi- Γ -ideal of S, $f(x\gamma y) \geq f(x\alpha z\beta x) \geq \min\{f(x), f(x)\} = f(x)$. Hence f is a fuzzy right Γ -ideal of S.

Proposition 2.10. Let (S, Γ, \leq) be a duo right weakly regular ordered Γ -semigroup. Then every fuzzy generalized bi- Γ -ideal of S is a fuzzy interior Γ -ideal of S.

Proof. Let f be any fuzzy generalized bi- Γ -ideal of S and $x, a, y \in S, \alpha \in \Gamma$. Since S is duo right weakly regular, $(x\Gamma S]$ is a Γ -ideal of S. Therefore we have

$$x\alpha y \in (x\Gamma S\Gamma x\Gamma S]\Gamma y$$

$$\subseteq ((x\Gamma S]\Gamma S\Gamma S]\Gamma y$$

$$\subseteq ((x\Gamma S]\Gamma S]\Gamma y$$

$$\subseteq ((x\Gamma S)]\Gamma y$$

$$\subseteq (x\Gamma S)\Gamma (y)$$

$$\subseteq (x\Gamma S\Gamma y).$$

Thus there exist $z \in S$ and $\beta, \gamma \in \Gamma$, such that $x\alpha y \leq x\beta z\gamma y$. As f is fuzzy generalized bi- Γ -ideal of S, $f(x\alpha y) \geq f(x\beta z\gamma y) \geq \min\{f(x), f(y)\}$. Therefore f is fuzzy Γ -subsemigroup. Again, as S is duo right weakly regular, $(a\Gamma S], (S\Gamma a]$ are a Γ -ideal of S, we have

$$x\alpha a\beta y \in x\alpha(a\Gamma S\Gamma a\Gamma S]\beta y = x\alpha((a\Gamma S]\Gamma(a\Gamma S)]\beta y$$

$$\subseteq S\Gamma((a\Gamma S)\Gamma(a\Gamma S)]\Gamma S$$

$$= (S]\Gamma((a\Gamma S)\Gamma(a\Gamma S)]\Gamma(S)$$

$$\subseteq (S\Gamma(a\Gamma S)\Gamma(a\Gamma S)\Gamma S)$$

$$\subseteq ((a\Gamma S)\Gamma(a\Gamma S)]$$

$$= (a\Gamma S\Gamma a\Gamma S)$$

$$\subseteq (a\Gamma(S\Gamma a)\Gamma S)$$

$$\subseteq ((a]\Gamma(S\Gamma a)]$$

$$= (a\Gamma S\Gamma a).$$

This implies that there exist $b \in S$ and $\gamma, \eta \in \Gamma$, such that $x\alpha a\beta y \leq a\gamma z\eta a$. As f is a fuzzy generalized bi- Γ -ideal of S, $f(x\alpha a\beta y) \geq f(a\gamma z\eta a) \geq \min\{f(a), f(a)\}$ = f(a). Hence f is fuzzy interior Γ -ideal of S.

Lemma 2.11. [2] Let (S, Γ, \leq) be an ordered Γ -semigroup. Then A is a left Γ -ideal (resp. right Γ -ideal, Γ -ideal, generalized bi- Γ -ideal, bi- Γ -ideal, interior Γ -ideal) if and only if fuzzy subset f_A is fuzzy left Γ -ideal (resp. fuzzy right Γ -ideal, fuzzy Γ -ideal, fuzzy generalized bi- Γ -ideal, fuzzy bi- Γ -ideal, fuzzy interior Γ -ideal) of S.

Proposition 2.12. Let (S, Γ, \leq) be a right weakly regular ordered Γ -semigroup. Then S is left duo (right duo, duo) if and only if S is fuzzy left duo (fuzzy right duo, fuzzy duo).

Proof. Let S be any left duo right weakly regular ordered Γ-semigroup and f be any fuzzy left Γ-ideal of S. Let $a, b \in S$ and $\gamma \in \Gamma$. Since S is left duo right weakly regular, $(S\Gamma a]$ is a Γ-ideal of S. Therefore

 $a\gamma b \in (a\Gamma S\Gamma a\Gamma S]\Gamma b$ $\subseteq (a\Gamma (S\Gamma a]\Gamma S]\Gamma S$ $\subseteq (x\Gamma (S\Gamma a]]\Gamma S$ $\subseteq (S\Gamma (S\Gamma a]]\Gamma S$ $\subseteq ((S\Gamma a]]\Gamma S$ $= (S\Gamma a]\Gamma S$ $\subseteq (S\Gamma a].$

Thus there exists $x \in S$ and $\alpha \in \Gamma$ such that $a\gamma b \leq x\alpha a$. As f is a fuzzy left Γ -ideal of S, $f(a\gamma b) \geq f(x\alpha a) \geq f(a)$. Therefore f is a fuzzy right Γ -ideal of S. Hence f is fuzzy left duo.

Conversely, assume that S be a fuzzy left duo. Let A be any left Γ -ideal of S. Then, by Lemma 2.11, characteristic function f_A of A is fuzzy left Γ -ideal of S. By hypothesis, f_A is fuzzy right Γ -ideal of S. Again, by Lemma 2.11, A is right Γ -ideal of S. Hence S is left duo. \square

Lemma 2.13. [3] Let (S, Γ, \leq) be an ordered Γ -semigroup. If S is left simple (right simple, simple), then $S = (S\Gamma a](S = (a\Gamma S], S = (S\Gamma a\Gamma S])$ for each $a \in S$.

Proposition 2.14. Let (S, Γ, \leq) be a left (right) simple ordered Γ -semigroup. Then every fuzzy interior Γ -ideal of S is fuzzy left Γ -ideal (resp. fuzzy right Γ -ideal) of S.

Proof. Since S is a left simple ordered Γ -semigroup, $S = (S\Gamma a]$ for each $a \in S$. Let f be any fuzzy interior Γ -ideal of S and $x, y \in S$. Since S is left simple, there exists $z \in S$ and $\alpha \in \Gamma$ such that $x \leq z\alpha y$. Then $x\gamma y \leq z\alpha y\gamma y$. So $f(x\gamma y) \geq f(z\alpha y\gamma y) \geq f(y)$. Hence f is a fuzzy left Γ -ideal of S.

Proposition 2.15. Let (S, Γ, \leq) be a left and right simple ordered Γ -semigroup. Then every fuzzy generalized bi- Γ -ideal of S is fuzzy interior Γ -ideal of S.

Proof. Let f be any fuzzy generalized bi-Γ-ideal of S and $x, y \in S$. Since S is left simple, there exists $z \in S$ and $\alpha \in \Gamma$ such that $y \leq z\alpha x$. Therefore $x\eta y \leq x\eta z\alpha x$, implies that $f(x\eta y) \geq f(x\eta z\alpha x) \geq \min\{f(x), f(x)\} = f(x) \geq \min\{f(x), f(y)\}$. Therefore f is fuzzy Γ-subsemigroup of S.

Next, take any $x, a, y \in S$. Since S is left and right simple ordered Γ -semigroup, there exist $r, s \in S$ and $\alpha, \beta \in \Gamma$ such that $x \leq a\alpha r$ and $y \leq s\beta a$. Now for any $\eta, \xi \in \Gamma$, $x\eta a\xi y \leq a\alpha r\eta a\xi s\beta a = a\alpha (r\eta a\xi s)\beta a$, implies that $f(x\eta a\xi y) \geq f(a\alpha (r\eta a\xi s)\beta a) \geq \min\{f(a), f(a)\} = f(a)$. Hence f is a fuzzy interior Γ -ideal of S.

The proof of the following proposition is straightforward.

Proposition 2.16. Let (S, Γ, \leq) be a left (right) simple ordered Γ -semigroup. Then every fuzzy generalized bi- Γ -ideal of S is fuzzy bi- Γ -ideal of S.

3. Characterizations of Right Weakly Regular Ordered Γ -Semigroups

Theorem 3.1. [12] Let (S, Γ, \leq) be an ordered Γ -semigroup. Then the following are equivalent:

- (i) S is right weakly regular;
- (ii) Each right Γ -ideal of S is idempotent;
- (iii) $A \cap B = (B\Gamma A)$ for each right Γ -ideal B and Γ -ideal A of S.

Corollary 3.2. [6] Let (S, Γ, \leq) be an ordered Γ -semigroup, f a fuzzy right Γ -ideal and g a fuzzy left Γ -ideal of S. Then $f \circ g \leq f \wedge g$.

The results of following Corollary is well known and is easy to prove.

Corollary 3.3. Let (S, Γ, \leq) be an ordered Γ -semigroup and A, B are subsets of S. Then the following are true:

- (1) $A \subseteq B$ if and only if $f_A \preceq f_B$;
- (2) $f_A \cap f_B = f_{A \cap B}$;
- (3) $f_A \circ f_B = f_{(A\Gamma B)}$.

Theorem 3.4. Let (S, Γ, \leq) be an ordered Γ -semigroup. Then S is right weakly regular if and only if for each fuzzy right Γ -ideal f and fuzzy Γ -ideal g of S, $f \cap g = f \circ g$.

Proof. Let S be a right weakly regular ordered Γ-semigroup. Let f be a fuzzy right Γ-ideal and g be a fuzzy Γ-ideal of S. Take any $a \in S$. Since S is right weakly regular, there exist $x, y \in S$ and $\alpha, \beta, \gamma \in \Gamma$ such that $a \leq a\alpha x \beta a \gamma y$

i.e., $(a\alpha x, a\gamma y) \in A_a$. Then we have

$$(f \circ g)(a) = \bigvee_{(p,q) \in A_a} \{f(p) \land f(q)\}$$

$$\geq f(a\alpha x) \land g(a\gamma y)$$

$$\geq f(a) \land g(a) = (f \cap g)(a).$$

This implies $f \cap g \subseteq f \circ g$. Thus, by Corollary 3.2, $f \cap g = f \circ g$.

Conversely assume that $f \cap g = f \circ g$ for each fuzzy right Γ -ideal f and each fuzzy Γ -ideal g of S. Let $a \in B \cap A$, where B and A are right Γ -ideal and Γ -ideal of S respectively. Therefore, by Lemma 2.11, the fuzzy subsets χ_B and Γ -ideal and Γ -ideal of Γ -idea

$$(\chi_B \cap_A)(a) \le (\chi_B \circ_A)(a)$$

$$\Rightarrow \chi_B(a) \land _A(a) \le (\chi_B \circ_A)(a).$$

Since $a \in B$ and $a \in A$, we have B(a) = 1 = A (a). Thus $B(a) \wedge_A (a) = 1 \wedge 1 = 1$. Therefore $B \circ_A (a) \geq 1$. So $B \circ_A (a) = 1$. By Corollary 3.3, $B \circ_A = B \cap_A (a)$. Thus we have $B \cap_A (a) = 1$. So $A \in B \cap_A (a)$. Therefore $A \cap_A (a) = 1$. Also as $B \cap_A (a) = 1$. Hence by Theorem 3.1, $A \cap_A (a) = 1$. Also regular.

Theorem 3.5. [12] Let (S, Γ, \leq) be an ordered Γ -semigroup. Then S is right weakly regular if and only if $B \cap I \subseteq (B\Gamma I]$ for each bi- Γ -ideal B and each interior Γ -ideal I of S.

Theorem 3.6. Let (S, Γ, \leq) be an ordered Γ -semigroup. Then S is right weakly regular if and only if for each fuzzy bi- Γ -ideal f and each fuzzy interior Γ -ideal g of S, $f \cap g \subseteq f \circ g$.

Proof. Let S be a right weakly regular ordered Γ-semigroup, f a fuzzy bi-Γ-ideal and g a fuzzy interior Γ-ideal of S. Take any $a \in S$. Since S is right weakly regular, there exist $x,y \in S$ and $\alpha,\beta,\gamma \in \Gamma$ such that $a \leq a\alpha x\beta a\gamma y$. This implies that $a \leq (a\alpha x)\beta(a\alpha x\beta a\gamma y)\gamma y = (a\alpha x\beta a)\alpha(x\beta a\gamma y\gamma y)$. So $(a\alpha x\beta a,x\beta a\gamma y\gamma y) \in A_a$. Now

$$(f \circ g)(a) = \bigvee_{(p,q) \in A_a} \{ f(p) \land f(q) \}$$

$$\geq f(a\alpha x \beta a) \land g(x\beta a \gamma y \gamma y)$$

$$\geq f(a) \land g(a) = (f \cap g)(a).$$

So $f \cap g \subseteq f \circ g$.

Conversely assume that $f \cap g \subseteq f \circ g$ for each fuzzy bi- Γ -ideal f and each fuzzy interior Γ -ideal g of S. As each fuzzy right Γ -ideal of S is a fuzzy bi- Γ -ideal and each fuzzy Γ -ideal of S is a fuzzy interior Γ -ideal. Therefore, by hypothesis, $f \cap g \subseteq f \circ g$ for each fuzzy right Γ -ideal f and each fuzzy Γ -ideal g of S. Hence by Theorem 3.4, S is right weakly regular.

Theorem 3.7. [12] Let $(S, \Gamma, <)$ be an ordered Γ -semigroup. Then S is right weakly regular if and only if $B \cap I \cap R \subseteq (B\Gamma I\Gamma R)$ for each bi- Γ -ideal B, each interior Γ -ideal I and each right Γ -ideal R of S.

Theorem 3.8. Let (S, Γ, \leq) be an ordered Γ -semigroup. Then S is right weakly regular if and only if for each fuzzy bi- Γ -ideal f, each fuzzy interior Γ -ideal gand each fuzzy right Γ -ideal h of S, $f \cap g \cap h \subseteq f \circ g \circ h$.

Proof. Let S be a right weakly regular ordered Γ -semigroup, f a fuzzy bi- Γ ideal, g a fuzzy interior Γ -ideal and h a fuzzy right Γ -ideal of S. Take any $a \in S$. Since S is right weakly regular, there exist $x, y \in S$ and $\alpha, \beta, \gamma \in \Gamma$ such that $a < a\alpha x\beta a\gamma y$. Now $a < (a\alpha x)\beta(a\alpha x\beta a\gamma y)\gamma y < (a\alpha x\beta a)\alpha(x\beta a\alpha x)\beta(a\gamma y\gamma y\gamma y)$. So $(a\alpha x\beta a, x\beta a\alpha x\beta a\gamma y\gamma y\gamma y) \in A_a$. Now

$$\begin{split} (f\circ g\circ h)(a) &= \bigvee_{(p,q)\in A_a} \{f(p)\wedge (g\circ h)(q)\} \\ &\geq f(a\alpha x\beta a)\wedge (g\circ h)(x\beta a\alpha x\beta a\gamma y\gamma y\gamma y) \\ &\geq f(a)\wedge \{\bigvee_{(r,s)\in A_x\beta a\alpha x\beta a\gamma y\gamma y\gamma y} \{g(r)\wedge h(s)\}\}. \end{split}$$

Since $(x\beta a\alpha x, a\gamma y\gamma y\gamma y) \in A_{x\beta a\alpha x\beta a\gamma y\gamma y\gamma y}$,

$$\bigvee_{\substack{(r,s)\in A_{x\beta a\alpha x\beta a\gamma y\gamma y\gamma y}\\ \geq g(a)\wedge h(a).}} \{g(r)\wedge h(s)\} \geq g(x\beta a\alpha x)\wedge h(a\gamma y\gamma y\gamma y)$$

$$\geq g(a) \wedge h(a)$$
.

So we get $(f \circ g \circ h)(a) \geq f(a) \wedge g(a) \wedge h(a)$. Hence $f \cap g \cap h \subseteq f \circ g \circ h$.

Conversely assume that $f \cap g \cap h \subseteq f \circ g \circ h$, for each fuzzy bi- Γ -ideal f, each fuzzy interior Γ -ideal g and each fuzzy right Γ -ideal h of S. Take any $a \in B \cap I \cap R$, where B is a bi- Γ -ideal, I is an interior Γ -ideal and R is a right Γ -ideal of S. By Lemma 2.11, χ_B, χ_I and χ_R are fuzzy bi- Γ -ideal, fuzzy interior Γ -ideal and fuzzy right Γ -ideal of S respectively. Then, by hypothesis

$$(\chi_B \cap \chi_I \cap_A)(a) \le (\chi_B \circ \chi_I \circ \chi_R)(a)$$

$$\Rightarrow \chi_B(a) \wedge \chi_I(a) \wedge \chi_I(a) \le (\chi_B \circ \chi_I \circ \chi_R)(a).$$

Since $a \in B, a \in I$ and $a \in R$, we have $\chi_B(a) = 1 = \chi_I(a) = \chi_R(a)$. Thus $\chi_B(a) \wedge \chi_I(a) \wedge \chi_I(a) = 1 \wedge 1 \wedge 1 = 1$. Therefore $(\chi_B \circ \chi_I \circ \chi_R)(a) \geq 1$. So $(\chi_B \circ \chi_I \circ \chi_R)(a) = 1$. Now, by Corollary 3.3, $\chi_B \circ \chi_I \circ \chi_R = \chi_{(B\Gamma I\Gamma A)}$. So $\chi_{(B\Gamma I\Gamma R)}(a) = 1$ implies $a \in (B\Gamma I\Gamma R]$. Therefore $B \cap I \cap R \subseteq (B\Gamma I\Gamma R]$. Hence by Theorem 3.7, S is right weakly regular.

Theorem 3.9. Let (S, Γ, \leq) be an ordered Γ -semigroup. Then S is right weakly regular if and only if each fuzzy right Γ -ideal of S is idempotent.

Proof. Let S be a right weakly regular ordered Γ -semigroup and f a fuzzy right Γ -ideal of S. Take any $a \in S$. Since S is right weakly regular, there exist $x, y \in S$ and $\alpha, \beta, \gamma \in \Gamma$ such that $a \leq a\alpha x\beta a\gamma y$ i.e., $(a\alpha x, a\gamma y) \in A_a$. Now

$$(f \circ f)(a) = \bigvee_{(p,q) \in A_a} \{ f(p) \land f(q) \}$$

$$\geq f(a\alpha x) \land f(a\gamma y)$$

$$\geq f(a) \land f(a) = f(a).$$

This implies $f \subseteq f \circ f$. Also, as f is fuzzy right Γ -ideal of S, $f \circ f \subseteq f$. Therefore $f = f \circ f$.

Conversely assume that each fuzzy right Γ -ideal of S is idempotent. Take any $a \in S$. Let $A = (a \cup a\Gamma S]$, the right Γ -ideal generated by the element a of S. By Lemma 2.11, χ_A is fuzzy right Γ -ideal of S. By hypothesis, $(\chi_A \circ \chi_A)(a) = \chi_A(a) = 1$ as $\chi_{(A\Gamma A]}(a) = (\chi_A \circ \chi_A)(a)$, $\chi_{(A\Gamma A]}(a) = 1$. Therefore $a \in (A\Gamma A]$. Now, we have

$$\begin{split} a &\in (A\Gamma A] = ((a \cup a\Gamma S]\Gamma(a \cup a\Gamma S)] \\ &= ((a \cup a\Gamma S)\Gamma(a \cup a\Gamma S)) \\ &= (a\Gamma a \cup a\Gamma a\Gamma S \cup a\Gamma S\Gamma a \cup a\Gamma S\Gamma a\Gamma S) \\ &\subset (a\Gamma S\Gamma a\Gamma S]. \end{split}$$

Hence S is right weakly regular.

Corollary 3.10. Let (S, Γ, \leq) be an ordered Γ -semigroup. Then the following are equivalent:

- (1) S is right weakly regular;
- (2) Every fuzzy right Γ -ideal is idempotent;
- (3) $f \cap g \subseteq f \circ g$ for each fuzzy right Γ -ideal f and fuzzy Γ -ideal g of S.

Corollary 3.11. [5] Let (S, Γ, \leq) be an ordered Γ -semigroup. A fuzzy subset f of S is a fuzzy right Γ -ideal of S if and only if

- (1) $f \circ 1 \leq f$; and
- (2) if $x \le y$, then $f(x) \ge f(y)$.

Corollary 3.12. [6] An ordered Γ -semigroup S is intra-regular if and only if for each fuzzy right Γ -ideal f and each fuzzy left Γ -ideal g of S, $f \land g \leq g \circ f$.

Theorem 3.13. Let (S, Γ, \leq) be an ordered Γ -semigroup. Then the following are equivalent:

- (1) S is both intra-regular and right weakly regular;
- (2) $f \cap g \cap h \subseteq f \circ g \circ h$ for each fuzzy quasi- Γ -ideal f, each fuzzy right Γ -ideals g and h of S;
- (3) $f \cap g \cap h \subseteq f \circ g \circ h$ for each fuzzy bi- Γ -ideal f, each fuzzy right Γ -ideals g and h of S;
- (4) $f \cap g \cap h \subseteq f \circ g \circ h$ for each fuzzy generalized bi- Γ -ideal f, each fuzzy right Γ -ideals g and h of S.

Proof. (1) \Rightarrow (4) Let S be both intra-regular and right weakly regular ordered Γ-semigroup. Let f be any fuzzy generalized bi-Γ-ideal and g, h be the fuzzy right Γ-ideals of S. Let $a \in S$. Since S is right weakly regular and intra-regular ordered Γ-semigroup, there exist $x_1, y_1, x_2, y_2 \in S$ and $\alpha_1, \beta_1, \gamma_1, \alpha_2, \beta_2, \gamma_2 \in \Gamma$ such that $a \leq a\alpha_1x_1\beta_1a\gamma_1y_1$ and $a \leq x_2\alpha_2a\beta_2a\gamma_2y_2$ which implies that

$$a \le a\alpha_1 x_1 \beta_1 (x_2 \alpha_2 a \beta_2 a \gamma_2 y_2) \gamma_1 y_1$$
$$= (a\alpha_1 x_1 \beta_1 x_2) \alpha_2 (a\beta_2 a \gamma_2 y_2 \gamma_1 y_1)$$

i.e., $(a\alpha_1x_1\beta_1x_2, a\beta_2a\gamma_2y_2\gamma_1y_1) \in A_a$. Therefore

$$(f \circ g \circ h)(a) = \bigvee_{(p,q) \in A_a} \{ f(p) \land (g \circ h)(q) \}$$

$$\geq f(a\alpha_1 x_1 \beta_1 x_2) \land (g \circ h)(a\beta_2 a\gamma_2 y_2 \gamma_1 y_1)$$

$$\geq f(a) \land \{ \bigvee_{(r,s) \in A_a \beta_2 a\gamma_2 y_2 \gamma_1 y_1} \{ g(r) \land h(s) \} \}.$$

Since $(a, a\gamma_2y_2\gamma_1y_1) \in A_{a\beta_2a\gamma_2y_2\gamma_1y_1}$,

$$\bigvee_{(r,s)\in A_{a\beta_2a\gamma_2y_2\gamma_1y_1}} \{g(r) \wedge h(s)\} \ge g(a) \wedge h(a\gamma_2y_2\gamma_1y_1)$$

$$> g(a) \wedge h(a).$$

Finally we get $(f \circ g \circ h)(a) \geq f(a) \wedge g(a) \wedge h(a)$. Therefore $f \cap g \cap h \subseteq f \circ g \circ h$.

- $(4) \Rightarrow (3)$ Obvious, as each fuzzy bi- Γ -ideal is fuzzy generalized bi- Γ -ideal.
- $(3) \Rightarrow (2)$ Obvious, as each fuzzy quasi- Γ -ideal is fuzzy bi- Γ -ideal.
- (2) \Rightarrow (1) Let (2) holds i.e., $f \cap g \cap h \subseteq f \circ g \circ h$ for each fuzzy quasi- Γ -ideal f, each fuzzy right Γ -ideals g and h of S. Let g be any fuzzy right Γ -ideal of S. Since fuzzy subset 1 is a fuzzy quasi-ideal of S, by hypothesis, $g = g \cap 1 \cap g \subseteq g \circ 1 \circ g \subseteq g \circ g \subseteq g \circ 1 \subseteq g$. So $g = g \circ g$. Therefore by Theorem 3.9, S is right weakly regular.

Next, since each fuzzy left Γ -ideal f is fuzzy quasi- Γ -ideal and the fuzzy subset 1 is fuzzy right Γ -ideal of S, we have, $f \cap g = 1 \cap f \cap g \subseteq 1 \circ f \circ g \subseteq f \circ g$. Hence by Corollary 3.12, S is intra-regular.

Corollary 3.14. [6] Let (S, Γ, \leq) be an ordered Γ -semigroup f, g fuzzy subsets of S, and $a \in S$. Then the following are equivalent:

- (1) $(f \circ g)(a) \neq 0$;
- (2) There exists $(x,y) \in A_a$ such that $f(x) \neq 0$ and $g(y) \neq 0$.

Corollary 3.15. [6] Let (S, Γ, \leq) be an ordered Γ -semigroup, f a fuzzy subsets of S and $a \in S$. Then the following are equivalent:

- (1) $(f \circ 1)(a) \neq 0$;
- (2) There exists $(x,y) \in A_a$ such that $f(x) \neq 0$.

Corollary 3.16. [6] Let (S, Γ, \leq) be an ordered Γ -semigroup, g a fuzzy subsets of S and $a \in S$. Then the following are equivalent:

- (1) $(1 \circ g)(a) \neq 0$;
- (2) There exists $(x, y) \in A_a$ such that $g(y) \neq 0$.

Theorem 3.17. Let (S,Γ,\leq) be an ordered Γ -semigroup. Then S is right weakly regular if and only if for each fuzzy subset f of S, $f \leq f \circ 1 \circ f \circ 1$.

Proof. Let f be a fuzzy subset of S and $a \in S$. Since S is right weakly regular, there exist $x, y \in S$ and $\alpha, \beta, \gamma \in \Gamma$ such that $a \leq a\alpha x\beta a\gamma y$ i.e., $(a\alpha x, a\gamma y) \in A_a$. Now

$$(f \circ 1 \circ f \circ 1)(a) = \bigvee_{\substack{(p,q) \in A_a}} \{ (f \circ 1)(p) \land (f \circ 1)(q) \}$$

$$\geq (f \circ 1)(a\alpha x) \land (f \circ 1)(a\gamma y).$$

Since $(a, x) \in A_{a\alpha x}$ and $(a, y) \in A_{a\gamma y}$, we have

$$(f \circ 1)(a\alpha x) \wedge (f \circ 1)(a\gamma y)$$

$$= \{ \bigvee_{(u,v) \in A_{a\alpha x}} \{ f(u) \wedge 1(v) \} \} \wedge \{ \bigvee_{(r,s) \in A_{a\gamma y}} \{ f(r) \wedge 1(s) \} \}$$

$$\geq (f(a) \wedge 1(x)) \wedge (f(a) \wedge 1(y))$$

$$= f(a) \wedge f(a) = f(a).$$

Therefore $f \leq f \circ 1 \circ f \circ 1$.

Conversely suppose that $a \in S$. Since f_a is a fuzzy subset of S, by hypothesis, $1 = f_a(a) \le (f_a \circ 1 \circ f_a \circ 1)(a) \le 1$. So $(f_a \circ 1 \circ f_a \circ 1)(a) \ne 0$. By Corollary 3.14, there exists $(x,y) \in A_a$ such that $(f_a \circ 1)(x) \ne 0$ and $(f_a \circ 1)(y) \ne 0$. By Corollary 3.15, there exists $(u,v) \in A_x$ and $(r,s) \in A_y$ such that $f_a(u) \ne 0$ and $f_a(r) \ne 0$. This implies that a = u = r. As $(x,y) \in A_a$, $(u,v) \in A_x$ and $(r,s) \in A_y$, we have $a \le x\alpha y, x \le u\beta v$ and $y \le r\gamma s$ for some $\alpha, \beta, \gamma \in \Gamma$. Therefore $a \le u\beta v\alpha r\gamma s$. Since a = u = r, $a \le a\beta v\alpha a\gamma s$. Hence S is right weakly regular.

Corollary 3.18. [5] Let (S, Γ, \leq) be an ordered Γ -semigroup. A fuzzy subset f of S is a fuzzy left Γ -ideal of S if and only if

- (1) $1 \circ f \leq f$;
- (2) if $x \le y$, then $f(x) \ge f(y)$.

Theorem 3.19. Let (S, Γ, \leq) be an ordered Γ -semigroup. A fuzzy subset f of S is a fuzzy interior Γ -ideal of S if and only if

- (1) $1 \circ f \circ 1 \leq f$ and
- (2) if $x \le y$, then $f(x) \ge f(y)$.

Proof. Let f be any fuzzy interior Γ-ideal of an ordered Γ-semigroup S, and let $a \in S$. If $A_a = \phi$, then $(1 \circ f \circ 1)(a) = 0 \le f(a)$. On the other hand

$$(1 \circ f \circ 1)(a) = \bigvee_{(y,z) \in A_a} \{ (1 \circ f)(y) \land 1(z) \}$$
$$= \bigvee_{(y,z) \in A_a} (1 \circ f)(y).$$

It is sufficient to show that for each $(y, z) \in A_a$,

$$\bigvee_{(y,z)\in A_a} (1\circ f)(y) \le f(a).$$

So take any $(y, z) \in A_a$. If $A_y = \phi$, then equation (1) holds. So let $A_y \neq \phi$. Then

$$(1\circ f)(y) = \bigvee_{(x,w)\in A_y} \{1(x)\wedge f(w)\} = \bigvee_{(x,w)\in A_y} f(w).$$

Now we need to show only that $f(w) \leq f(a)$ for each $(x, w) \in A_y$. So take any $(x, w) \in A_y$. Then $y \leq x\alpha w$ for some $\alpha \in \Gamma$. As $(y, z) \in A_a$, $a \leq y\beta z$ for some $\beta \in \Gamma$. Therefore $a \leq x\alpha w\beta z$. Since f is an interior Γ -ideal of S, $f(a) \geq f(x\alpha w\beta z) \geq f(w)$. Hence $f(w) \leq f(a)$ for each $(x, w) \in A_y$.

Conversely assume that $x, a, y \in S$ and $\alpha, \beta \in \Gamma$. Since $(1 \circ f \circ 1) \leq f$, $(1 \circ f \circ 1)(x\alpha a\beta y) \leq f(x\alpha a\beta y)$. Since $(x\alpha a, y) \in A_{x\alpha a\beta y}$,

$$(1 \circ f \circ 1)(x\alpha a\beta y) = \bigvee_{(p,q) \in A_{x\alpha a\beta y}} \{(1 \circ f)(p) \wedge 1(q)\}$$

$$\geq (1 \circ f)(x\alpha a) \wedge 1(y) = (1 \circ f)(x\alpha a).$$

Since $(x, a) \in A_{x\alpha a}$,

$$(1 \circ f)(x \alpha a) = \bigvee_{(r,s) \in A_{x \alpha a}} \{1(r) \land f(s)\} \ge 1(x) \land f(a) = f(a).$$

Thus $f(x\alpha a\beta y) \geq f(a)$. Hence f is a fuzzy interior Γ -ideal of S.

Theorem 3.20. Let (S,Γ,\leq) be a right weakly regular ordered Γ -semigroup. Then the following holds:

- (1) Each fuzzy interior Γ -ideal of S is idempotent;
- (2) Each fuzzy Γ -ideal of S is idempotent;
- (3) Each fuzzy right Γ -ideal of S is idempotent.

Proof. (1). Let S be a right weakly regular ordered Γ-semigroup and f be any fuzzy interior Γ-ideal of S. Take any $a \in S$. Since S is right weakly regular, there exist $x, y \in S$ and $\alpha, \beta, \gamma \in \Gamma$ such that $a \leq a\alpha x \beta a \gamma y \leq (a\alpha x \beta a \gamma y)\alpha x \beta a \gamma y = ((a\alpha x)\beta a \gamma y)\alpha (x\beta a \gamma y)$ i.e., $((a\alpha x)\beta a \gamma y, x\beta a \gamma y) \in A_a$.

Now

$$(f \circ f)(a) = \bigvee_{(p,q) \in A_a} \{ f(p) \land f(q) \}$$

$$\geq f((a\alpha x)\beta a\gamma y) \land f(x\beta a\gamma y)$$

$$\geq f(a) \land f(a) = f(a).$$

This implies $f \subseteq f \circ f$. Again, as S is right weakly regular, by Theorem 3.17 $f \preceq f \circ 1 \circ f \circ 1$. Therefore $f \circ f \subseteq f \circ 1 \circ f \circ 1 \circ f = f \circ (1 \circ f \circ 1) \circ f$. As f is a fuzzy interior Γ -ideal, $f \circ (1 \circ f \circ 1) \circ f \subseteq f \circ f \circ f \subseteq 1 \circ f \circ 1 \subseteq f$. Thus $f \circ f \subseteq f$. Hence $f = f \circ f$.

- (2). Obvious, as each fuzzy Γ -ideal is a fuzzy interior Γ -ideal of S.
- (3). Follows by Theorem 3.9.

Proposition 3.21. Let (S, Γ, \leq) be a right weakly regular ordered Γ -semigroup, f a fuzzy right Γ -ideal and g a fuzzy Γ -ideal of S. Then $f \circ g$ is a fuzzy quasi- Γ -ideal of S.

Proof. Let (S, Γ, \leq) be a right weakly regular ordered Γ-semigroup, f a fuzzy right Γ-ideal and g a fuzzy Γ-ideal of S. Then, by Theorem 3.4, $f \wedge g = f \circ g$. Since $f \wedge g \leq f, g$, $(f \wedge g) \circ 1 \leq f \circ 1, g \circ 1$. As f is a fuzzy right Γ-ideal, $f \circ 1 \leq f$. Therefore $(f \wedge g) \circ 1 \leq f$. Again $1 \circ (f \wedge g) \leq 1 \circ f, 1 \circ g$. As g is fuzzy Γ-ideal, $1 \circ g \leq g$. Hence $1 \circ (f \wedge g) \leq g$. Therefore $1 \circ (f \wedge g) \leq g$. Thus $((f \wedge g) \circ 1) \wedge (1 \circ (f \wedge g)) \leq f \wedge g$.

Next, take any $x, y \in S$ such that $x \leq y$. Then we have to show that $(f \wedge g)(x) \geq (f \circ g)(y)$. Since f and g are fuzzy right Γ -ideal and fuzzy Γ -ideal of S, $f(x) \geq f(y)$ and $g(x) \geq g(y)$. Now

$$(f \wedge g)(x) = \min\{f(x), g(x)\}$$

$$\geq \min\{f(y), g(y)\} = (f \wedge g)(y).$$

Therefore $f \circ g$ is fuzzy quasi- Γ -ideal of S.

Definition 3.22. An ordered Γ-semigroup S is called semisimple if for each $a \in S$, there exist $x, y, z \in S$ and $\alpha, \beta, \gamma, \delta \in \Gamma$ such that $a \leq x\alpha a\beta y\gamma a\delta z$.

Corollary 3.23. [2] Every fuzzy interior Γ -ideal of a semisimple ordered Γ -semigroup S is a fuzzy Γ -ideal.

Theorem 3.24. Let (S, Γ, \leq) be an ordered Γ -semigroup. Then the following are equivalent:

- (1) S is semisimple;
- (2) Every fuzzy Γ -ideal of S is idempotent;
- (3) every fuzzy interior Γ -ideal of S is idempotent;
- (4) $f \wedge g = f \circ g$, for every fuzzy Γ -ideal f and g of S;
- (5) $f \wedge g = f \circ g$, for every fuzzy Γ -ideal f and every fuzzy interior Γ -ideal g of S;

- (6) $f \wedge g = f \circ g$, for every fuzzy interior f and every fuzzy Γ -ideal g of S;
- (7) $f \wedge g = f \circ g$, for every fuzzy interior Γ -ideal f and g of S;
- (8) $f \circ g = g \circ f$ and $f \circ f = f$ for each fuzzy Γ -ideal f and g of S;
- (9) $f \circ g = g \circ f$ and $f \circ f = f$ for each fuzzy interior Γ -ideal f and g of S.

Proof. (1) \Rightarrow (7) Assume that (1) holds. Let f and g be any fuzzy interior Γ -ideals of S. By Corollary 3.23, f and g are fuzzy Γ -ideals of S. So $f \circ g \subseteq f \circ 1 \subseteq f$ and $f \circ g \subseteq 1 \circ g \subseteq g$. Therefore $f \circ g \subseteq f \wedge g$.

Next take any $a \in S$. Since S is semisimple, there exist $x, y, z \in S$ and $\alpha, \beta, \gamma, \delta \in \Gamma$ such that $a \leq x\alpha a\beta y\gamma a\delta z$ i.e., $(x\alpha a\beta y, a\delta z) \in A_a$. Hence

$$(f \circ g)(a) = \bigvee_{(p,q) \in A_a} \{f(p) \land g(q)\}$$

$$\geq f(x\alpha a\beta y) \land g(a\delta z)$$

$$\geq f(a) \land g(a) = (f \cap g)(a).$$

Therefore $f \wedge g \subseteq f \circ g$. Hence $f \wedge g = f \circ g$

- $(7) \Rightarrow (6)$ Obvious, as every fuzzy Γ -ideal is fuzzy interior Γ -ideal.
- $(6) \Rightarrow (4)$ Obvious, as every fuzzy Γ -ideal is fuzzy interior Γ -ideal.
- $(7) \Rightarrow (5) \Rightarrow (4) \Rightarrow (2).$
- $(7) \Rightarrow (3) \Rightarrow (2) \text{ and } (7) \Rightarrow (9) \Rightarrow (8) \Rightarrow (2).$
- (2) \Rightarrow (1) Assume that (2) holds. Take any $a \in S$. Let $J(a) = (a \cup a\Gamma S \cup S\Gamma a \cup S\Gamma a\Gamma S]$, the Γ -ideal generated by a. Then, by Lemma 2.11, $f_{J(a)}$ is a fuzzy Γ -ideal of S. So $f_{(J(a)\Gamma J(a)]}(a) = (f_{(J(a)]}(a) \circ f_{(J(a)]}(a)) = f_{(J(a)]}(a) = 1$. Implying that $a \in (J(a)\Gamma J(a)]$. Therefore

```
\begin{split} a &\in ((a \cup a\Gamma S \cup S\Gamma a \cup S\Gamma a\Gamma S]\Gamma(a \cup a\Gamma S \cup S\Gamma a \cup S\Gamma a\Gamma S)] \\ &= ((a \cup a\Gamma S \cup S\Gamma a \cup S\Gamma a\Gamma S)\Gamma(a \cup a\Gamma S \cup S\Gamma a \cup S\Gamma a\Gamma S)] \\ &= (a\Gamma a \cup a\Gamma a\Gamma S \cup a\Gamma S\Gamma a\Gamma S \cup a\Gamma S\Gamma a \cup a\Gamma S\Gamma a\Gamma S \cup a\Gamma S\Gamma S\Gamma a\Gamma S \\ &\cup S\Gamma a\Gamma a\Gamma S \cup S\Gamma a\Gamma S\Gamma a \cup S\Gamma a\Gamma S\Gamma a\Gamma S \cup S\Gamma a\Gamma S\Gamma a \cup S\Gamma a\Gamma S\Gamma a\Gamma S \\ &\cup S\Gamma a\Gamma S\Gamma S\Gamma \cup S\Gamma a\Gamma S\Gamma S\Gamma a\Gamma S] \\ &\subseteq (S\Gamma a\Gamma S\Gamma a\Gamma S). \end{split}
```

Hence S is semisimple.

Conclusion: In ordered semigroups, the class of regular ordered semigroups play an important role in studying the structures of ordered semigroups, for instance, Kehayopulu and Tsingelis [7] studied the class of regular ordered semigroups by employing fuzzy ideals of ordered semigroups. Thereafter many authors such as [2, 5, 6, 13] had studied the class of regular ordered Γ -semigroups. In this paper, we enhance the understanding of right weakly regular class of ordered Γ -semigroups through its fuzzy Γ -ideals, fuzzy bi- Γ -ideals, fuzzy generalized bi- Γ -ideals and fuzzy interior Γ -ideals which will motivate the researchers towards this new class in ordered Γ -semigroups. Since ordered Γ -semigroups

are the generalizations of ordered semigroups, all the results of this paper hold true for ordered semigroups by simply taking the set Γ as any singleton set which is the main application of the results of this paper and a reasonable justification of the new notions introduced.

Acknowledgments

The authors wish to thank sincerely the referees for their valuable comments and suggestions.

References

- K. Hila, E. Pisha, On bi-ideals on ordered Γ-Semigroups I, Hacettepe Journal of Mathematics and Statistics, 40(6), (2011), 793-804.
- A. Kanlaya, A. Iampan, Coincidence of different types of fuzzy ideals in ordred Γ-Semigroups, Korean J. Math., 22, (2014), 367-381.
- A. Khan, T. Mahmod, M.I. Ali, Fuzyy interior Γ-ideal in ordered Γ-semigroups, J. Appl. Math. and Inf., 28, (2010), 1217-1225.
- N. Kehayopulu, M. Tsingelis, Fuzzy sets in ordered groupoids, Semigroup Forum, 65, (2002), 128-132.
- N. Kehayopulu, On ordered fuzzy Γ-groupoids, Quasigroup and related system, 19, (2011), 227-238.
- N. Kehayopulu, On fuzzy po-Γ-semigroups, Armenian Journal of Mathematics, 6(2), (2014), 43-52.
- N. Kehayopulu, M. Tsingelis, Regular ordered semigroups in terms of fuzzy subsets, Inf. Sci., 176, (2006), 3675-3693.
- 8. N. Kuroki, Fuzzy bi-ideals in semigroups, Math. Univ. Paul., 28, (1979), 17-21.
- 9. N. Kuroki, On fuzzy semigroups, $\mathit{Inform.~Sci.},\,\mathbf{53},\,(1991),\,203\text{-}236.$
- 10. N. Kuroki, Fuzzy generalized bi-ideals in semigroups, Inform. Sci., 66, (1992), 235-543.
- 11. N. Kuroki, Fuzzy semiprime ideals in semigroups, Fuzzy Sets Systems, $\mathbf{8}$, (1982), 71-79.
- N. M. Khan, A. Mahboob, Pure ideals in ordered Γ-semigroups, Proceeding of the ICAA-2016, A.M.U, Aligarh, De Gruyter, (2018), 111-120
- 13. P. Pal, S.K. Majumder, B. Davvaz, S.K. Sardar, Regularity of po-Γ-semigroups in terms of fuzzy subsemigroups and fuzzy bi-ideals, Fuzzy. Inf. Eng., 7, (2015), 165-182.
- 14. A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., $\mathbf{35},$ (1971), 512-517.
- S. K. Sardar, S. K. Majumder, On fuzzy ideals in Γ-semigroups, International Journal of Algebra, 3(16), (2009), 775–784.
- 16. S. K. Sardar, S. K. Majumder, D. Mandal, A note on characterization of prime ideals of Γ -semigroups in terms of fuzzy subsets, *Int. J. of Contemp. Math. Sciences*, **4**(30), (2009), 1465-1472.
- S. K. Sardar, S. K. Majumder, A note on characterization of semiprime ideals of Γ-semigroups in terms of fuzzy subsets, Int. J. of Pure and App. Math., 56(3), (2009), 451-458.
- 18. M. K. Sen, N. K. Saha, On Γ-semigroup I, Bull. Cal. Math. Soc., 78, (1986), 181-186.
- M. K. Sen, A. Seth, On po-Γ-semigroups, Bull. Calcutta Math. Soc., 85, (1993), 445-450.
- 20. L. A. Zadeh, Fuzzy sets, Inform. Control, 8, (1965), 338-353.