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Abstract. The structure of an α(β,β)-topological ring is richer in com-

parison with the structure of an α(β,β)-topological group. The theory

of α(β,β)-topological rings has many common features with the theory

of α(β,β)-topological groups. Formally, the theory of α(β,β)-topological

abelian groups is included in the theory of α(β,β)-topological rings.

The purpose of this paper is to introduce and study the concepts

of α(β,β)-topological rings and α(β,γ)-topological R-modules. we show

how they may be introduced by specifying the neighborhoods of zero,

and present some basic constructions. We provide fundamental concepts

and basic results on α(β,β)-topological rings and α(β,γ)-topological R-

modules.
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1. Introduction

Since the 1940s, systematic investigation of topological rings has been ac-

tively carried out using the frame of topological algebra. Several parts of the
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theory of topological rings have been exposed in mathematical texts. For ex-

ample, topological fields (of real, complex, p-adic numbers, etc.) are under

analysis from different points of view while taking into account complexly their

algebraic, topological, metrical, ordered, and other structures.

One of the first fundamental results in the theory of topological rings was

obtained by L. S. Pontryagin in the classification of locally compact skew fields

and was included in his famous book [20] on topological groups. Some proper-

ties of topological rings and modules were also noted in books [3, 16]. Intensive

research during the last fifty years has been carried out in the field of normed

and Banach algebras as well; those algebras form one of the most important

classes of topological rings (see, for example [5, 7, 8, 9, 18]). The theory of

topological linear spaces [4], one of many rich chapters on functional analy-

sis, is also a good introduction to the theory of topological modules. Another

source of topological modules is the theory of topological Abelian groups, in

particular, duality theory [20].

In 2013, Ibrahim [10] introduced a strong form of α-open sets called αβ-open

via operation and studied some of its properties. Khalaf and Ibrahim [12, 13, 14]

continued studying the properties of operations defined on the family of α-open

sets introduced by Ibrahim [10].

2. Preliminaries

Let A be a subset of a topological space (G, τ). We denote the interior

and the closure of a set A by Int(A) and Cl(A) respectively. A subset A

of a topological space (G, τ) is called α-open [19] if A ⊆ Int(Cl(Int(A))).

By αO(G, τ), we denote the family of all α-open sets of G. An operation

β : αO(G, τ) → P (G) [10] is a mapping satisfying the condition, V ⊆ V β for

each V ∈ αO(G, τ). We call the mapping β an operation on αO(G, τ). A

subset A of G is called an αβ-open set [10] if for each point x ∈ A, there exists

an α-open set U of G containing x such that Uβ ⊆ A. The complement of an

αβ-open set is said to be αβ-closed. We denote the set of all αβ-open sets of

(G, τ) by αO(G, τ)β . The αβ-closure [10] of a subset A of G with an operation

β on αO(G) is denoted by αβCl(A) and is defined to be the intersection of

all αβ-closed sets containing A. An operation β on αO(G, τ) is said to be α-

regular if for every α-open sets U and V of each x ∈ G, there exists an α-open

set W of x such that W β ⊆ Uβ ∩ V β .

Definition 2.1. [12] Let (G, τ) be a topological space and x ∈ G, then a subset

N of G is said to be αβ-neighbourhood of x, if there exists an αβ-open set U

in G such that x ∈ U ⊆ N .

Definition 2.2. [14] Two subsets A and B of a topological space (G, τ) are

called αβ-separated if (αβCl(A) ∩B) ∪ (A ∩ αβCl(B)) = ϕ.



Topological rings and modules via operations 33

Definition 2.3. [14] A subset C of a space G is said to be αβ-disconnected if

there are nonempty αβ-separated subsets A and B of G such that C = A ∪B,

otherwise C is called αβ-connected.

Definition 2.4. [14] A set C is called maximal αβ-connected set if it is αβ-

connected and if C ⊆ D ⊆ G where D is αβ-connected, then C = D. A

maximal αβ-connected subset C of a space G is called an αβ-component of G.

Definition 2.5. [10] A topological space (G, τ) with an operation β on αO(G)

is said to be:

(1) αβT0 if for any two distinct points x, y ∈ X, there exists an αβ-open

set U such that either x ∈ U and y /∈ U or y ∈ U and x /∈ U .

(2) αβT1 if for any two distinct points x, y ∈ X, there exist two αβ-open

sets U and V containing x and y, respectively, such that y /∈ U and

x /∈ V .

(3) αβT2 if for any two distinct points x, y ∈ X, there exist two αγ-open

sets U and V containing x and y, respectively, such that U ∩ V = ϕ.

Definition 2.6. [13] A function f : (G, τ) → (G
′
, τ

′
) is said to be α(β,β′ )-open

if for any αβ-open set A of (G, τ), f(A) is αβ′ -open in (G
′
, τ

′
).

Definition 2.7. [10] A mapping f : (G, τ) → (G
′
, τ

′
) is said to be α(β,β′ )-

continuous if for each x of G and each αβ′ -open set V containing f(x), there

exists an αβ-open set U such that x ∈ U and f(U) ⊆ V .

Definition 2.8. [10] A mapping f : (G, τ) → (G, τ) is said to be α(β,β)-

homeomorphism, if f is bijective, α(β,β)-continuous and f−1 is α(β,β)-continuous.

Corollary 2.9. [14] A function f : G → G
′
is α(β,β′ )-continuous if and only

if f−1(V ) is αβ-open in G, for every αβ′ -open set V in G
′
.

Some parts of the theory of topological rings were systematically investigated

in a number of review papers [6, 15, 17, 21, 22, 26] as well as monographs

[2, 1, 23, 24, 25, 27, 28] and most of these references contains the following

definitions.

Definition 2.10. A group G is an algebraic structure consisting of a non-

empty set equipped with an operation on its elements that satisfies four condi-

tions, namely closure, associativity, identity and invertibility. Moreover, if the

operation is abelian then G is called an abelian group

Definition 2.11. Let G be an abelian group and B ⊆ G. Then B is called a

subgroup, if B is a group with respect to the existing operations.

A subset C of an abelian group G is called symmetric if −C = C.

Definition 2.12. A ring is a set R (possibly without the unitary element) with

two associative operations (addition and multiplication) such that:
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(1) R is an abelian group with respect to addition.

(2) The left and right distributive laws: a · (b + c) = a · b + a · c and

(b+ c) · a = b · a+ c · a are satisfied for all a, b, c ∈ R .

An element a of a ring R with the unitary element 1 is called invertible

if there exists b ∈ R such that a · b = b · a = 1. If all non-zero elements of R

are invertible, then R is called a skew field (a division ring). A commutative

skew field is called a field.

Definition 2.13. By an R-module M (unless otherwise stated) we mean a left

module over a ring R, that is, an abelian group M with given left multiplication

by elements of R such that the following conditions are satisfied:

(1) r · (m1 +m2) = r ·m1 + r ·m2.

(2) (r1 + r2) ·m = r1 ·m+ r2 ·m2.

(3) r1 · (r2m) = (r1r2) ·m, for all r1, r2, r ∈ R and m1,m2,m ∈ M (if R is

a ring with the unitary element 1, and 1 ·m = m for any m ∈ M , then

M is called unitary).

Definition 2.14. Let G be an abelian group (R-module, ring) and B ⊆ G.

Then B is called a subgroup (submodule, subring), if B is a group (R-module,

ring) with respect to the existing operations.

Let R be a ring and I ⊆ R, then I is a called left (right) ideal if I is a

subgroup of the additive group of R and r · i ∈ I (i · r ∈ I) for all i ∈ I, r ∈ R.

If I is both left and right ideal of a ring, then I is called a two-sided ideal

or, briefly, an ideal of the ring.

A non-empty subset S of the groupG is a subgroup ofG if x+S = S = S+x

for every x ∈ S. Equivalently, if for every x, y ∈ S, x− y ∈ S.

It is obvious that the group G and {0} both are subgroups of G.

Definition 2.15. Let n ∈ N, R be a ring and A,B ⊆ R. Let M be an

R-module, D,E ⊆ M , and C be a subset of either R or M , then put:

(1) A · C = {a · c|a ∈ A, c ∈ C}.
(2) A(1) = A and A(n) = A ·A(n−1), for n > 1.

(3) AC = {
∑k

i=1 ai · ci|ai ∈ A, ci ∈ C, 1 ≤ i ≤ k, k ∈ N}
(4) An = {

∑k
i=1 bi|bi ∈ A(n), 1 ≤ i ≤ k, k ∈ N}.

(5) (A : B)R = {r ∈ R|r ·B ⊆ A}.
(6) (D : E)R = {r ∈ R|r · E ⊆ D}.
(7) (D : A)M = {m ∈ M |A ·m ⊆ D}.
If E is a subgroup of the group M , then (E : D)R and (E : A)M are

subgroups of the groups R(+) and M , respectively.

If E is a submodule of the R-module M , then (E : D)R is a left ideal of the

ring R.

If E and D are submodules of the R-module M , then (E : D)R is an ideal

of the ring R.
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If E is a subgroup of the group M and A is a right ideal of the ring R, then

(E : A)M is a submodule of the R-module M .

Definition 2.16. Let M be an R-module, S ⊆ M and Q ⊆ R. If Q · S ⊆ S,

then the subset S is called Q-stable.

Definition 2.17. Let R be a ring. A left (right) annihilator of a subset U of

R is defined by lR = {a ∈ R|aU = 0} (rR = {a ∈ R|Ua = 0}).

Definition 2.18. Let (G,+) be abelian group and τ be a topology on G. A

triple (G,+, τ) is said to be a topological group if the following conditions are

satisfied:

(1) For any two elements a, b ∈ G and U ∈ τ such that a + b ∈ U , there

exist V,W ∈ τ with a ∈ V , b ∈ W and V +W ⊆ U .

(2) For any element a ∈ G and U ∈ τ such that −a ∈ U , there exists V ∈ τ

with a ∈ V and −V ⊆ U .

Definition 2.19. Let (R,+, ·) be a ring and (R, τ) be a topological space.

Then, (R,+, ·, τ) is called a topological ring if the following conditions are

satisfied:

(1) (R,+, τ) is topological group.

(2) For each elements a, b ∈ R and U ∈ τ such that a · b ∈ U , there exist

V,W ∈ τ with a ∈ V , b ∈ W and V ·W ⊆ U .

Definition 2.20. Let (K,+, ·) be a skew field (field) and (K, τ) be a topological

space. Then, (K,+, ·, τ) is called a topological skew field (field) if the following

conditions are satisfied:

(1) (K,+, ·, τ) is topological ring.
(2) For any non-zero element x ∈ K and any open set U containing x−1,

there exists an open set V containing the element x such that (V \
{0})−1 ⊆ U .

Definition 2.21. Let (R,+, ·, τ) be a topological ring. A left R-module M is

called a topological left R-module if on M is specified a topology such that M

is a topological abelian group and the following condition is satisfied:

For any r ∈ R and m ∈ M and arbitrary open set U containing the element

r · m in M , there exist an open set V containing the element r in R and an

open set W the element m in M such that V ·W ⊆ U .

We recall the following definitions and results from [11].

Definition 2.22. Let (G,+) be abelian group and τ be a topology on G.

A triple (G,+, τ) is said to be an α(β,β)-topological group if the following

conditions are satisfied:

(1) For any two elements a, b ∈ G and U ∈ αO(G, τ)β such that a+ b ∈ U ,

there exist V,W ∈ αO(G, τ)β with a ∈ V , b ∈ W and V +W ⊆ U .
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(2) For any element a ∈ G and U ∈ αO(G, τ)β such that −a ∈ U , there

exists V ∈ αO(G, τ)β with a ∈ V and −V ⊆ U .

Definition 2.23. A family Bx of subsets of an α(β,β)-topological abelian group

G is called a basis of αβ-neighborhoods of x ∈ G if any subset of Bx is an αβ-

neighborhood of x and any αβ-neighborhood of the element x contains some

subset from Bx.

Proposition 2.24. Let a family B0 of subsets of an α(β,β)-topological abelian

group G be a basis of αβ-neighborhoods of zero in G and β be an α-regular

operation on αO(G). Then, the following conditions are satisfied:

(1) 0 ∈
⋂

V ∈B0
V .

(2) For any subsets U and V from B0, there exists a subset W ∈ B0 such

that W ⊆ U ∩ V .

(3) For any subset U ∈ B0, there exists a subset V ∈ B0 such that V +V ⊆
U .

(4) For any subset U ∈ B0, there exists a subset V ∈ B0 such that −V ⊆ U .

Besides, if a ∈ G, then Ba = {a + V |V ∈ B0} is a basis of αβ-neighborhoods

of the element a.

Proposition 2.25. Let G be an α(β,β)-topological abelian group, a ∈ G, B and

C be subsets of G. Then, the following statements are true:

(1) The mappings f : G → G and fa : G → G, where f(x) = −x and

fa(x) = x + a, are both α(β,β)-homeomorphisms from the topological

space G onto itself.

(2) The following conditions are equivalent:

(a) B is αβ-open (αβ-closed).

(b) −B is αβ-open (αβ-closed).

(c) B + a is αβ-open (αβ-closed).

(3) If the subset B is αβ-open, then B + C is also an αβ-open.

Theorem 2.26. For any α(β,β)-topological abelian group G and β an α-regular

operation on αO(G), the following conditions are equivalent:

(1) G is an αβT2-space.

(2) {0} is αβ-closed subset in G.

(3) If B0 is a basis of αβ-neighborhoods of zero of G, then
⋂

V ∈B0
V = {0}.

(4) G is an αβT0-space.

(5) G is an αβT1-space.

Theorem 2.27. Let B be a subgroup of an α(β,β)-topological group (G,+, τ).

Then (B,+, αO(G)β |B) is a topological group.

Proposition 2.28. Let S be a subset of an α(β,β)-topological abelian group G

with a basis B0 of αβ-neighborhoods of zero. Then, αβCl(S) =
⋂

V ∈B0
(S+V ).
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Proposition 2.29. Let B be a subgroup of an α(β,β)-topological abelian group

G. Then αβCl(B) is a subgroup of the α(β,β)-topological group G.

Proposition 2.30. For an α(β,β)-topological abelian group G, the following

statements are true:

(1) If a ∈ G, and C(G) is an αβ-component containing zero, then C(G)+a

is an αβ-component of a.

(2) If C(G) is an αβ-component containing zero, then C(G) is an αβ-closed

subgroup.

3. α(β,β)-Topological Ring and Modules

In this section, we give some fundamental concepts and basic results on

α(β,β)-topological rings and modules. Moreover, we define and discuss the

properties of submodules, subrings and ideals by using α-operations.

Definition 3.1. Let (R,+, ·) be a ring and (R, τ) be a topological space.

Then, (R,+, ·, τ) is called an α(β,β)-topological ring if the following conditions

are satisfied:

(1) (R,+, τ) is α(β,β)-topological group.

(2) For each elements a, b ∈ R and U ∈ αO(R, τ)β such that a · b ∈ U ,

there exist V,W ∈ αO(R, τ)β with a ∈ V , b ∈ W and V ·W ⊆ U .

Example 3.2. Consider the ring (R,+, ·) = (Z3,+3, ·3). Let τ be the discrete

topology on Z3. For each A ∈ αO(Z3, τ), we define β on αO(Z3, τ) by

Aβ =

{
{1, 2} if A = {1},
Z3 if A ̸= {1}.

Then, (Z3,+3, ·3, τ) is an α(β,β)-topological ring.

Remark 3.3. By virtue of Definition 3.1, the additive group of any α(β,β)-

topological ring is an α(β,β)-topological abelian group.

Definition 3.4. Let (K,+, ·) be a skew field (field) and (K, τ) be a topological

space. Then, (K,+, ·, τ) is called an α(β,β)-topological skew field (field) if the

following conditions are satisfied:

(1) (K,+, ·, τ) is α(β,β)-topological ring.

(2) For any non-zero element x ∈ K and any αβ-open set U containing

x−1, there exists an αβ-open set V containing the element x such that

(V \ {0})−1 ⊆ U .

Example 3.5. Consider the field (K,+, ·) = (Z5,+5, ·5). Let τ = {ϕ,Z5, {0},
{4}, {0, 4}}. For each A ∈ αO(Z5, τ), we define β on αO(Z5, τ) by Aβ = Z5.

Then, (Z5,+5, ·5, τ) is an α(β,β)-topological field.

Remark 3.6. The multiplicative group of non-zero elements of the α(β,β)-topological

field is an α(β,β)-topological abelian group.
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Definition 3.7. Let (R,+, ·, τ) be an α(β,β)-topological ring. A left R-module

M is called an α(β,γ)-topological left R-module if on M is specified a topology

such that M is an α(γ,γ)-topological abelian group and the following condition

is satisfied:

For any r ∈ R and m ∈ M and arbitrary αγ-open set U containing the

element r ·m in M , there exist an αβ-open set V containing the element r in

R and an αγ-open set W the element m in M such that V ·W ⊆ U .

Example 3.8. Consider the ring (R,+, ·) = (R,+, ·), where R is the set of

all real numbers. Let τ be the indiscrete topology on R and τ1 = {ϕ, {0}}
be a topology on the ring ({0},+, ·). For each A ∈ αO(R, τ), we define β on

αO(R, τ) by Aβ = A and for each B ∈ αO({0}, τ1), we define γ on αO({0}, τ1)
by Bγ = {0}. Then, left R-module {0} is an α(β,γ)-topological left R-module.

Remark 3.9. In a similar way it is possible to investigate α(γ,β)-topological

right R-modules over an α(β,β)-topological ring. Any α(β,β)-topological ring

R is both an α(β,β)-topological left R-module and an α(β,β)-topological right

R-module.

Proposition 3.10. Let R be an α(β,β)-topological ring, M an α(β,γ)-topological

R-module, r ∈ R, a ∈ M , and Q a subset in R, B a subset in M . Then the

following statements are true:

(1) The mapping fr : M → M , where fr(x) = r · x, x ∈ M , is an α(γ,γ)-

continuous mapping of the topological space M into itself.

(2) The mapping fa : R → M , where fa(x) = x · a, x ∈ R, is an α(β,γ)-

continuous mapping of the topological space R to the topological space

M .

(3) αγCl(Q ·B) ⊇ αβCl(Q) · αγCl(B).

Proof. (1) Let x ∈ M and r ∈ R, then fr(x) = r ·x. Let U be any αγ-open

set of M containing r · x, then by Definition 3.7, there exist αβ-open

set V in R containing r and αγ-open set W in M containing x, such

that V ·W ⊆ U . This gives that fr(W ) = r ·W ⊆ V ·W ⊆ U . This

proves that fr is an α(γ,γ)-continuous mapping.

(2) Let x ∈ R and a ∈ M , then fa(x) = x · a. Let U be any αγ-open set

of M containing x · a, then by Definition 3.7, there exist αβ-open set

V in R containing x and αγ-open set W in M containing a, such that

V ·W ⊆ U . This gives that fa(V ) = V · a ⊆ V ·W ⊆ U . This proves

that fa is an α(β,γ)-continuous mapping.

(3) Let y ∈ αβCl(Q) · αγCl(B) and let U be an αγ-open set containing

the element y. Then, y = b · c, where b ∈ αβCl(Q) and c ∈ αγCl(B),

and, hence, there exist αβ-open set V in R containing b and αγ-open

set W in M containing c, such that V ·W ⊆ U . By virtue of the fact

that V ∩Q ̸= ϕ and W ∩B ̸= ϕ, elements b1 ∈ V ∩Q and c1 ∈ W ∩B
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can be found. Thus, b1 · c1 ∈ Q · B and b1 · c1 ∈ V · W ⊆ U , that is

(Q ·B) ∩ U ̸= ϕ. Consequently, αγCl(Q ·B) ⊇ αβCl(Q) · αγCl(B).

□

The proof of the following corollary is obvious and hence omitted.

Corollary 3.11. Let R be an α(β,β)-topological ring, a ∈ R, and let B and C

be subsets in R. Then, the following statements are true:

(1) The mappings Ra : R → R and La : R → R, where Ra(x) = x · a
and La(x) = a · x, for x ∈ R, are α(β,β)-continuous mappings of the

topological space R into itself.

(2) αβCl(B · C) ⊃ αβCl(B) · αβCl(C).

Proposition 3.12. Let R be an α(β,β)-topological ring with the unitary element

and M be an α(β,γ)-topological R-module. Let a ∈ R be an invertible element,

then:

(1) The mapping fa : M → M is α(γ,γ)-homeomorphism.

(2) The mappings Ra : R → R and La : R → R are α(β,β)-homeomorphisms.

Proof. Let B be an αγ-open subset of M , and b1 ∈ fa(B). Then b1 = fa(b) =

a · b for some b ∈ B. From b = a−1 · b1 and Definition 3.7, follows the existence

of an αγ-open set U1 of the element b1 in M such that a−1 · U1 ⊆ B. Then,

U1 ⊆ a ·B = fa(B) and, hence, fa(B) is αγ-open containing the element b1 in

M , that is, fa(B) is an αγ-open subset of M . Hence, fa is α(γ,γ)-open mapping.

In the same manner it can be proved that Ra and La are α(β,β)-open map-

pings too.

In view of the fact that all the mappings fa, Ra and La are bijections, the

proposition is proved completely. □

Corollary 3.13. Let R be an α(β,β)-topological ring with the unitary element,

a ∈ R be an invertible element and x ∈ R. Then, the following statements are

equivalent:

(1) U is an αβ-neighborhood of the element x in R.

(2) U · a is an αβ-neighborhood of the element x · a in R.

(3) a · U is an αβ-neighborhood of the element a · x in R.

Proof. (1) ⇒ (2). Obvious, since Ra : R → R is an α(β,β)-homeomorphism

(Proposition 3.12)and x · a = Ra(x) and U · a = Ra(U).

(2) ⇒ (3). The mapping θa : R → R, where θa(z) = a · (z · a−1) for

z ∈ R, is the composition of the α(β,β)-homeomorphism mappings Ra and La

(Proposition 3.12), hence, it is an α(β,β)-homeomorphism. Since θa(x ·a) = a ·x
and θa(U · a) = a · U .

(3) ⇒ (1). The equality La−1(a ·x) = x and La−1(a ·U) = U are obtained by

considering the α(β,β)-homeomorphism La−1 : R → R. Then, from Proposition

3.12, it follows that U is an αβ-neighborhood of x. □
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The proof of the following results are clear, so it is omitted.

Corollary 3.14. Let a be an invertible element of an α(β,β)-topological ring R

with the unitary element. Then, the following statements are equivalent:

(1) U is an αβ-neighborhood of 0 in R.

(2) U · a is an αβ-neighborhood of 0 in R.

(3) a · U is an αβ-neighborhood of 0 in R.

Corollary 3.15. Let a be an invertible element of an α(β,β)-topological ring

R with the unitary element and let B ⊆ R. Then, the following conditions are

equivalent:

(1) B is αβ-open (αβ-closed).

(2) a ·B is αβ-open (αβ-closed).

(3) B · a is αβ-open (αβ-closed).

An element a ∈ (R, τ) is called an αβ-accumulation point (an αβ-limit) of a

sequence a1, a2, ... in (R, τ) if for any αβ-neighborhood V of a and any n ∈ N
(for some n ∈ N) we get that ai ∈ V for some i > n (for all i > n).

Proposition 3.16. Let K be an α(β,β)-topological skew field and let 0 ̸= a ∈ K.

If element a is an αβ-accumulation point (an αβ-limit) of a sequence of non-

zero elements a1, a2, ... ∈ K, then the element a−1 is an αβ-accumulation point

(an αβ-limit) of the sequence a−1
1 , a−1

2 , ... in the skew field K.

Proof. Let U be an αβ-neighborhood of the element a−1, and let V be an αβ-

neighborhood of the element a such that (V \{0})−1 ⊆ U . By virtue of the fact

that a is an αβ-accumulation point (an αβ-limit) of the sequence a1, a2, ..., we

get that for any n ∈ N (there exists n ∈ N) there exists i > n (for any i > n)

such that ai ∈ V . Since a−1
i ̸= 0, then a−1

i ∈ (V \ {0})−1 ⊆ U , that is, a−1 is

an αβ-accumulation point (an αβ-limit) of the sequence a−1
1 , a−1

2 , .... □

Proposition 3.17. Let K be an α(β,β)-topological skew field. Then, the map-

ping θ : K \ {0} → K \ {0}, where θ(x) = x−1 for x ̸= 0, is an α(β,β)-

homeomorphism of the topological subspace K \ {0} onto itself.

Proof. By Definition 3.4, θ is an α(β,β)-continuous mapping. Since θ = θ−1,

then θ is an α(β,β)-homeomorphism. □

Proposition 3.18. Let B0 be a basis of αβ-neighborhoods of zero of an α(β,β)-

topological ring R and β be an α-regular operation on αO(R). Then, the fol-

lowing conditions are satisfied:

(1) 0 ∈
⋂

V ∈B0
V .

(2) For any subsets U and V from B0, there exists a subset W ∈ B0 such

that W ⊆ U ∩ V .

(3) For any subset U ∈ B0, there exists a subset V ∈ B0 such that V +V ⊆
U .
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(4) For any subset U ∈ B0, there exists a subset V ∈ B0 such that −V ⊆ U .

(5) For any subset U ∈ B0, there exists a subset V ∈ B0 such that V ·V ⊆
U .

(6) For any subset U ∈ B0 and any element a ∈ R, there exists a subset

V ∈ B0 such that a · V ⊆ U and V · a ⊆ U .

Proof. Since B0 is a basis of αβ-neighborhoods of zero of the additive α(β,β)-

topological group R(+), the fulfillment of conditions (1) − (4) follows from

Proposition 2.24. The fulfillment of conditions (5) and (6) results from defini-

tion of α(β,β)-topological ring with regard to 0 · 0 = 0 and 0 · a = a · 0 = 0 for

any a ∈ R. □

Proposition 3.19. Let R be an α(β,β)-topological ring, B0 be a basis of αγ-

neighborhoods of zero of an α(β,γ)-topological R-module M and γ be an α-

regular operation on αO(M). Then conditions (1) to (4) of Proposition 2.24,

are satisfied together with the following conditions:

(1) For any subset U ∈ B0, there exist a subset V ∈ B0 and an αβ-

neighborhood W of zero in R such that W · V ⊆ U .

(2) For any subset U ∈ B0 and any element r ∈ R, there exists a subset

V ∈ B0 such that r · V ⊆ U .

(3) For any subset U ∈ B0 and any element a ∈ M , there exists an αβ-

neighborhood W of zero in R such that W · a ⊆ U .

Proof. To prove these conditions, it is necessary to use Proposition 2.24, con-

dition of Definition 3.7, and to take account of 0 · a = r · 0 = 0 for any r ∈ R

and a ∈ M . □

Proposition 3.20. Let B0 be a basis of αβ-neighborhoods of zero of an α(β,β)-

topological skew field K and β be an α-regular operation on αO(K), then con-

ditions (1) to (6) of Proposition 3.18, are satisfied together with the following

condition:

• For any U ∈ B0, there exists V ∈ B0 such that ((1+V )\{0})−1 ⊆ 1+U .

Proof. The conditions (1) to (6) of Proposition 3.18 are satisfied since we have

an α(β,β)-topological ring.

For the last condition,let U ∈ B0, then 1 + U is an αβ-neighborhood of the

unitary element on the strength of Proposition 2.25. Since 1−1 = 1, then there

exists an αβ-neighborhood W of the element 1 such that (W \ {0})−1 ⊆ 1+U .

On the strength of Proposition 2.24, the family B1 = {1+V |V ∈ B0} of subsets

of the skew field K is a basis of αβ-neighborhoods of 1. Consequently, there

exists V ∈ B0 such that 1+ V ⊆ W . Thus, ((1+ V ) \ {0})−1 ⊆ (W \ {0})−1 ⊆
1 + U , concluding the proof. □

The proof of the following corollary is obvious and hence omitted.
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Corollary 3.21. LetR be an α(β,β)-topological ring,M be an α(β,γ)-topological

R-module, a ∈ R, m ∈ M , S ⊆ R, N ⊆ M , β an α-regular operation on

αO(R) and γ an α-regular operation on αO(M). Let also B0(R) be a basis of

αβ-neighborhoods of zero in R, and B0(M) be a basis of αγ-neighborhoods of

zero in M . Then, the following statements are true:

(1) R has a basis of αβ-neighborhoods of zero consisting of symmetric αβ-

open neighborhoods.

(2) M has a basis of αγ-neighborhoods of zero consisting of symmetric

αγ-open neighborhoods.

(3) R has a basis of αβ-neighborhoods of zero consisting of symmetric αβ-

closed neighborhoods.

(4) M has a basis of αγ-neighborhoods of zero consisting of symmetric

αγ-closed neighborhoods.

(5) The element a has a basis of αβ-neighborhoods consisting of αβ-open

neighborhoods.

(6) The element m has a basis of αγ-neighborhoods consisting of αγ-open

neighborhoods.

(7) The element a has a basis of αβ-neighborhoods consisting of αβ-closed

neighborhoods.

(8) The element m has a basis of αγ-neighborhoods consisting of αγ-closed

neighborhoods.

(9) αβCl(S) =
⋂

U∈B0(R)(S + U).

(10) αγCl(N) =
⋂

V ∈B0(M)(N + V ).

(11) The subset
⋂

U∈B0(R) U is αβ-closed in R.

(12) The subset
⋂

V ∈B0(M) V is αγ-closed in M .

Proof. The proof is clear. □

Proposition 3.22. Let a be an invertible element of an α(β,β)-topological ring

R with the unitary element, Bx(R) be a basis of αβ-neighborhoods of the element

x ∈ R. Then, {a · U |U ∈ Bx(R)} and {U · a|U ∈ Bx(R)} are bases of αβ-

neighborhoods of the elements a·x and x·a, respectively. In particular, if x = 0,

then, {a ·U |U ∈ B0(R)} and {U · a|U ∈ B0(R)} are bases of αβ-neighborhoods

of zero.

Proof. The proof results from Corollary 3.13 and Corollary 3.14. □

Corollary 3.23. Let β be an α-regular operation on αO(R), then for any

α(β,β)-topological ring R, then the following statements are equivalent:

(1) R is an αβ-T2-space.

(2) {0} is αβ-closed subset in R.

(3) If B0 is a basis of αβ-neighborhoods of 0 of R, then
⋂

V ∈B0
V = {0}.

(4) R is an αβ-T0-space.

(5) R is an αβ-T1-space.
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Proof. The proof is similar to the proof of Theorem 2.26. □

Definition 3.24. LetR be an α(β,β)-topological ring,M be an α(β,γ)-topological

R-module. A subset Q of the ring R (a subset N of R-module M) is called a

subring of the α(β,β)-topological ring R (a submodule of the α(β,γ)-topological

R-module M) if Q is a subring of R (if N is a submodule of R-module M)

and ring Q (R-module N) is endowed with the family αO(R)β |Q (αO(M)γ |N)

induced by the αO(R)β (αO(M)γ).

Theorem 3.25. Let Q be a subring of an α(β,β)-topological ring (R,+, ·, τ).
Then (Q,+, ·, αO(R)β |Q) is a topological ring.

Proof. Due to Theorem 2.27, (Q,+, αO(R)β |Q) is a topological abelian group.

Let x, y be elements of Q and U ∈ αO(R)β |Q containing x ·y, then U = U1∩Q,

where U1 ∈ αO(R)β containing x ·y. Let V1 and W1 be αβ-open sets containing

x and y respectively such that V1 ·W1 ⊆ U1. Then V = V1∩Q and W = W1∩Q

are in αO(R)β |Q containing x and y respectively, besides,

V ·W = (V1 ∩Q) · (W1 ∩Q) ⊆ (V1 ·W1) ∩Q ⊆ U1 ∩Q = U .

Thus, (Q,+, ·, αO(R)β |Q) is a topological ring. □

Remark 3.26. Let N be a submodule of an α(β,γ)-topological R-module M .

Then (N,+, ·, αO(M)γ |N) is a topological R-module.

Definition 3.27. Let K be an α(β,β)-topological skew field (field). A subset

H of K is called a skew subfield (a subfield) of the α(β,β)-topological skew field

(field) K, if H is a skew subfield (subfield) of K and H is endowed with the

family αO(K)β |H induced by the αO(K)β .

Proposition 3.28. Let H be a skew subfield (subfield) of an α(β,β)-topological

skew field (field) (K,+, ·, τ). Then, (H,+, ·, αO(K)β |H) is a topological skew

field (field).

Proof. By Theorem 3.25, (H,+, ·, αO(K)β |H) is a topological ring.

Let 0 ̸= x ∈ H and U
′ ∈ αO(K)β |H containing the element x−1. Then,

there exists an αβ-open set U containing x−1 in (K, τ) such that U ∩H = U
′
.

Since K is an α(β,β)-topological skew field (field), then it is possible to find

an αβ-open set V containing x in (K, τ) such that (V \ {0})−1 ⊆ U . Then,

V ∩H ∈ αO(K)β |H containing x, besides,

((V ∩H) \ {0})−1 = [(V \ {0}) ∩ (H \ {0})]−1

= (V \ {0})−1 ∩ (H \ {0})−1 ⊆ (V \ {0})−1 ∩H ⊆ U ∩H = U
′
.

This completes the proof. □

Proposition 3.29. Let Q be a subset of an α(β,β)-topological ring R, and N be

a subset of an α(β,γ)-topological R-module M . If N is a Q-stable subset, then

αγCl(N) is an αβCl(Q)-stable subset.
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Proof. Since N is a Q-stable subset, then Q ·N ⊆ N . Then, due to Proposition

3.10, αβCl(Q) · αγCl(N) ⊆ αγCl(Q · N) ⊆ αγCl(N), that is, αγCl(N) is an

αβCl(Q)-stable subset. □

Proposition 3.30. Let R be an α(β,β)-topological ring and M be an α(β,γ)-

topological R-module. Let Q be a subring of the ring R, and N be a Q-submodule

of R-module M , then:

(1) αβCl(Q) is a subring of the α(β,β)-topological ring R.

(2) αγCl(N) is an αβCl(Q)-module.

Proof. By Proposition 2.29, αβCl(Q) and αγCl(N) are subgroups of α(β,β)-

topological abelian group R and α(γ,γ)-topological abelian group M respec-

tively. Since Q is a Q-stable subset of the α(β,β)-topological R-module R and

N is a Q-stable subset of the α(β,γ)-topological R-module M , then, due to

Proposition 3.29:

(1) αβCl(Q) is an αβCl(Q)-stable subset of the α(β,β)-topologicalR-module

R, that is, αβCl(Q) is a subring of R.

(2) αγCl(N) is an αβCl(Q)-stable subset of the α(β,γ)-topologicalR-module

M , and since αβCl(Q) is a subring of R, then αγCl(N) is an αβCl(Q)-

module.

□

The proof of the following results are clear, so it is omitted.

Corollary 3.31. Let R be an α(β,β)-topological ring and M be an α(β,γ)-

topological R-module.

(1) Let Q be a subring of a ring R, αβCl(Q) = R and N be a Q-submodule

of an α(β,γ)-topological R-module M . Then, αγCl(N) is a submodule

of the α(β,γ)-topological R-module.

(2) Let N be a submodule of R-module M . Then, αγCl(N) is a submodule

of the α(β,γ)-topological R-module.

Corollary 3.32. Let R be an α(β,β)-topological ring and I be a left (right,

two-sided) ideal of the ring R. Then, αβCl(I) is a left (right, two-sided) ideal

of the ring R.

Corollary 3.33. Let B0(M) be a basis of αγ-neighborhoods of zero of an α(β,γ)-

topological R-module M , then M0 =
⋂

V ∈B0(M) V is the smallest αγ-closed

submodule of M .

Proof. Due to Proposition 2.28, M0 = αγCl({0}), then, according to the Corol-
lary 3.31 (2), M0 is an αγ-closed submodule of M . Let N be an αγ-closed sub-

module of M , then, from {0} ⊆ N results that M0 = αγCl({0}) ⊆ αγCl(N) =

N , that is, M0 is the smallest αγ-closed submodule of M . □
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Corollary 3.34. Let B0(R) be a basis of αβ-neighborhoods of zero of the α(β,β)-

topological ring R, then R0 =
⋂

V ∈B0(R) V is the smallest αβ-closed two-sided

ideal of R.

Proof. The result follows from Corollary 3.33, considering R as a left and right

α(β,γ)-topological R-module. □

Remark 3.35. If β is an α-regular operation on αO(R), then in view of Theorem

2.26, it is easy to see that in an α(β,β)-topological ring R (α(β,γ)-topological R-

module M) the smallest αβ-closed ideal (smallest αγ-closed submodule) equals

zero if and only if R (R-module M) is αβ-T2-space (αγ-T2-space).

The proof of the following result is clear, so it is omitted.

Corollary 3.36. If a subgroup of the additive group of an α(β,β)-topological

ring R (α(β,γ)-topological R-module M) is αβ-open (αγ-open), then it is also

αβ-closed (αγ-closed). In particular, any αβ-open subring, any αβ-open left

(right, two-sided) ideal of the ring R or αγ-open submodule of any R-module

M is αβ-closed (or αγ-closed).

Remark 3.37. An αβ-connected α(β,β)-topological ring R has no αβ-open sub-

groups of additive group, in particular αβ-open subrings, αβ-open left (right,

two sided) ideals different from the R.

Remark 3.38. An αγ-connected α(β,γ)-topological module M does not contain

αγ-open subgroups of the additive group, in particular αγ-open submodules,

different from M .

Corollary 3.39. The αγ-component containing zero of an α(β,γ)-topological R-

module M is an αγ-closed submodule, and the αβ-component containing zero

of an α(β,β)-topological ring R is an αβ-closed two-sided ideal.

Proof. Let C(M) be the αγ-component containing zero of an R-module M .

Then, due to Proposition 2.30, C(M) is an αγ-closed subgroup of the additive

group of M . Let r ∈ R, then the mapping fr : M → M , where fr(m) = r ·m
for m ∈ M , is an α(γ,γ)-continuous mapping of the topological space M to

itself. Then r ·C(M) = fr(C(M)) is an αγ-connected subset in M and besides,

0 ∈ r · C(M). Therefore, r · C(M) ⊆ C(M), that is, C(M) is an αγ-closed

submodule of the module M .

Considering R as left and right α(β,β)-topological R-modules, we obtain that

the αβ-component C(R) of the α(β,β)-topological ring R is an αβ-closed two-

sided ideal of R. □

Proposition 3.40. Let R be an α(β,β)-topological ring, N be an αγ-closed

non-empty subset of an α(β,γ)-topological R-module M , x ∈ M , a ∈ R and γ

be an α-regular operation on αO(M). Then, the subset (N : x)R is αβ-closed

in R, and the subset (N : a)M is αγ-closed in M .
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Proof. Let B0(M) be a basis of αγ-neighborhoods of zero of M , r ∈ αβCl((N :

x)R), m ∈ αγCl((N : a)M ) and U ∈ B0(M). Due to conditions Proposition

3.19, there exist αβ-neighborhood of zero Vu in R and αγ-neighborhood of zero

Wu in M such that Vu · x ⊆ U and a · Wu ⊆ U . We can choose elements

ru ∈ (N : x)R and mu ∈ (N : a)M such that r − ru ∈ Vu, and m −mu ∈ Wu.

Then r ·x− ru ·x = (r− ru) ·x ∈ Vu ·x ⊆ U and a ·m−a ·mu = a · (m−mu) ∈
a ·Wu ⊆ U . Since ru · x ∈ N and a ·mu ∈ N , then r · x ∈ ru · x+ U ⊆ N + U ,

and analogously a ·m ∈ N + U . Hence,

r · x, a ·m ∈
⋂

U∈B0(M)(N + U) = αγCl(N) = N ,

that is, r ∈ (N : x)R and m ∈ (N : a)M . Thus, (N : x)R is αβ-closed in the

α(β,β)-topological ring R and (N : a)M is αγ-closed in the α(β,γ)-topological

module M . □

Corollary 3.41. Let R be an α(β,β)-topological ring, N be an αγ-closed non-

empty subset of an α(β,γ)-topological R-module M , X ⊆ M , A ⊆ R, β be an

α-regular operation on αO(R) and γ be an α-regular operation on αO(M).

Then, the following statements are true:

(1) (N : X)R is an αβ-closed subset in R, and (N : A)M is an αγ-closed

subset in M .

(2) If N is a subgroup of the additive group M , then (N : X)R is an αβ-

closed subgroup of the additive group of R and (N : A)M is an αγ-closed

subgroup of the additive group of M .

(3) If N is a subgroup of the additive group of M and A is a right ideal of

R, then (N : A)M is an αγ-closed submodule of M .

(4) If N is a submodule of M , then (N : X)R is an αβ-closed left ideal of

R.

(5) If X and N are submodules of M , then (N : X)R is an αβ-closed

two-sided ideal of R.

Proof. Since (N : X)R =
⋂

x∈X(N : x)R and (N : A)M =
⋂

a∈A(N : a)M , then

(N : X)R is αβ-closed and (N : A)M is αγ-closed by Proposition 3.40. Thus,

the statement (1) is proved. The statements (2)-(5) result from (1) and from

the corresponding statements of Definition 2.15. □

Corollary 3.42. Let R be an α(β,β)-topological ring, A ⊆ R, and let X be

a subset of an αγT2 α(β,γ)-topological R-module M . Let β be an α-regular

operation on αO(R) and γ be an α-regular operation on αO(M). Then, the

following statements are true:

(1) (0 : X)R is an αβ-closed left ideal of R.

(2) If X is a submodule of M , then (0 : X)R is an αβ-closed two-sided

ideal of R.

(3) If A is a right ideal of R, then (0 : A)M is an αγ-closed submodule of

M .
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Proof. The proof is similar to Corollary 3.41. □

Corollary 3.43. In an αβT2 α(β,β)-topological ring R a left annihilator (0 :

A)R of any non-empty subset A ⊆ R is an αβ-closed left ideal of R, where β is

an α-regular operation on αO(R).

Proof. The proof is similar to Corollary 3.41. □

Acknowledgments

The author would like to thank the anonymous referees for their constructive

comments.

References

1. V. I. Arnautov, M. I. Vodichar and A. V. Mikhalev, Introduction to The Theory of

Topological Rings and Modules, Kishinev, Stiintsa, 1981.

2. V. I. Arnautov, M. I. Vodinchar, S. T. Glavatsky, A. V. Mikhalev, Constructions of

Topological Rings and Modules, Kishinev, Stinitsa, 1988.

3. N. Bourbaki, Elements De Mathematique, Premiere partie. Livre III. Topologie generale,

Hermann.

4. N. Bourbaki, Elements De Mathematique. Premiere partie. Les structures fondamentales

de analyse. Livre V. Espaces vectoriels topologiques, Paris, Hermann and C. editeurs 6,

Rue de la Sorbonne 6.

5. I. M. Gelfand, D. A. Raikov, G. E. Shilov, Commutative Normed Rings, Physmatizdat,

1960.

6. O. Goldman, Sah Chin-Han, On a special class of locally compact rings, J. Algebra, 4(1),

(1966), 7l-95.

7. A. Ya. Helemskii, Topologies in Banach and Topological Algebras, Moscow, Moscow

Univ., 1986.

8. A. Ya. Helemskii, Homology in Banach and Topological Algebras, Moscow Univ., 1986.

9. A. Ya. Helemskii, Banach and Normed Algebras, Nauka, 1989.

10. H. Z. Ibrahim, On a class of αγ -open sets in a topological space, Acta Scientiarum.

Technology, 35(3), (2013), 539-545.

11. A. B. Khalaf, H. Z. Ibrahim, α(β,β)-Topological abelian group, Global Journal of Pure

and Applied Mathematics, 13(6), (2017), 2291-2306.

12. A. B. Khalaf, H. Z. Ibrahim, Some properties of operations on αO(X), International

Journal of Mathematics and Soft Computing, 6(1), (2016), 107-120.

13. A. B. Khalaf, H. Z. Ibrahim, Some new functions via operations defined on α-open sets,

Journal of Garmian University, (12), (2017).

14. A. B. Khalaf, H. Z. Ibrahim, αγ -connectedness and some properties of α(γ,β)-continuous

functions, Accepted in The First International Conference of Natural Science (ICNS)

from 11th − 12th July 2016, Charmo University.

15. l. Kaplansky, Topological algebra, Notes Mat. Inst. Mat. Pure Apl., (16), (1959).

16. A. G. Kurosh, Lectures on General Algebra, Nauka, 1962.

17. H. Leptin, Linear Kompakte Moduln und Ringe, Math. Z., 62, (1955), 241-267.

18. M. A. Najmark, Normed Rings, Nauka, 1968.

19. O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15, (1965), 961-970.

20. L. S. Pontryagin, Continuous Groups, Nauka, 1973.

21. F. Szasz, On topological algebras and rings, I, Mat. Zapok., 13, (1962), 256-278.

22. F. Szasz, On topological algebras and rings, II, Mat. Zapok., 14, (1963), 74-87.



48 H. Z. Ibrahim, A. B. Khalaf

23. M. l. Ursul, Compact Rings and Their Generalizations, Kishinev, Stiintsa, 1991.

24. S. Warner, Topological fields, North-Holland Math. Stud., 157, Notas de Math. [Math.

Notes], 126, North-Holland Publishing Co. Amsterdam-New York, 563 pp., 1989.

25. S. Warner, Topological rings, North-Holland Math. Stud., 178, (1993), 508 pp.

26. W. Wieslavv, On topological fields, Colloq. Math., 29(1), (1974), 119-146.

27. W. Wieslaw, Topological fields, Acta Univ. Wratisl. Mat., Fiz., Astron., 43, (1982), 219

pp.

28. W. Wieslaw, Topological Fields, Marcel Dekker, 1988.


