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Abstract. We prove that fuzzy generalized bi-Γ-ideal and fuzzy inte-
rior Γ-ideal in a right weakly regular ordered Γ-semigroup are fuzzy Γ-
ideal. We also show that every fuzzy generalized bi-Γ-ideal in a duo right
weakly regular ordered Γ-semigroup is a fuzzy interior Γ-ideal. Then, by
using fuzzy Γ-ideals, fuzzy bi-Γ-ideals, fuzzy generalized bi-Γ-ideals and
fuzzy interior Γ-ideals, left simple, right simple and simple ordered Γ-
semigroups have been characterized. Finally, we characterize right weakly
regular ordered Γ-semigroups by its fuzzy Γ-ideals, fuzzy bi-Γ-ideals, fuzzy
generalized bi-Γ-ideals and fuzzy interior Γ-ideals.

Keywords: Ordered Γ-semigroups, Right weakly regular ordered Γ-Semigroups,
Fuzzy sets, Fuzzy Γ-ideals.

2010 Mathematics subject classification: 06F99, 08A72, 20N99.

∗Corresponding Author

Received 20 March 2018; Accepted 22 September 2019
©2021 Academic Center for Education, Culture and Research TMU

145



146 A. Mahboob, B. Davvaz, N. M. Khan

1. Introduction and Preliminaries

Zadeh [20], in 1965, introduced the concept of a fuzzy set while Rosenfeld [14]
first introduced and studied the notion of a fuzzy subgroup. In 1979, Kuroki [8]
introduced fuzzy sets in semigroup theory while in [9, 10, 11], Kuroki studied
some properties of fuzzy ideals, fuzzy bi-ideals, fuzzy generalized bi-ideals and
fuzzy semiprime bi-ideals of a semigroup. Fuzzy sets in ordered semigroups
were first studied by Kehayopulu and Tsingelis in [4]. In 1986, Sen and Saha
[18] introduced the notion of a Γ-semigroup as follows: Let S and Γ be two
non-empty sets. S is called a Γ-semigroup if there exists a mapping from
S × Γ × S to S which maps (a, α, b) → aαb satisfying (aγb)µc = aγ(bµc) for
all a, b, c ∈ S and γ, µ ∈ Γ. Later on in 1993, the notion of an ordered Γ-
semigroup was introduced by Sen and Seth [19] as follow: Let S and Γ be
non-empty sets. The triplet (S,Γ,≤) is called an ordered Γ-semigroup if S is
a Γ-semigroup and (S,≤) is a partially ordered set such that a ≤ b ⇒ aγc ≤
bγc and cγa ≤ cγb for all a, b, c ∈ S and γ ∈ Γ. The notion of a Γ-semigroups
has been extended to fuzzy settings by Sardar and Majumder [15, 16, 17]. They
have studied fuzzy ideals, fuzzy prime ideals, fuzzy semiprime ideals and fuzzy
ideal extensions in Γ-semigroups.

In 2014, Kanlaya and Iampan [2] had proved that in a regular (left regular,
right regular) ordered Γ-semigroup S, every fuzzy generalized bi-ideal of S is
a fuzzy bi-ideal. They also proved that in an intra-regular (left regular, right
regular) ordered Γ-semigroup, every fuzzy interior ideal of S is a fuzzy ideal.
In this paper we prove that if S is right weakly regular ordered Γ-semigroup,
then every fuzzy interior Γ-ideal of S is a fuzzy Γ-ideal and every fuzzy gen-
eralized bi-Γ-ideal of S is a fuzzy bi-Γ-ideal. We also prove that if S is duo
right weakly regular ordered Γ-semigroup, then every fuzzy generalized bi-Γ-
ideal of S is a fuzzy interior Γ-ideal. We then characterize right weakly regular
ordered Γ-semigroup by fuzzy (right Γ-ideal, left Γ-ideal) Γ-ideals, fuzzy quasi
Γ-ideals, fuzzy generalized bi-Γ-ideals, fuzzy bi-Γ-ideals and fuzzy interior Γ-
ideals. Lastly after proving that in a right weakly regular ordered Γ-semigroup
S, for each fuzzy right Γ-ideal f and fuzzy Γ-ideal g of S, f ◦ g is a fuzzy quasi
Γ-ideal, we investigate some properties of fuzzy interior ideals and fuzzy gen-
eralized bi-ideals of left simple, right simple and simple ordered Γ-semigroups.

Let S be an ordered Γ-semigroup. For a subset A of S define (A] = {x ∈
S | x ≤ a for some a ∈ A}. A non-empty subset T of S is said to be a Γ-
subsemigroup of S if for all x, y ∈ T and γ ∈ Γ, xγy ∈ T . A non-empty
subset A of an ordered Γ-semigroup S is called left (right) Γ-ideal of S if
SΓA ⊆ A (AΓS ⊆ A) and for any a ∈ A, b ∈ S such that b ≤ a, then b ∈ A.
A non-empty subset J of an ordered Γ-semigroup S is called a Γ-ideal of S if
J is both a left Γ-ideal and a right Γ-ideal of S. An ordered Γ-semigroup S is
called left (right) duo if every left (right) Γ-ideal of S is a Γ-ideal of S, and S is
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called duo if it is both left and right duo. An ordered Γ-semigroup S is called
left (right) simple if it does not contain any proper left (right) Γ-ideal, and S

is called simple if it does not contain any proper Γ-ideal. A Γ-subsemigroup
B of an ordered Γ-semigroup S is called a bi-Γ-ideal of S if BΓSΓB ⊆ B and
a ∈ B, (S 3)b ≤ a ⇒ b ∈ B. A Γ-subsemigroup I of an ordered Γ-semigroup S

is called an interior Γ-ideal of S if SΓIΓS ⊆ I and a ∈ I, (S 3)b ≤ a ⇒ b ∈ I.
Let S be an ordered Γ-semigroup and let A be any non-empty subset of

S. Then by L(A), R(A), J(A), I(A) and B(A), we denote the left Γ-ideal, the
right Γ-ideal, the Γ-ideal, the interior Γ-ideal and the bi-Γ-ideal of S generated
by A respectively. It is easy to verify that L(A) = (A ∪ SΓA], R(A) = (A ∪
AΓS], J(A) = (A ∪ SΓA ∪ AΓS ∪ SΓAΓS], I(A) = (A ∪ AΓA ∪ SΓAΓS] and
B(A) = (A ∪AΓA ∪AΓSΓA].

If A = {a}, we write (a] instead of ({a}], L(a) instead of L({a}), R(a)

instead of R({a}), J(a) instead of J({a}), I(a) instead of I({a}) and B(a)

instead of B({a}) respectively in the sequel.

Lemma 1.1. [1] Let (S,Γ,≤) be an ordered Γ-semigroup and A,B be non-
empty subsets of S. Then

(1) A ⊆ (A];
(2) If A ⊆ B, then (A] ⊆ (B];
(3) ((A]] = (A];
(4) (A]Γ(B] ⊆ (AΓB];
(5) If L is left ideal and R a right ideal of S, then the set (LΓR] is an ideal

of S;
(6) If A, B are ideals of S, then (AΓB], (BΓA], A ∪B, A ∩B are ideals

of S;
(7) (SΓa]((aΓS], (SΓaΓS]) is a left (right, two-sided) ideal of S for each

a ∈ S;
(8) ((A]Γ(B]] = (AΓB].

An ordered Γ-semigroup S is called regular (left regular, right regular) if
for each x ∈ S, there exist y ∈ S and α, β ∈ Γ such that x ≤ xαyβx(x ≤
yαxβx, x ≤ xαxβy); and S is called intra-regular if for each x ∈ S, there exist
y, z ∈ S and α, β, γ ∈ Γ such that x ≤ yαxβxγz; S is called right weakly
regular if x ∈ (xΓSΓxΓS] for each x ∈ S and S is called semisimple if for each
x ∈ S, there exist y, z, a ∈ S and α, β, γ, δ ∈ Γ such that x ≤ yαxβaγxδz.

Let (S,Γ,≤) be an ordered Γ-semigroup. A mapping f from S to real closed
interval [0, 1] is called the fuzzy subset of S (or fuzzy set of S). We denote
by fA the characteristic function of a subset A of S, which is defined as the
mapping of S into [0, 1] by

fA(x) =

{
1 if x ∈ A

0 if x /∈ A.
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So for any element a of S, characteristic function f{a} of the subset {a} of S
denoted by fa in the sequel, is

fa(x) =

{
1 if x = a

0 if x 6= a.

Let f and g be two fuzzy subsets of S. Then f ∩ g, f ∪ g and f ◦ g defined as

(f ∩ g)(x) = min{f(x), g(x)} = f(x) ∧ g(x)

(f ∪ g)(x) = max{f(x), g(x)} = f(x) ∨ g(x)

and

(f ◦ g)(x) =


∨

(y,z)∈Ax

{f(y) ∧ g(z)} if Ax 6= φ

0 if Ax = φ,

where Ax is a relation on S defined as Ax = {(y, z) ∈ S×S | x ≤ yαz for some α ∈
Γ}. We define an order relation � on the set of all fuzzy subsets of S by

f � g ⇔ f(x) ≤ g(x) for all x ∈ S.

If f, g are fuzzy subsets of S such that f � g, then, for every fuzzy subset h

of S, f ◦ h � g ◦ h and h ◦ f � h ◦ g. We denote by 1 the fuzzy subset of S
defined by 1 : S → [0, 1]|x 7→ 1(x) = 1. It may be easily checked that if S is
an ordered Γ-semigroup, then the set of all fuzzy subsets of S with respect to
multiplication “◦” and the order “�” is an ordered Γ-semigroup and the fuzzy
subset 1 is the greatest element of the set of all fuzzy subsets of S.

Definition 1.2. Let (S,Γ,≤) be an ordered Γ-semigroup. A fuzzy subset f of
S is called a fuzzy Γ-subsemigroup of S if for all x, y ∈ S and α ∈ Γ such that

f(xαy) ≥ min{f(x), f(y)}.

Definition 1.3. Let (S,Γ,≤) be an ordered Γ-semigroup. A fuzzy subset f of
S is called a fuzzy left (right) Γ-ideal of S if

(1) f(xαy) ≥ f(y)(f(xαy) ≥ f(x)) for all x, y ∈ S and α ∈ Γ and
(2) for any x, y ∈ S, x ≤ y implies f(x) ≥ f(y).

A fuzzy subset f of S is called a fuzzy Γ-ideal of S if it is both a fuzzy left
and a fuzzy right Γ-ideal of S.

Definition 1.4. Let (S,Γ,≤) be an ordered Γ-semigroup. A fuzzy Γ-subsemigroup
f of S is called a fuzzy bi-Γ-ideal of S if

(1) f(xαzβy) ≥ min{f(x), f(y)} for all x, y, z ∈ S and α, β ∈ Γ and
(2) for any x, y ∈ S, x ≤ y implies f(x) ≥ f(y).

Definition 1.5. Let (S,Γ,≤) be an ordered Γ-semigroup. A fuzzy subset f of
S is called a fuzzy generalized bi-Γ-ideal of S if

(1) f(xαzβy) ≥ min{f(x), f(y)} for all x, y, z ∈ S and α, β ∈ Γ and
(2) for any x, y ∈ S, x ≤ y implies f(x) ≥ f(y).
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Definition 1.6. Let (S,Γ,≤) be an ordered Γ-semigroup. A fuzzy Γ-subsemigroup
f of S is called a fuzzy interior Γ-ideal of S if

(1) f(xαzβy) ≥ f(z) for all x, y, z ∈ S and α, β ∈ Γ and
(2) for any x, y ∈ S, x ≤ y implies f(x) ≥ f(y).

Definition 1.7. An ordered Γ-semigroup S is called fuzzy left (right) duo if
every fuzzy left (right) Γ-ideal of S is a fuzzy Γ-ideal of S, and S is called fuzzy
duo if it is both fuzzy left and fuzzy right duo.

Definition 1.8. A fuzzy subset f of an ordered Γ-semigroup S is called idem-
potent if f ◦ f = f.

2. Coincidence of Fuzzy Γ-Ideals

Remark 2.1. In an ordered Γ-semigroup S every fuzzy Γ-ideal is a fuzzy interior
Γ-ideal but the converse need not be true in general.

Example 2.2. Let S = {0, a, b, c} and Γ = {α, β} be the non-empty sets.
Define binary operations as:

α 0 a b c
0 0 0 0 0
a 0 b 0 a
b 0 b 0 c
c 0 0 0 b

β 0 a b c
0 0 0 0 0
a a a a a
b 0 0 0 0
c a a a c

Define order relation on S as, ≤= {(0, 0), (a, a), (b, b), (c, c), (0, a), (0, b), (0, c)}.
Clearly S is an ordered Γ-semigroup. The fuzzy set µ : S → [0, 1] defined by
µ(0) = 0.9, µ(a) = 0.7, µ(b) = 0.6, µ(c) = 0.1 is a fuzzy interior Γ-ideal of S but
not a fuzzy Γ-ideal since µ(aαa) = µ(b) = 0.6 � µ(a).

Proposition 2.3. Let (S,Γ,≤) be a right weakly regular ordered Γ-semigroup.
Then every fuzzy interior Γ-ideal of S is a fuzzy Γ-ideal of S.

Proof. Let S be a right weakly regular ordered Γ-semigroup. Let a, b ∈ S, since
S is right weakly regular, there exist x, y, u, v ∈ S and α, β, γ, η, ζ, δ ∈ Γ such
that a ≤ aαxβaγy and b ≤ bηuζbδv. Now for any λ ∈ Γ, aλb ≤ aαxβaγyλb =

(aαx)βaγ(yλb). Then for any fuzzy interior Γ-ideal f of S, we have

f(aλb) ≥ f((aαx)βaγ(yλb)) ≥ f(a).

Also, as aλb ≤ aλbηuζbδv = aλbη(uζbδv), we have

f(aηb) ≥ f(aλbη(uζbδv)) ≥ f(b).

Hence f is a fuzzy Γ-ideal of S. �

Remark 2.4. In an ordered Γ-semigroup, every fuzzy bi-Γ-ideal is a fuzzy gen-
eralized bi-Γ-ideal but the converse need not be true in general.
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Example 2.5. Let S = {0, a, b, c} and Γ = {α} be two non-empty sets. Define
a binary operation as:

α 0 a b c
0 0 0 0 0
a 0 0 0 0
b 0 0 a a
c 0 0 a a

Also define order relation on S as, ≤:= {(0, 0), (a, a), (b, b), (c, c)(0, a), (0, b)}.
Clearly S is an ordered Γ-semigroup. The fuzzy set µ : S → [0, 1] defined by
µ(0) = 0.6, µ(a) = 0, µ(b) = 0.3, µ(c) = 0 is a fuzzy generalized bi-Γ-ideal of S
but not a fuzzy bi-Γ-ideal since µ(bαb) = µ(a) = 0 � min{µ(b), µ(b)}.

Proposition 2.6. Let (S,Γ,≤) be a right weakly regular ordered Γ-semigroup.
Then every fuzzy generalized bi-Γ-ideal of S is a fuzzy bi-Γ-ideal of S.

Proof. Let S be a right weakly regular ordered Γ-semigroup. Let a, b ∈ S,
since S is right weakly regular, there exist x, y ∈ S and α, β, γ ∈ Γ such that
a ≤ aαxβaγy. Now for any η ∈ Γ, aηb ≤ aαxβaγyηb = aα(xβaγy)ηb. Then
for any fuzzy generalized bi-Γ-ideal f of S, we have

f(aηb) ≥ f(aα(xβaγy)ηb) ≥ min{f(a), f(b)}.

Hence f is a fuzzy bi-Γ-ideal of S. �

Remark 2.7. In an ordered Γ-semigroup S, every fuzzy right Γ-ideal (resp. fuzzy
left Γ-ideal, fuzzy Γ-ideal) is a fuzzy generalized bi-Γ-ideal(fuzzy bi-Γ-ideal) but
the converse need not be true in general.

Example 2.8. Let S = {0, a, b, c} and Γ = {α, β, γ} be the non-empty sets,
define binary operations as:

α 0 a b c
0 0 0 0 0
a a a a a
b 0 0 0 b
c 0 0 0 c

β 0 a b c
0 0 0 0 0
a 0 a 0 0
b 0 0 b 0
c 0 0 0 c

γ 0 a b c
0 0 0 0 0
a 0 b 0 a
b 0 b 0 c
c 0 0 0 b

Define order relation on S as, ≤:= {(0, 0), (a, a), (b, b), (c, c), (a, 0), (b, 0), (c, 0)}.
Clearly S is an ordered Γ-semigroup. The fuzzy set µ : S → [0, 1] defined by
µ(0) = 0.6, µ(a) = 0.7, µ(b) = 0.8, µ(c) = 0.9 is a fuzzy generalized bi-Γ-ideal
(and fuzzy bi-Γ-ideal), but not a fuzzy right Γ-ideal (left Γ-ideal) of S, since
µ(bβc) = µ(0) = 0.6 � 0.8 = µ(b)(µ(aαb) = µ(a) = 0.7 � 0.8 = µ(b)).

Proposition 2.9. Let (S,Γ,≤) be a left duo (right duo, duo) right weakly
regular ordered Γ-semigroup. Then every fuzzy generalized bi-Γ-ideal of S is a
fuzzy right Γ-ideal (fuzzy left Γ-ideal, fuzzy Γ-ideal) of S.
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Proof. Let f be any fuzzy generalized bi-Γ-ideal of S and x, y ∈ S, γ ∈ Γ.
Since S is left duo right weakly regular, (SΓx] is a Γ-ideal of S. Therefore

xγy ∈ (xΓSΓxΓS]ΓS

⊆ (xΓ(SΓx]ΓS]ΓS

⊆ (xΓ(SΓx]]Γ(S]

⊆ (xΓ(SΓx]ΓS]

⊆ ((x]Γ(SΓx]]

= (xΓSΓx].

Therefore there exist z ∈ S and α, β ∈ Γ such that xγy ≤ xαzβx. As f is fuzzy
generalized bi-Γ-ideal of S, f(xγy) ≥ f(xαzβx) ≥ min{f(x), f(x)} = f(x).
Hence f is a fuzzy right Γ-ideal of S. �

Proposition 2.10. Let (S,Γ,≤) be a duo right weakly regular ordered Γ-
semigroup. Then every fuzzy generalized bi-Γ-ideal of S is a fuzzy interior
Γ-ideal of S.

Proof. Let f be any fuzzy generalized bi-Γ-ideal of S and x, a, y ∈ S, α ∈ Γ.
Since S is duo right weakly regular, (xΓS] is a Γ-ideal of S. Therefore we have

xαy ∈ (xΓSΓxΓS]Γy

⊆ ((xΓS]ΓSΓS]Γy

⊆ ((xΓS]ΓS]Γy

⊆ ((xΓS]]Γy

⊆ (xΓS]Γ(y]

⊆ (xΓSΓy].

Thus there exist z ∈ S and β, γ ∈ Γ, such that xαy ≤ xβzγy. As f is fuzzy gen-
eralized bi-Γ-ideal of S, f(xαy) ≥ f(xβzγy) ≥ min{f(x), f(y)}. Therefore f

is fuzzy Γ-subsemigroup. Again, as S is duo right weakly regular, (aΓS], (SΓa]
are a Γ-ideal of S, we have

xαaβy ∈ xα(aΓSΓaΓS]βy = xα((aΓS]Γ(aΓS]]βy

⊆ SΓ((aΓS]Γ(aΓS]]ΓS

= (S]Γ((aΓS]Γ(aΓS]]Γ(S]

⊆ (SΓ(aΓS]Γ(aΓS]ΓS]

⊆ ((aΓS]Γ(aΓS]]

= (aΓSΓaΓS]

⊆ (aΓ(SΓa]ΓS]

⊆ ((a]Γ(SΓa]]

= (aΓSΓa].
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This implies that there exist b ∈ S and γ, η ∈ Γ, such that xαaβy ≤ aγzηa. As
f is a fuzzy generalized bi-Γ-ideal of S, f(xαaβy) ≥ f(aγzηa) ≥ min{f(a), f(a)}
= f(a). Hence f is fuzzy interior Γ-ideal of S. �

Lemma 2.11. [2] Let (S,Γ,≤) be an ordered Γ-semigroup. Then A is a left
Γ-ideal (resp. right Γ-ideal, Γ-ideal, generalized bi-Γ-ideal, bi-Γ-ideal, interior
Γ-ideal) if and only if fuzzy subset fA is fuzzy left Γ-ideal (resp. fuzzy right Γ-
ideal, fuzzy Γ-ideal, fuzzy generalized bi-Γ-ideal, fuzzy bi-Γ-ideal, fuzzy interior
Γ-ideal) of S.

Proposition 2.12. Let (S,Γ,≤) be a right weakly regular ordered Γ-semigroup.
Then S is left duo (right duo, duo) if and only if S is fuzzy left duo (fuzzy right
duo, fuzzy duo).

Proof. Let S be any left duo right weakly regular ordered Γ-semigroup and f

be any fuzzy left Γ-ideal of S. Let a, b ∈ S and γ ∈ Γ. Since S is left duo right
weakly regular, (SΓa] is a Γ-ideal of S. Therefore

aγb ∈ (aΓSΓaΓS]Γb

⊆ (aΓ(SΓa]ΓS]ΓS

⊆ (xΓ(SΓa]]ΓS

⊆ (SΓ(SΓa]]ΓS

⊆ ((SΓa]]ΓS

= (SΓa]ΓS

⊆ (SΓa].

Thus there exists x ∈ S and α ∈ Γ such that aγb ≤ xαa. As f is a fuzzy left
Γ-ideal of S, f(aγb) ≥ f(xαa) ≥ f(a). Therefore f is a fuzzy right Γ-ideal of
S. Hence f is fuzzy left duo.

Conversely, assume that S be a fuzzy left duo. Let A be any left Γ-ideal of
S. Then, by Lemma 2.11, characteristic function fA of A is fuzzy left Γ-ideal
of S. By hypothesis, fA is fuzzy right Γ-ideal of S. Again, by Lemma 2.11, A
is right Γ-ideal of S. Hence S is left duo. �

Lemma 2.13. [3] Let (S,Γ,≤) be an ordered Γ-semigroup. If S is left simple
(right simple, simple), then S = (SΓa](S = (aΓS], S = (SΓaΓS]) for each
a ∈ S.

Proposition 2.14. Let (S,Γ,≤) be a left (right) simple ordered Γ-semigroup.
Then every fuzzy interior Γ-ideal of S is fuzzy left Γ-ideal (resp. fuzzy right
Γ-ideal) of S.

Proof. Since S is a left simple ordered Γ-semigroup, S = (SΓa] for each a ∈ S.
Let f be any fuzzy interior Γ-ideal of S and x, y ∈ S. Since S is left simple,
there exists z ∈ S and α ∈ Γ such that x ≤ zαy. Then xγy ≤ zαyγy. So
f(xγy) ≥ f(zαyγy) ≥ f(y). Hence f is a fuzzy left Γ-ideal of S. �
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Proposition 2.15. Let (S,Γ,≤) be a left and right simple ordered Γ-semigroup.
Then every fuzzy generalized bi-Γ-ideal of S is fuzzy interior Γ-ideal of S.

Proof. Let f be any fuzzy generalized bi-Γ-ideal of S and x, y ∈ S. Since S

is left simple, there exists z ∈ S and α ∈ Γ such that y ≤ zαx. Therefore
xηy ≤ xηzαx, implies that f(xηy) ≥ f(xηzαx) ≥ min{f(x), f(x)} = f(x) ≥
min{f(x), f(y)}. Therefore f is fuzzy Γ-subsemigroup of S.

Next, take any x, a, y ∈ S. Since S is left and right simple ordered Γ-
semigroup, there exist r, s ∈ S and α, β ∈ Γ such that x ≤ aαr and y ≤
sβa. Now for any η, ξ ∈ Γ, xηaξy ≤ aαrηaξsβa = aα(rηaξs)βa, implies that
f(xηaξy) ≥ f(aα(rηaξs)βa) ≥ min{f(a), f(a)} = f(a). Hence f is a fuzzy
interior Γ-ideal of S. �

The proof of the following proposition is straightforward.

Proposition 2.16. Let (S,Γ,≤) be a left (right) simple ordered Γ-semigroup.
Then every fuzzy generalized bi-Γ-ideal of S is fuzzy bi-Γ-ideal of S.

3. Characterizations of Right Weakly Regular Ordered
Γ-Semigroups

Theorem 3.1. [12] Let (S,Γ,≤) be an ordered Γ-semigroup. Then the following
are equivalent:

(i) S is right weakly regular;
(ii) Each right Γ-ideal of S is idempotent;
(iii) A ∩B = (BΓA] for each right Γ-ideal B and Γ-ideal A of S.

Corollary 3.2. [6] Let (S,Γ,≤) be an ordered Γ-semigroup, f a fuzzy right
Γ-ideal and g a fuzzy left Γ-ideal of S. Then f ◦ g � f ∧ g.

The results of following Corollary is well known and is easy to prove.

Corollary 3.3. Let (S,Γ,≤) be an ordered Γ-semigroup and A,B are subsets
of S. Then the following are true:

(1) A ⊆ B if and only if fA � fB;
(2) fA ∩ fB = fA∩B;
(3) fA ◦ fB = f(AΓB].

Theorem 3.4. Let (S,Γ,≤) be an ordered Γ-semigroup. Then S is right weakly
regular if and only if for each fuzzy right Γ-ideal f and fuzzy Γ-ideal g of S,
f ∩ g = f ◦ g.

Proof. Let S be a right weakly regular ordered Γ-semigroup. Let f be a fuzzy
right Γ-ideal and g be a fuzzy Γ-ideal of S. Take any a ∈ S. Since S is right
weakly regular, there exist x, y ∈ S and α, β, γ ∈ Γ such that a ≤ aαxβaγy
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i.e., (aαx, aγy) ∈ Aa. Then we have

(f ◦ g)(a) =
∨

(p,q)∈Aa

{f(p) ∧ f(q)}

≥ f(aαx) ∧ g(aγy)

≥ f(a) ∧ g(a) = (f ∩ g)(a).

This implies f ∩ g ⊆ f ◦ g. Thus, by Corollary 3.2, f ∩ g = f ◦ g.
Conversely assume that f ∩ g = f ◦ g for each fuzzy right Γ-ideal f and each

fuzzy Γ-ideal g of S. Let a ∈ B ∩ A, where B and A are right Γ-ideal and
Γ-ideal of S respectively. Therefore, by Lemma 2.11, the fuzzy subsets χB and
A are fuzzy right Γ-ideal and Γ-ideal of S respectively. By hypothesis

(χB∩A)(a) ≤ (χB◦A)(a)
⇒ χB(a) ∧ _A(a) ≤ (χB◦A)(a).

Since a ∈ B and a ∈ A, we have B(a) = 1 =A (a). Thus B(a)∧A(a) = 1∧1 = 1.
Therefore (B◦A)(a) ≥ 1. So (B◦A)(a) = 1. By Corollary 3.3, B◦A =(BΓA].
Thus we have (BΓA](a) = 1. So a ∈ (BΓA]. Therefore B ∩ A ⊆ (BΓA]. Also
as (BΓA] ⊆ B ∩A, B ∩A = (BΓA]. Hence by Theorem 3.1, S is right weakly
regular. �

Theorem 3.5. [12] Let (S,Γ,≤) be an ordered Γ-semigroup. Then S is right
weakly regular if and only if B ∩ I ⊆ (BΓI] for each bi-Γ-ideal B and each
interior Γ-ideal I of S.

Theorem 3.6. Let (S,Γ,≤) be an ordered Γ-semigroup. Then S is right weakly
regular if and only if for each fuzzy bi-Γ-ideal f and each fuzzy interior Γ-ideal
g of S, f ∩ g ⊆ f ◦ g.

Proof. Let S be a right weakly regular ordered Γ-semigroup, f a fuzzy bi-Γ-
ideal and g a fuzzy interior Γ-ideal of S. Take any a ∈ S. Since S is
right weakly regular, there exist x, y ∈ S and α, β, γ ∈ Γ such that a ≤
aαxβaγy. This implies that a ≤ (aαx)β(aαxβaγy)γy = (aαxβa)α(xβaγyγy).
So (aαxβa, xβaγyγy) ∈ Aa. Now

(f ◦ g)(a) =
∨

(p,q)∈Aa

{f(p) ∧ f(q)}

≥ f(aαxβa) ∧ g(xβaγyγy)

≥ f(a) ∧ g(a) = (f ∩ g)(a).

So f ∩ g ⊆ f ◦ g.
Conversely assume that f ∩ g ⊆ f ◦ g for each fuzzy bi-Γ-ideal f and each

fuzzy interior Γ-ideal g of S. As each fuzzy right Γ-ideal of S is a fuzzy bi-Γ-
ideal and each fuzzy Γ-ideal of S is a fuzzy interior Γ-ideal. Therefore, by
hypothesis, f ∩ g ⊆ f ◦ g for each fuzzy right Γ-ideal f and each fuzzy Γ-ideal
g of S. Hence by Theorem 3.4, S is right weakly regular. �
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Theorem 3.7. [12] Let (S,Γ,≤) be an ordered Γ-semigroup. Then S is right
weakly regular if and only if B ∩ I ∩R ⊆ (BΓIΓR] for each bi-Γ-ideal B, each
interior Γ-ideal I and each right Γ-ideal R of S.

Theorem 3.8. Let (S,Γ,≤) be an ordered Γ-semigroup. Then S is right weakly
regular if and only if for each fuzzy bi-Γ-ideal f , each fuzzy interior Γ-ideal g
and each fuzzy right Γ-ideal h of S, f ∩ g ∩ h ⊆ f ◦ g ◦ h.

Proof. Let S be a right weakly regular ordered Γ-semigroup, f a fuzzy bi-Γ-
ideal, g a fuzzy interior Γ-ideal and h a fuzzy right Γ-ideal of S. Take any a ∈ S.
Since S is right weakly regular, there exist x, y ∈ S and α, β, γ ∈ Γ such that
a ≤ aαxβaγy. Now a ≤ (aαx)β(aαxβaγy)γy ≤ (aαxβa)α(xβaαx)β(aγyγyγy).
So (aαxβa, xβaαxβaγyγyγy) ∈ Aa. Now

(f ◦ g ◦ h)(a) =
∨

(p,q)∈Aa

{f(p) ∧ (g ◦ h)(q)}

≥ f(aαxβa) ∧ (g ◦ h)(xβaαxβaγyγyγy)

≥ f(a) ∧ {
∨

(r,s)∈Axβaαxβaγyγyγy

{g(r) ∧ h(s)}}.

Since (xβaαx, aγyγyγy) ∈ Axβaαxβaγyγyγy,∨
(r,s)∈Axβaαxβaγyγyγy

{g(r) ∧ h(s)} ≥ g(xβaαx) ∧ h(aγyγyγy)

≥ g(a) ∧ h(a).

So we get (f ◦ g ◦ h)(a) ≥ f(a) ∧ g(a) ∧ h(a). Hence f ∩ g ∩ h ⊆ f ◦ g ◦ h.
Conversely assume that f ∩ g ∩ h ⊆ f ◦ g ◦ h, for each fuzzy bi-Γ-ideal f ,

each fuzzy interior Γ-ideal g and each fuzzy right Γ-ideal h of S. Take any
a ∈ B ∩ I ∩ R, where B is a bi-Γ-ideal, I is an interior Γ-ideal and R is a
right Γ-ideal of S. By Lemma 2.11, χB , χI and χR are fuzzy bi-Γ-ideal, fuzzy
interior Γ-ideal and fuzzy right Γ-ideal of S respectively. Then, by hypothesis

(χB ∩ χI∩A)(a) ≤ (χB ◦ χI ◦ χR)(a)

⇒ χB(a) ∧ χI(a) ∧ χ(a) ≤ (χB ◦ χI ◦ χR)(a).

Since a ∈ B, a ∈ I and a ∈ R, we have χB(a) = 1 = χI(a) = χR(a). Thus
χB(a) ∧ χI(a) ∧ χ(a) = 1 ∧ 1 ∧ 1 = 1. Therefore (χB ◦ χI ◦ χR)(a) ≥ 1. So
(χB ◦ χI ◦ χR)(a) = 1. Now, by Corollary 3.3, χB ◦ χI ◦ χR = χ(BΓIΓA]. So
χ(BΓIΓR](a) = 1 implies a ∈ (BΓIΓR]. Therefore B∩I∩R ⊆ (BΓIΓR]. Hence
by Theorem 3.7, S is right weakly regular. �

Theorem 3.9. Let (S,Γ,≤) be an ordered Γ-semigroup. Then S is right weakly
regular if and only if each fuzzy right Γ-ideal of S is idempotent.

Proof. Let S be a right weakly regular ordered Γ-semigroup and f a fuzzy
right Γ-ideal of S. Take any a ∈ S. Since S is right weakly regular, there exist
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x, y ∈ S and α, β, γ ∈ Γ such that a ≤ aαxβaγy i.e., (aαx, aγy) ∈ Aa. Now

(f ◦ f)(a) =
∨

(p,q)∈Aa

{f(p) ∧ f(q)}

≥ f(aαx) ∧ f(aγy)

≥ f(a) ∧ f(a) = f(a).

This implies f ⊆ f ◦ f . Also, as f is fuzzy right Γ-ideal of S, f ◦ f ⊆ f .
Therefore f = f ◦ f .

Conversely assume that each fuzzy right Γ-ideal of S is idempotent. Take
any a ∈ S. Let A = (a∪aΓS], the right Γ-ideal generated by the element a of S.
By Lemma 2.11, χA is fuzzy right Γ-ideal of S. By hypothesis, (χA ◦χA)(a) =

χA(a) = 1 as χ(AΓA](a) = (χA ◦ χA)(a), χ(AΓA](a) = 1. Therefore a ∈ (AΓA].
Now, we have

a ∈ (AΓA] = ((a ∪ aΓS]Γ(a ∪ aΓS]]

= ((a ∪ aΓS)Γ(a ∪ aΓS)]

= (aΓa ∪ aΓaΓS ∪ aΓSΓa ∪ aΓSΓaΓS]

⊆ (aΓSΓaΓS].

Hence S is right weakly regular. �

Corollary 3.10. Let (S,Γ,≤) be an ordered Γ-semigroup. Then the following
are equivalent:

(1) S is right weakly regular;
(2) Every fuzzy right Γ-ideal is idempotent;
(3) f ∩ g ⊆ f ◦ g for each fuzzy right Γ-ideal f and fuzzy Γ-ideal g of S.

Corollary 3.11. [5] Let (S,Γ,≤) be an ordered Γ-semigroup. A fuzzy subset
f of S is a fuzzy right Γ-ideal of S if and only if

(1) f ◦ 1 � f ; and
(2) if x ≤ y, then f(x) ≥ f(y).

Corollary 3.12. [6] An ordered Γ-semigroup S is intra-regular if and only if
for each fuzzy right Γ-ideal f and each fuzzy left Γ-ideal g of S, f ∧ g � g ◦ f .

Theorem 3.13. Let (S,Γ,≤) be an ordered Γ-semigroup. Then the following
are equivalent:

(1) S is both intra-regular and right weakly regular;
(2) f ∩ g ∩ h ⊆ f ◦ g ◦ h for each fuzzy quasi-Γ-ideal f , each fuzzy right

Γ-ideals g and h of S;
(3) f ∩g∩h ⊆ f ◦g ◦h for each fuzzy bi-Γ-ideal f , each fuzzy right Γ-ideals

g and h of S;
(4) f ∩ g ∩ h ⊆ f ◦ g ◦ h for each fuzzy generalized bi-Γ-ideal f , each fuzzy

right Γ-ideals g and h of S.
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Proof. (1) ⇒ (4) Let S be both intra-regular and right weakly regular ordered
Γ-semigroup. Let f be any fuzzy generalized bi-Γ-ideal and g, h be the fuzzy
right Γ-ideals of S. Let a ∈ S. Since S is right weakly regular and intra-regular
ordered Γ-semigroup, there exist x1, y1, x2, y2 ∈ S and α1, β1, γ1, α2, β2, γ2 ∈ Γ

such that a ≤ aα1x1β1aγ1y1 and a ≤ x2α2aβ2aγ2y2 which implies that

a ≤ aα1x1β1(x2α2aβ2aγ2y2)γ1y1

= (aα1x1β1x2)α2(aβ2aγ2y2γ1y1)

i.e., (aα1x1β1x2, aβ2aγ2y2γ1y1) ∈ Aa. Therefore

(f ◦ g ◦ h)(a) =
∨

(p,q)∈Aa

{f(p) ∧ (g ◦ h)(q)}

≥ f(aα1x1β1x2) ∧ (g ◦ h)(aβ2aγ2y2γ1y1)

≥ f(a) ∧ {
∨

(r,s)∈Aaβ2aγ2y2γ1y1

{g(r) ∧ h(s)}}.

Since (a, aγ2y2γ1y1) ∈ Aaβ2aγ2y2γ1y1 ,∨
(r,s)∈Aaβ2aγ2y2γ1y1

{g(r) ∧ h(s)} ≥ g(a) ∧ h(aγ2y2γ1y1)

≥ g(a) ∧ h(a).

Finally we get (f ◦g ◦h)(a) ≥ f(a)∧g(a)∧h(a). Therefore f ∩g∩h ⊆ f ◦g ◦h.
(4) ⇒ (3) Obvious, as each fuzzy bi-Γ-ideal is fuzzy generalized bi-Γ-ideal.
(3) ⇒ (2) Obvious, as each fuzzy quasi-Γ-ideal is fuzzy bi-Γ-ideal.
(2) ⇒ (1) Let (2) holds i.e., f ∩ g ∩ h ⊆ f ◦ g ◦ h for each fuzzy quasi-Γ-
ideal f , each fuzzy right Γ-ideals g and h of S. Let g be any fuzzy right
Γ-ideal of S. Since fuzzy subset 1 is a fuzzy quasi-ideal of S, by hypothesis,
g = g∩ 1∩ g ⊆ g ◦ 1 ◦ g ⊆ g ◦ g ⊆ g ◦ 1 ⊆ g. So g = g ◦ g. Therefore by Theorem
3.9, S is right weakly regular.

Next, since each fuzzy left Γ-ideal f is fuzzy quasi-Γ-ideal and the fuzzy
subset 1 is fuzzy right Γ-ideal of S, we have, f ∩g = 1∩f ∩g ⊆ 1◦f ◦g ⊆ f ◦g.
Hence by Corollary 3.12, S is intra-regular. �

Corollary 3.14. [6] Let (S,Γ,≤) be an ordered Γ-semigroup f, g fuzzy subsets
of S, and a ∈ S. Then the following are equivalent:

(1) (f ◦ g)(a) 6= 0;
(2) There exists (x, y) ∈ Aa such that f(x) 6= 0 and g(y) 6= 0.

Corollary 3.15. [6] Let (S,Γ,≤) be an ordered Γ-semigroup, f a fuzzy subsets
of S and a ∈ S. Then the following are equivalent:

(1) (f ◦ 1)(a) 6= 0;
(2) There exists (x, y) ∈ Aa such that f(x) 6= 0.
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Corollary 3.16. [6] Let (S,Γ,≤) be an ordered Γ-semigroup, g a fuzzy subsets
of S and a ∈ S. Then the following are equivalent:

(1) (1 ◦ g)(a) 6= 0;
(2) There exists (x, y) ∈ Aa such that g(y) 6= 0.

Theorem 3.17. Let (S,Γ,≤) be an ordered Γ-semigroup. Then S is right
weakly regular if and only if for each fuzzy subset f of S, f � f ◦ 1 ◦ f ◦ 1.

Proof. Let f be a fuzzy subset of S and a ∈ S. Since S is right weakly
regular, there exist x, y ∈ S and α, β, γ ∈ Γ such that a ≤ aαxβaγy i.e.,
(aαx, aγy) ∈ Aa. Now

(f ◦ 1 ◦ f ◦ 1)(a) =
∨

(p,q)∈Aa

{(f ◦ 1)(p) ∧ (f ◦ 1)(q)}

≥ (f ◦ 1)(aαx) ∧ (f ◦ 1)(aγy).

Since (a, x) ∈ Aaαx and (a, y) ∈ Aaγy, we have

(f ◦ 1)(aαx) ∧ (f ◦ 1)(aγy)

= {
∨

(u,v)∈Aaαx

{f(u) ∧ 1(v)}} ∧ {
∨

(r,s)∈Aaγy

{f(r) ∧ 1(s)}}

≥ (f(a) ∧ 1(x)) ∧ (f(a) ∧ 1(y))

= f(a) ∧ f(a) = f(a).

Therefore f � f ◦ 1 ◦ f ◦ 1.
Conversely suppose that a ∈ S. Since fa is a fuzzy subset of S, by hypothesis,

1 = fa(a) ≤ (fa ◦ 1 ◦ fa ◦ 1)(a) ≤ 1. So (fa ◦ 1 ◦ fa ◦ 1)(a) 6= 0. By Corollary
3.14, there exists (x, y) ∈ Aa such that (fa ◦ 1)(x) 6= 0 and (fa ◦ 1)(y) 6= 0. By
Corollary 3.15, there exists (u, v) ∈ Ax and (r, s) ∈ Ay such that fa(u) 6= 0

and fa(r) 6= 0. This implies that a = u = r. As (x, y) ∈ Aa, (u, v) ∈ Ax and
(r, s) ∈ Ay, we have a ≤ xαy, x ≤ uβv and y ≤ rγs for some α, β, γ ∈ Γ.
Therefore a ≤ uβvαrγs. Since a = u = r, a ≤ aβvαaγs. Hence S is right
weakly regular. �

Corollary 3.18. [5] Let (S,Γ,≤) be an ordered Γ-semigroup. A fuzzy subset
f of S is a fuzzy left Γ-ideal of S if and only if

(1) 1 ◦ f � f ;

(2) if x ≤ y, then f(x) ≥ f(y).

Theorem 3.19. Let (S,Γ,≤) be an ordered Γ-semigroup. A fuzzy subset f of
S is a fuzzy interior Γ-ideal of S if and only if

(1) 1 ◦ f ◦ 1 � f and
(2) if x ≤ y, then f(x) ≥ f(y).
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Proof. Let f be any fuzzy interior Γ-ideal of an ordered Γ-semigroup S, and
let a ∈ S. If Aa = φ, then (1 ◦ f ◦ 1)(a) = 0 ≤ f(a). On the other hand

(1 ◦ f ◦ 1)(a) =
∨

(y,z)∈Aa

{(1 ◦ f)(y) ∧ 1(z)}

=
∨

(y,z)∈Aa

(1 ◦ f)(y).

It is sufficient to show that for each (y, z) ∈ Aa,∨
(y,z)∈Aa

(1 ◦ f)(y) ≤ f(a).

So take any (y, z) ∈ Aa. If Ay = φ, then equation (1) holds. So let Ay 6= φ.

Then
(1 ◦ f)(y) =

∨
(x,w)∈Ay

{1(x) ∧ f(w)} =
∨

(x,w)∈Ay

f(w).

Now we need to show only that f(w) ≤ f(a) for each (x,w) ∈ Ay. So take
any (x,w) ∈ Ay. Then y ≤ xαw for some α ∈ Γ. As (y, z) ∈ Aa, a ≤ yβz

for some β ∈ Γ. Therefore a ≤ xαwβz. Since f is an interior Γ-ideal of S,
f(a) ≥ f(xαwβz) ≥ f(w). Hence f(w) ≤ f(a) for each (x,w) ∈ Ay.

Conversely assume that x, a, y ∈ S and α, β ∈ Γ. Since (1 ◦ f ◦ 1) � f, (1 ◦
f ◦ 1)(xαaβy) ≤ f(xαaβy). Since (xαa, y) ∈ Axαaβy,

(1 ◦ f ◦ 1)(xαaβy) =
∨

(p,q)∈Axαaβy

{(1 ◦ f)(p) ∧ 1(q)}

≥ (1 ◦ f)(xαa) ∧ 1(y) = (1 ◦ f)(xαa).

Since (x, a) ∈ Axαa,

(1 ◦ f)(xαa) =
∨

(r,s)∈Axαa

{1(r) ∧ f(s)} ≥ 1(x) ∧ f(a) = f(a).

Thus f(xαaβy) ≥ f(a). Hence f is a fuzzy interior Γ-ideal of S. �

Theorem 3.20. Let (S,Γ,≤) be a right weakly regular ordered Γ-semigroup.
Then the following holds:

(1) Each fuzzy interior Γ-ideal of S is idempotent;
(2) Each fuzzy Γ-ideal of S is idempotent;
(3) Each fuzzy right Γ-ideal of S is idempotent.

Proof. (1). Let S be a right weakly regular ordered Γ-semigroup and f be
any fuzzy interior Γ-ideal of S. Take any a ∈ S. Since S is right weakly
regular, there exist x, y ∈ S and α, β, γ ∈ Γ such that a ≤ aαxβaγy ≤
(aαxβaγy)αxβaγy = ((aαx)βaγy)α(xβaγy) i.e., ((aαx)βaγy, xβaγy) ∈ Aa.
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Now

(f ◦ f)(a) =
∨

(p,q)∈Aa

{f(p) ∧ f(q)}

≥ f((aαx)βaγy) ∧ f(xβaγy)

≥ f(a) ∧ f(a) = f(a).

This implies f ⊆ f ◦ f . Again, as S is right weakly regular, by Theorem 3.17
f � f ◦ 1 ◦ f ◦ 1. Therefore f ◦ f ⊆ f ◦ 1 ◦ f ◦ 1 ◦ f = f ◦ (1 ◦ f ◦ 1) ◦ f . As f

is a fuzzy interior Γ-ideal, f ◦ (1 ◦ f ◦ 1) ◦ f ⊆ f ◦ f ◦ f ⊆ 1 ◦ f ◦ 1 ⊆ f . Thus
f ◦ f ⊆ f . Hence f = f ◦ f .
(2). Obvious, as each fuzzy Γ-ideal is a fuzzy interior Γ-ideal of S.
(3). Follows by Theorem 3.9. �

Proposition 3.21. Let (S,Γ,≤) be a right weakly regular ordered Γ-semigroup,
f a fuzzy right Γ-ideal and g a fuzzy Γ-ideal of S. Then f ◦g is a fuzzy quasi-Γ-
ideal of S.

Proof. Let (S,Γ,≤) be a right weakly regular ordered Γ-semigroup, f a fuzzy
right Γ-ideal and g a fuzzy Γ-ideal of S. Then, by Theorem 3.4, f ∧ g = f ◦ g.
Since f ∧ g � f, g, (f ∧ g) ◦ 1 � f ◦ 1, g ◦ 1. As f is a fuzzy right Γ-ideal,
f ◦ 1 � f . Therefore (f ∧ g) ◦ 1 � f . Again 1 ◦ (f ∧ g) � 1 ◦ f, 1 ◦ g. As g is
fuzzy Γ-ideal, 1 ◦ g � g. Hence 1 ◦ (f ∧ g) � g. Therefore 1 ◦ (f ∧ g) � g. Thus
((f ∧ g) ◦ 1) ∧ (1 ◦ (f ∧ g)) � f ∧ g.

Next, take any x, y ∈ S such that x ≤ y. Then we have to show that
(f ∧ g)(x) ≥ (f ◦ g)(y). Since f and g are fuzzy right Γ-ideal and fuzzy Γ-ideal
of S, f(x) ≥ f(y) and g(x) ≥ g(y). Now

(f ∧ g)(x) = min{f(x), g(x)}
≥ min{f(y), g(y)} = (f ∧ g)(y).

Therefore f ◦ g is fuzzy quasi-Γ-ideal of S. �

Definition 3.22. An ordered Γ-semigroup S is called semisimple if for each
a ∈ S, there exist x, y, z ∈ S and α, β, γ, δ ∈ Γ such that a ≤ xαaβyγaδz.

Corollary 3.23. [2] Every fuzzy interior Γ-ideal of a semisimple ordered Γ-
semigroup S is a fuzzy Γ-ideal.

Theorem 3.24. Let (S,Γ,≤) be an ordered Γ-semigroup. Then the following
are equivalent:

(1) S is semisimple;
(2) Every fuzzy Γ-ideal of S is idempotent;
(3) every fuzzy interior Γ-ideal of S is idempotent;
(4) f ∧ g = f ◦ g, for every fuzzy Γ-ideal f and g of S;
(5) f ∧ g = f ◦ g, for every fuzzy Γ-ideal f and every fuzzy interior Γ-ideal

g of S;
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(6) f ∧ g = f ◦ g, for every fuzzy interior f and every fuzzy Γ-ideal g of S;
(7) f ∧ g = f ◦ g, for every fuzzy interior Γ-ideal f and g of S;
(8) f ◦ g = g ◦ f and f ◦ f = f for each fuzzy Γ-ideal f and g of S;
(9) f ◦ g = g ◦ f and f ◦ f = f for each fuzzy interior Γ-ideal f and g of S.

Proof. (1) ⇒ (7) Assume that (1) holds. Let f and g be any fuzzy interior
Γ-ideals of S. By Corollary 3.23, f and g are fuzzy Γ-ideals of S. So f ◦ g ⊆
f ◦ 1 ⊆ f and f ◦ g ⊆ 1 ◦ g ⊆ g. Therefore f ◦ g ⊆ f ∧ g.

Next take any a ∈ S. Since S is semisimple, there exist x, y, z ∈ S and
α, β, γ, δ ∈ Γ such that a ≤ xαaβyγaδz i.e., (xαaβy, aδz) ∈ Aa. Hence

(f ◦ g)(a) =
∨

(p,q)∈Aa

{f(p) ∧ g(q)}

≥ f(xαaβy) ∧ g(aδz)

≥ f(a) ∧ g(a) = (f ∩ g)(a).

Therefore f ∧ g ⊆ f ◦ g. Hence f ∧ g = f ◦ g
(7) ⇒ (6) Obvious, as every fuzzy Γ-ideal is fuzzy interior Γ-ideal.
(6) ⇒ (4) Obvious, as every fuzzy Γ-ideal is fuzzy interior Γ-ideal.
(7) ⇒ (5) ⇒ (4) ⇒ (2).

(7) ⇒ (3) ⇒ (2) and (7) ⇒ (9) ⇒ (8) ⇒ (2).

(2) ⇒ (1) Assume that (2) holds. Take any a ∈ S. Let J(a) = (a ∪ aΓS ∪
SΓa ∪ SΓaΓS], the Γ-ideal generated by a. Then, by Lemma 2.11, fJ(a) is a
fuzzy Γ-ideal of S. So f(J(a)ΓJ(a)](a) = (f(J(a)](a) ◦ f(J(a)](a)) = f(J(a)](a) = 1.
Implying that a ∈ (J(a)ΓJ(a)]. Therefore

a ∈ ((a ∪ aΓS ∪ SΓa ∪ SΓaΓS]Γ(a ∪ aΓS ∪ SΓa ∪ SΓaΓS]]

= ((a ∪ aΓS ∪ SΓa ∪ SΓaΓS)Γ(a ∪ aΓS ∪ SΓa ∪ SΓaΓS)]

= (aΓa ∪ aΓaΓS ∪ aΓSΓaΓS ∪ aΓSΓa ∪ aΓSΓaΓS ∪ aΓSΓSΓaΓS

∪ SΓaΓaΓS ∪ SΓaΓSΓa ∪ SΓaΓSΓaΓS ∪ SΓaΓSΓa ∪ SΓaΓSΓaΓS

∪ SΓaΓSΓSΓ ∪ SΓaΓSΓSΓaΓS]

⊆ (SΓaΓSΓaΓS].

Hence S is semisimple. �

Conclusion: In ordered semigroups, the class of regular ordered semigroups
play an important role in studying the structures of ordered semigroups, for in-
stance, Kehayopulu and Tsingelis [7] studied the class of regular orddered semi-
groups by employing fuzzy ideals of ordered semigroups. Thereafter many au-
thors such as [2, 5, 6, 13] had studied the class of regular ordered Γ-semigroups.
In this paper, we enhance the understanding of right weakly regular class of
ordered Γ-semigroups through its fuzzy Γ-ideals, fuzzy bi-Γ-ideals, fuzzy gener-
alized bi-Γ-ideals and fuzzy interior Γ-ideals which will motivate the researchers
towards this new class in ordered Γ-semigroups. Since ordered Γ-semigroups
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are the generalizations of ordered semigroups, all the results of this paper hold
true for ordered semigroups by simply taking the set Γ as any singleton set
which is the main application of the results of this paper and a reasonable
justification of the new notions introduced.
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