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Abstract.Tallafha, A. and Alhihi S. in [15], asked the following question.

If f is a contraction from a complete semi-linear uniform space (X,Γ) to

it self, is f has a unique fixed point. In this paper, we shall answer this

question negatively and we shall show that convex metric space and M-

space are equivalent except uniqueness. Also, we shall characterize convex

metric spaces and use this characterization to give some application using

semi-linear uniform spaces
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1. Introduction

Uniform spaces are topological spaces with additional structure that is used

to define uniform properties such as completeness, uniform continuity and uni-

form convergence. The notion of uniformity has been investigated by several

mathematician as Weil [16],[17], and [18] L.W.Cohen [4], and [5] Graves [7].

The theory of uniform spaces was given by Burbaki in [3], Also Wiel´s in his

booklet [16] define uniformly continuous mapping.

Tallafha, A. and Khalil, R. in 2009 defined a new type of uniform space

namely, semi-linear uniform space [11]. They studied some cases of best ap-

proximation in such spaces, besides they defined a set valued map ρ, called

metric type, on semi-linear uniform spaces that enables one to study analytical

concepts on semi-linear uniform spaces.
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In [12], [13] and [14] Tallafha, A. answered the question ”Is there a semi-

linear uniform space which is not metrizable?”. Also he defined another set

valued map called δ on X × X, which is used with ρ to give more properties

of semi-linear uniform spaces. Finally he studied the relation between ρ and

δ and he showed that ρ(x, y) = ρ(s, t) if and only if δ(x, y) = δ(s, t). Also he

defined Lipschitz condition, and contraction mapping on semi-linear uniform

spaces, which enables one to study fixed point for such functions.

Since Lipschitz condition, and contractions are usually discussed in metric

and normed spaces, and never been studied in other weaker spaces. We believe

that the structure of semi-linear uniform spaces is very rich and all the known

results on fixed point theory can be generalized.

In [1], Alhihi,S. Gave more properties of semi-linear uniform space. Also

Tallafha, A. and Alhihi, S. [15] gave another properties of semi-linear uniform

spaces and asked the following question. If f is a contraction from a

complete semi-linear uniform space (X,Γ) to it self, is f has a unique

fixed point. Finally S. Alhihi and M. AlFayaad in [2] gave some topological

properties of semi-linear uniform spaces.

Let X be a none empty set and DX be a collection of all relations on X

such that each element V of DX is reflexive and symmetric. DX is called the

family of all entourages of the diagonal.

Let Γ be a sub collection of DX such that,

(i) If V1and V2 are in Γ, then V1∩ V2 ∈ Γ

(ii) For every V ∈ Γ, there exists U ∈ Γ such that, U ◦ U ⊂ V.

(iii)
⋂
V ∈Γ

V = ∆

(vi) If V ∈ Γ and V ⊆ W ∈ DX , then W ∈ Γ.

Then the pair (X,Γ) is called a uniform space. We refer the reader to [6]

and [8] for the basic structure of uniform spaces.

Let (X,Γ) be a uniform space, by a chain in X ×X we mean a totally (or

linearly) ordered collection of subsets of X ×X, ordered by set inclusion.

Definition 1.1. [11]. Let Γ be a subcollection of DX such that

(i) For every V ∈ Γ, there exists U ∈ Γ such that U ◦ U ⊂ V.

(ii)
⋂
V ∈Γ

V = ∆ (vi)
⋃
V ∈Γ

V = X ×X. (v) Γ is a chain.

Then the pair (X,Γ) is called a semi-linear uniform space.

The following is an example of a semi-linear uniform space which is metriz-

able.

Example 1.2. Let Vt = {(x, y) : y− t < x < y+ t, −∞ < y < ∞}. Then (R,Γ)
with Γ = {Vt : 0 < t < ∞} is a semi-linear uniform space.

The following example is a semi-linear uniform space which is not metrizable.
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Example 1.3. Let (X,Γ) be a semi-linear uniform where Γ = {Vϵ, ϵ > 0}, Vϵ =

{(x, y) : x2 + y2 < ϵ} ∪ {∆}.

Definition 1.4. [11]. Let (X,Γ) be a semi-linear uniform space. For (x, y) ∈
X×X, let Γ(x,y) = {V ∈ Γ : (x, y) ∈ V }. Then, the set valued map ρ on X×X,

is defined by ρ(x, y) =
⋂

{V : V ∈ Γ(x,y)}.

Clearly for all (x, y) ∈ X ×X, we have ρ(x, y) = ρ(y, x), and ∆ ⊆ ρ(x, y).

Definition 1.5. [12]. Let (X,Γ) be a semi-linear uniform space. For (x, y) ∈
X×X, let Γc

(x,y) = {V ∈ Γ : (x, y) /∈ V }. Then the set valued map δ on X×X,

is defined by

δ(x, y) =

{ ⋃
{V : V ∈ Γc

(x,y)} x ̸= y

ϕ x = y

}

In [12],Tallafha gave some important properties of semi-linear uniform spaces,

using the set valued map ρ and δ, some of these properties are given in the

following proposition.

Proposition 1.6. [12]Let (X,Γ) be a semi-linear uniform space. Then,

i) If V ∈ Γc
(x,y), then V ⫋ ρ(x, y) . ii) δ(x, y) ⊆ ρ(x, y) for all (x, y) ∈

X ×X.

iii) If V ∈ Γ(x,y), then δ(x, y) ⊆ V. iv) If (x, y) ∈ ρ(s, t), then ρ(x, y) ⊆
ρ(s, t).

v) If (x, y) ∈ δ(s, t), then δ(x, y) ⊆ δ(s, t).

Also in [1] Alhihi gave more properties of semi-linear uniform spaces as:

Theorem 1.7. Let A ∈ Γ, for n ∈ N, we have,

(i) n
(
1
nA

)
⊆ A (ii) If B ∈ Γ satisfies nB ⊆ A, then B ⊆ 1

nA.

(iii) 1
n+1A ⊆ 1

nA (iv) 1
nA ⊆ A

(v) 1
n δ(x, y) =

{ ⋂
V ∈Γ

c

(x,y)

1
nV if x ̸= y

ϕ if x = y

(vi) 1
nρ(x, y) =

1
n

⋂
V ∈Γ(x,y)

V ⊆
⋂

V ∈Γ(x,y)

1
nV

(vii) For x, y ∈ X where (X,Γ) is a semi-linear uniform spaces, then n
(
1
nρ(x, y)

)
⊆

ρ (x, y) .
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(viii) Let x, y be any distinct points in semi-linear uniform spaces (X,Γ) .

Then, n
(
1
nδ(x, y)

)
⊆ δ (x, y) ⊆ 1

n (nδ(x, y)) .

Best approximation is an important concept discussed in metric spaces with

application in other sciences.

Definition 1.8. [6] Let (X, d) be a metric space, E ⊆ X. The set E is called

proximinal if for any x ∈ X, there exists some ex ∈ E such that d(x,E) =

d(x, ex) where d(x,E) = inf
e∈E

d(x, e).

In [11], A.Tallafha and R.Khalil define Proximinality using semi-linear uni-

form spaces instead of metric spaces.

Definition 1.9. [11] Let (X,Γ) be a semi-linear uniform space, for x ∈ X and

E ⊆ X, define ρ(x,E) =
⋂
e∈E

ρ(x, e).

Definition 1.10. [11] Let (X,Γ) be a semi-linear uniform space, E ⊆ X. The

set E is called proximinal if for any x ∈ X, there exists some ex ∈ E such that

ρ(x,E) = ρ(x, ex).

In [2], S. Alhihi and M. Fayyad showed that every semi-linear uniform space

induced a Tychonoff space (X,TΓ) where TΓ induced by local base Bx =

{B(x, U) : U ∈ Γ} where B(x, U) = {y : (x, y) ∈ U}. For more topological

properties of TΓ we refer the reader to [2].

Also it is known that every metric space (X, d) induce a semi-linear space

(X,Γd).

2. Semi-linear Uniform Space Induced by Metric Space

In this section we shall show that the structure of semi-linear uniform space

is very rich structure and the classical definitions in metric spaces can be carried

to semi-linear uniform spaces.

Definition 2.1. [14] Let (X, d) be a metric space. Define Vϵ = {(x, y) :
d(x, y) < ϵ}.Then (X,Γ) where Γ = {Vϵ : ϵ > 0} is a semi-linear uni-

form space induced by (X, d). This semi-linear uniform space will be

denoted by (X,Γd).

So semi-linear uniform space is a space weaker than metric space and stronger

than topological spaces.

Lemma 2.2. Let (X,Γd) be a semi-linear uniform space induced by the metric

space (X, d). Then,

(1) ρ(x, y) = {(s, t) ∈ X ×X : d(s, t) ≤ d(x, y)}
(2) δ(x, y) = {(s, t) ∈ X ×X : d(s, t) < d(x, y)}
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Proof. 1. We want to show
⋂

{Vε, ε > 0 : Vε ∈ Γ(x,y)} = {(s, t) ∈ X × X :

d(s, t) ≤ d(x, y)}. It is clear that {(s, t) : d(s, t) ≤ d(x, y)} ⊆
⋂

{Vε, ε > 0 : Vε ∈
Γ(x,y)}. Conversely, suppose (s, t) ∈ X×X such that (s, t) ∈

⋂
{Vε, ε > 0 : Vε ∈

Γ(x,y)}, if d(s, t) > d(x, y), then there exists r such that d(s, t) > r > d(x, y)

which means Vr ∈ Γ(x,y) and (s, t) /∈ Vr, which contradicts the assumption.

2. If x = y the result is true. So we assume x ̸= y. We want to show

that
⋃

{Vε : Vε ∈ Γc
(x,y)} = {(s, t) ∈ X × X : d(s, t) < d(x, y)}, it is clear⋃

{Vε : Vε ∈ Γc
(x,y)} ⊆ {(s, t) : d(s, t) < d(x, y)}.

Conversely, suppose (s, t) ∈ X × X such that d(s, t) < d(x, y), if (s, t) /∈⋃
{V : V ∈ Γc

(x,y)}, then there exists r such that d(s, t) < r < d(x, y) which

mean Vr ∈ Γc
(x,y) and (s, t) ∈ Vr, which is a contradiction. □

In 1928, K. Menger defined convex metric space then Khalil R. define M-

space. Now we shall characterize M- spaces and show that they are equivalent

except uniqueness..

Definition 2.3. [10]Let (X, d) be a metric space. For x ∈ X, r > 0, let

B [x, r] = {t : d (x, t) ≤ r} .A metric space (X, d) is convex, if for all x, y ∈ X,

B [x, r1] ∩B [y, r2] ̸= ϕ whenever r1 + r2 ≥ d (x, y) .

Definition 2.4. [9]. A metric space (X, d) is M-space, if for all (x, y) ∈
X × X, and λ = d (x, y) , if α ∈ [0, λ], there exists a unique zα ∈ X such

B [x, α] ∩B [y, λ− α] = {zα} .

In Definition 2.3 if r1 or r2 = 0, then B [x, r1] ∩ B [y, r2] ̸= ϕ. Therefore we

have the following.

Proposition 2.5. 1- If a metric space (X, d) is convex and r1, r2 ≥ 0, such

that d (x, y) ≤ r1 + r2 then B [x, r1] ∩B [y, r2] ̸= ϕ.

2- If a metric space (X, d) is M-space, then for all (x, y) ∈ X × X and

α ∈ [0, d (x, y)] there exists a unique zα ∈ X such that d (x, zα) = α and

d (y, zα) = d (x, y)− α.

Proof. 1- Let (X, d) be a convex metric space and r1, r2 ≥ 0, such that d (x, y) ≤
r1 + r2.If r1 = 0, then x ∈ B [x, r1] ∩ B [y, r2] . If r2 = 0, then y ∈ B [x, r1] ∩
B [y, r2] .

2- Let (X, d) be M-space, (x, y) ∈ X × X and α ∈ [0, d (x, y)]. Then there

exists a unique zα ∈ X such that d (x, zα) ≤ α and d (y, zα) ≤ d (x, y) − α, if

d (x, zα) < α or d (y, zα) < d (x, y) − α, then d (x, y) ≤ d (x, zα) + d (y, zα) <

d (x, y) , therefore d (x, zα) = α and d (y, zα) = d (x, y)− α. □

Proposition 2.6. Convex and M-spaces are equivalent except uniqueness.

Proof. Let (X, d) be a convex metric space and x, y ∈ X, let λ = d(x, y). For

α ∈ [0, λ] , let r1 = α and r2 = λ − α then there exists z ∈ X such that

d(x, z) ≤ r1 and d(z, y) ≤ r2.Which implies B(x, α) ∩B(y, λ− α) ̸= ϕ.
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Conversely, let (X, d) be M-metric space, for x, y ∈ X and r1, r2 > 0 such

that d(x, y) ≤ r1 + r2. If d(x, y) ≤ r1 then take z = y. Hence we may assume

that d(x, y) > r1. Therefore B(x, r1)∩B(y, d(x, y)− r1) ̸= ϕ. Thus there exists

z ∈ X such that d(x, z) ≤ r1 and d(z, y) ≤ d(x, y)− r1 ≤ r2. □

Now we shall characterize convex spaces.

Lemma 2.7. A metric space (X, d) is convex if and only if for all (x, y) ∈
X × X and α ∈ [0, 1], there exists z ∈ X such that d(x, z) = αd(x, y) and

d(z, y) = (1− α) d(x, y).

Proof. Let (X, d) be a convex space and 0 ≤ α ≤ 1. Then for all x, y ∈ X we

have 0 ≤ αd(x, y) ≤ d(x, y). Therefore, there exists z ∈ X such that αd(x, y) =

d(x, z) and d (y, z) = d (x, y)− αd(x, y).

Conversely, if d(x, y) = 0 then z = x. So we may assume d(x, y) > 0.For

0 ≤ α ≤ d(x, y), we have 0 ≤ α
d(x,y) ≤ 1. Hence there exists z ∈ X such that

d(x, z) = α
d(x,y)d(x, y) and d(z, y) = (1− α) d(x, y) =

(
1− α

d(x,y)

)
d(x, y) =

d (x, y)− α. □

Clearly if α = 1
2 we obtain the mid point property. So we have the following

corollary.

Corollary 2.8. Every convex or M-space has the mid point property.

Lemma 2.9. Let (X,Γd) be a semi-linear uniform space induced by the metric

space (X, d) which has the mid point property. Then for all x ∈ X there exist

{wn} ∈ X\ {x} such that {wn} converges to x provided X contain more than

one point.

Proof. Let x ∈ X and ε > 0, let z ∈ X\ {x} . By mid point property let w1 be

such that d(x,w1) = d(w1, z) =
1
2d (x, z). So we continuo this way to obtained

w1, w2, ...wn such that d (x,wn) =
1
2n d (x, z) < ε. So {wn} converges to x. □

The following is an important property of semi-linear uniform space induced

by a convex metric space (X, d).

Lemma 2.10. Let (X,Γd) be a semi-linear uniform space induced by a convex

metric space (X, d). Then Vε1 ◦ Vε2 = Vε1+ε2 .

Proof. Let (X, d) be a convex metric space. From the triangle inequality of

metric space we have Vε1 ◦ Vε2 ⊆ Vε1+ε2 . Let (s, t) ∈ Vε1+ε2 . Then d(s, t) <

ε1 + ε2. Let γ be such that d(s, t) + γ = ε1 + ε2. Since ε1 + ε2− γ ≥ 0

then ε1 − γ
2 ≥ 0 or ε2 − γ

2 ≥ 0, say ε1 − γ
2 ≥ 0. If d(s, t) ≤ ε1 − γ

2 we

are done . If not, i.e., there exists y such that d(s, y) = ε1 − γ
2 < ε1 and

d(y, t) = d (s, t)−
(
ε1 − γ

2

)
< ε2 . Hence (s, t) ∈ Vε1 ◦ Vε2 . □
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Theorem 2.11. Let (X,Γd) be a semi-linear uniform space induced by a con-

vex metric space (X, d). Then nρ(x, y) = {(s, t) ∈ X ×X : d(s, t) ≤ nd(x, y)}.

Proof. Let (X,Γd) be a semi-linear uniform space induced by a convex met-

ric space (X, d). Clearly nρ(x, y) ⊆ {(s, t) ∈ X × X : d(s, t) ≤ nd(x, y)}.
Now we want to use induction to show that {(s, t) ∈ X × X : d(s, t) ≤
nd(x, y)} ⊆ nρ(x, y)....... (∗) . By Lemma 2.2 (∗) is true for n = 1. Sup-

pose {(s, t) ∈ X × X : d(s, t) ≤ kd(x, y)} ⊆ kρ(x, y). To show {(s, t) ∈
X × X : d(s, t) ≤ (k + 1) d(x, y)} ⊆ (k + 1) ρ(x, y), let (s, t) be such that

d(s, t) ≤ kd(x, y)+d(x, y). If d(s, t) ≤ kd(x, y),we are done, if not then d(s, t) >

kd(x, y) which implies that there exists z ∈ X, such that d(s, z) ≤ kd(x, y) and

d(z, t) ≤ d(s, t)− kd(x, y) ≤ d(x, y). Hence (s, z) ∈ kρ(x, y) and (z, t) ∈ ρ(x, y)

which implies (s, t) ∈ (k + 1) ρ(x, y). □

Now we shall give the definitions of continuous function, uniformly continu-

ous function, converges of sequences in semi-linear uniform spaces and complete

semi-linear space.

Definition 2.12. [11]. Let f : (X,ΓX) → (Y,ΓY ) then,

1- f is continuous at x◦ if for all U ∈ ΓY , there exists V ∈ ΓX , such that if

(x, x◦) ∈ V, then (f(x), f(x◦)) ∈ U.

2- f is uniformly continuous if for all U ∈ ΓY , there exists V ∈ ΓX , such

that if (x, y) ∈ V, then (f(x), f(y)) ∈ U.

Definition 2.13. [11]. Let (X,Γ) be a semi-linear uniform space and (xn) be

a sequence in X. then,

1-. (xn) converges to x in X and denoted by xn → x, if for every V ∈ Γ

there exists k such that (xn, x) ∈ V for every n ≥ k.

2- (xn) is called Cauchy if for every V ∈ Γ there exists k such that (xn, xm) ∈
V for every n,m ≥ k.

Definition 2.14. [11]. Let (X,Γ) be a semi-linear uniform space. Then (X,Γ)

is called complete, if every Cauchy sequence is convergent.

In definition 2.1 we mentioned that every metric space (X, d) induced a

semi-linear uniform space (X,Γd), the natural questions arises what is the re-

lation between the continuity (uniform continuity) of functions on metric space

and continuity (uniform continuity) of functions on semi-linear uniform space

induced by metric space. Also, what is the relation between converges in (X, d)

and converges on (X,Γd). The following Theorems answer these questions.

Theorem 2.15. Let (X,ΓX), (Y,ΓY ) be two semi-linear uniform spaces in-

duced by the metric spaces (X, dX) and (Y, dY ) respectively. Then f : (X, dX) →
(Y, dY ) is continuous if and only if f : (X,ΓX) −→ (Y,ΓY ) is continuous.
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Proof. Let f : (X, dX) → (Y, dY ) be continuous at x◦ ∈ X . Let U ∈ ΓY . Then

there exists ϵ > 0 such that U = Uϵ, since f : (X, dX) → (Y, dY ) is continuous,

then there exists δ > 0 such that dX(x, x◦) < δ, implies dY (f(x), f(x◦)) < ϵ. So

there exists V ∈ ΓX , V = Vδ such that if (x, x◦) ∈ Vδ, then (f(x), f(x◦)) ∈ Uϵ.

Hence f : (X,ΓX) −→ (Y,ΓY ) is continuous at x◦.

Conversely, let f : (X,ΓX) −→ (Y,ΓY ) be continuous at x◦ and ϵ > 0. Then

Uϵ ∈ ΓY . So there exists Vδ ∈ ΓX such that, if (x,x◦) ∈ Vδ, then (f(x), f(x◦)) ∈
Uϵ. Thus there exists δ > 0 such that if dX(x, x◦) < δ, then dY (f(x), f(x◦)) <

ϵ. Hence f : (X, dX) → (Y, dY ) is continuous at x◦. □

Theorem 2.16. Let (X,ΓX), (Y,ΓY ) be two semi-linear uniform spaces

induced by the metric spaces (X, dX) and (Y, dY ) respectively. Then f :

(X, dX) → (Y, dY ) is uniformly continuous if and only if f : (X,ΓX) −→
(Y,ΓY ) is uniformly continuous.

Proof. Let f : (X, dX) → (Y, dY ) be uniformly continuous. Let U ∈ ΓY .

Then there exists ϵ > 0 such that U = Uϵ. Since f : (X, dX) → (Y, dY ) is

uniformly continuous, then there exists δ > 0 such that dX(x, y) < δ, im-

plies dY (f(x), f(y)) < ϵ. So if (x, y) ∈ Vδ, then (f(x), f(x◦)) ∈ Uϵ. Hence f :

(X,ΓX) −→ (Y,ΓY ) is uniformly continuous.

Conversely, let f : (X,ΓX) −→ (Y,ΓY ) be uniformly continuous and ϵ >

0. Then Uϵ ∈ ΓY , so there exists Vδ ∈ ΓX such that, if (x,y) ∈ Vδ, then

(f(x), f(y)) ∈ Uϵ. Thus there exists δ > 0 such that if dX(x, y) < δ, then

dY (f(x), f(y)) < ϵ. Hence f : (X, dX) → (Y, dY ) is uniformly continuous. □

In the following Theorems we shall discuss the convergent of sequences be-

sides the completeness of semi-linear uniform spaces.

Theorem 2.17. Let (X,Γ) be a semi-linear uniform space induced by the

metric spaces (X, d) and (xn) be a sequence in X. Then (xn) is converge in

(X, d) if and only (xn) is converges in (X,Γ).

Proof. Let (xn) be converges to x in (X, d) and U ∈ Γ. Then there exists ϵ > 0

such that U = Uϵ. Since (xn) is converges in (X, d), then there exists k such

that d(xn, x) < ϵ for every n ≥ k, it follows (xn, x) ∈ Uϵ for every n ≥ k. Which

mean xn → x in (X,Γ).

Conversely, let (xn) be converge to x in (X,Γ) and ϵ > 0. Then Uϵ ∈ Γ, so

there exists k such that (xn, x) ∈ Uϵ for every n ≥ k. Thus d(xn, x) < ϵ for

every n ≥ k. Hence (xn) → x in (X, d). □

Theorem 2.18. Let (X,Γ) be a semi-linear uniform space induced by the

metric spaces (X, d) and (xn) be a sequence in X. Then (xn) is Cauchy in

(X, d) if and only (xn) is Cauchy in (X,Γ).
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Proof. Let (xn) be a Cauchy in (X, d). Let U ∈ Γ. Then there exists ϵ > 0

such that U = Uϵ. Since (xn) is Cauchy in (X, d), then there exists k such that

d(xn, xm) < ϵ for every n,m ≥ k, it follows (xn, xm) ∈ Uϵ for every n,m ≥ k.

which mean xn is Cauchy in (X,Γ).

Conversely, let (xn) be Cauchy in (X,Γ) and ϵ > 0. Then Uϵ ∈ Γ, so there

exists k such that (xn, xm) ∈ Uϵ for every n,m ≥ k. Thus d(xn, xm) < ϵ for

every n,m ≥ k. Hence (xn) Cauchy in (X, d). □

Corollary 2.19. Let (X,Γ) be a semi-linear uniform space induced by the

metric space (X, d).Then (X, d) is complete if and only if (X,Γ) is complete.

Now we shall show that E ⊆ X is proximinal in (X, d) if and only if it is

proximinal in (X,Γ).

Theorem 2.20. Let (X,Γ) be a semi-linear uniform space induced by the met-

ric spaces (X, d). Then E ⊆ X is proximinal in (X, d) if and only if E ⊆ X is

proximinal in (X,Γ).

Proof. Let E ⊆ X be proximinal in (X, d). Now there exists ex ∈ E such

that d(x,E) = d(x, ex). We want to show ρ(x,E) = ρ(x, ex), since ρ(x,E) =⋂
e∈E

ρ(x, e), so we want to show ρ(x, ex) ⊆ ρ(x,E) . If not, i.e., ρ(x, ex) ⊈

ρ(x,E), by Lemma 2.2 ρ(x, ex) = {(s, t) ∈ X×X : d(s, t) ≤ d(x, ex)} ⊈ ρ(x,E).

So there exists (s, t) ∈ X×X such that d(s, t) ≤ d(x, ex) and (s, t) /∈ ρ(x,E) =⋂
e∈E

ρ(x, e). Hence there exists e∗ ∈ E such that (s, t) /∈ ρ(x, e∗), which means

d(x, e∗) < d(s, t) ≤ d(x, ex), this contradicts d(x, ex) = inf{d(x, e) : e ∈ E}.
Conversely, let E ⊆ X be proximinal in (X,Γ). Now there exists ex ∈ E

such that ρ(x,E) = ρ(x, ex). We want to show that d(x,E) = d(x, ex). If

d(x,E) ̸= d(x, ex), then there exists e∗ ∈ E such that d(x, e∗) < d(x, ex). Since

ρ(x, ex) = ρ(x,E) =
⋂
e∈E

ρ(x, e), it follows (x, ex) ∈ ρ(x, e∗). Which means

d(x, ex) < d(x, e∗).This contradicts the assumption. □

3. Main results

In[15] Tallafha A and Alhihi S. defined contraction on semi-linear uniform

spaces.

Definition 3.1. [14]Let f : (X,Γ) −→ (X,Γ) be a mapping. Then f is con-

traction if there exist m,n ∈ N such that m > n and

m ρ(f(x), f(y)) ⊆ nρ(x, y) ∀x, y ∈ X.
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This definition is an interested one, since tell now we need metric spaces or

normed spaces to define contraction. So to define contraction using a weaker

space is a promising idea by which most of the results of fixed point theorem

in metric spaces can be discussed in a semi-linear uniform spaces.

The first question one can ask if (X,Γ) is induced by (X, d) and f : (X, d) −→
(X, d) be a contraction, must f : (X,Γ) −→ (X,Γ) be contraction. What about

the converse.

Now we shall answer our question positively and gave an example to show

the converse need not be true.

Theorem 3.2. Let (X,Γ) be a semi-linear uniform space induced by unbounded

convex metric space (X, d). Then f : (X, d) −→ (X, d) is a contraction if and

only if f : f : (X,Γ) −→ (X,Γ) is a contraction.

Proof. Let (X,Γ) be a semi-linear uniform space induced by unbounded convex

metric space (X, d). If f : (X, d) −→ (X, d) is a contraction, then there exists

0 < r < 1 such that d(f(x), f(y)) ≤ rd(x, y) ∀x, y ∈ X, hence, there exists

m,n ∈ N such that r ≤ n
m < 1. This implies d(f(x), f(y)) ≤ n

md(x, y) for all

x, y ∈ X, hencemd(f(x), f(y)) ≤ nd(x, y). Thus if d(s, t) ≤ md(f(x), f(y), then

d(s, t) ≤ nd(x, y). by Theorem 2.11 mρ(f(x), f(y) ⊆ nρ(x, y). Which means

f : (X,Γ) −→ (X,Γ) is a contraction. Now suppose f : (X,Γ) −→ (X,Γ) is a

contraction. Then ∃m,n ∈ N such that m > n and mρ(f(x), f(y)) ⊆ nρ(x, y)

∀x, y ∈ X. To complete the prove we want to show md(f(x), f(y)) ≤ nd(x, y)

∀x, y ∈ X. that is, md(f(x0), f(y0)) > nd(x0, y0) for some x0, y0 ∈ X. Let

(s, t) ∈ X×X be such that d (s, t) ≥ md(f(x0), f(y0)). Hence there exists z ∈ X

such that d(s, z) = md(f(x0), f(y0)). Therefore (s, z) ∈ mρ(f(x0), f(y0)) ⊆
nρ(x0, y0) which is a contradiction. Therefore d (s, t) ≤ md(f(x0), f(y0)), for

all (s, t) ∈ X ×X. Hence (X, d) is bounded. □

Example 3.3. Let X = R and d be the discrete metric space. Then Γ =

{∆, X × X}, so any function f : (X,Γ) −→ (X,Γ) is a contraction, but the

only contraction for (X, dis) −→ (X, dis) is the constant function.

So, what is the additional conditions on a semi-linear uniform space induced

by a metric space make f contraction on a metric space too. We will introduce

some Theorems which illustrate what is the relationship between contraction

on a metric space and contraction on semi-uniform space induce by a metric

space using the new types of metric spaces we introduced in section 2.

Theorem 3.4. If (X,d) is a metric space induce by a normed space (X, ∥.∥),
then (X, d) is unbounded convex metric space.

Proof. Let (X, d) be a metric space induced by a normed space (X, ∥.∥). For

x, y ∈ X , r1, r2 > 0, and d (x, y) ≤ r1 + r2, If d (x, y) = ∥x − y∥ ≤ r1or
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∥x− y∥ ≤ r2, then it is clear that (X, ∥.∥) is convex metric space. If not then

0 < 1 − r1
∥x−y∥ ≤ r2

∥x−y∥ < 1. Let α be such that 1 − r1
∥x−y∥ ≤ α ≤ r2

∥x−y∥
and z = αx + (1− α) y, so d (x, z) = ∥x − z∥ = (1− α) d (x, y) ≤ r1 and

d (z, y) = ∥z − y∥ = α∥x− y∥ ≤ r2.

To show that (X, d) is unbounded, let t ∈ [0,∞) and x ̸= 0, then d (0, y) = t

where y = t
∥x∥x. □

Remark 3.5. Theorem 3.4 can be used to check if a metric space induce by a

normed space or not.

By Theorem3.2, and Theorem 3.4, we have the following Corollary.

Corollary 3.6. Let (X,Γ) be a semi-linear uniform induced by a normed

space (X, ∥.∥). Then f : (X,Γ) −→ (X,Γ) is a contraction if and only if f :

(X, ∥.∥) −→ (X, ∥.∥) is a contraction.

In [15] Tallafha A. asked the following question. If (X,Γ) is a complete semi-

linear space and f : (X,Γ) −→ (X,Γ) is a contraction. Does f has a unique

fixed point. The following example answer this question negatively.

Example 3.7. Let Γ = {Vϵ, ϵ > 0}, Vϵ = {(x, y) : x2 + y2 < ϵ} ∪ {∆}.
Then (X,Γ) is a semi-linear uniform space. Now (X,Γ) is complete since

if xn is Cauchy, then xn → 0 or xn has a constant tail, so xn is conver-

gent sequence. Let f(x) = x sin(x). Then f(x) is a contraction and has{
π
2 + 2nπ : n = 0, 1, 2

}
∪ {0} as fixed points.

In section 2, we showed that f : (X,Γ) −→ (X,Γ) satisfies the property

P if and only if f : (X, d) −→ (X, d) satisfies the same property P , where

P is continuos, uniformly continuous, but this is not true for contraction see

Example 3.3. We suggest two ways to solve this problem, by strength the

definition of contraction or by strength the definition of semi-linear uniform

space.

Definition 3.8. A semi-linear uniform space (X,Γ) is called a strong semi-

linear uniform space if Γ satisfies the following additional condition for all

V ∈ Γ,we have

∞⋃
n=1

nV = X ×X.

Definition 3.9. Let (X,Γ) be a semi-linear uniform space. A mapping f :

(X,Γ) −→ (X,Γ) is called strong contraction if there exists m,n ∈ N such that

m > n and m ρ(f(x), f(y)) ⊆ nρ(x, y) and (m+ 1) ρ(f(x), f(y)) ⊈ nρ(x, y).
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Lemma 3.10. Every metric space (X, d) with mid point property, induces a

strong semi-linear uniform space (X,Γ), where Γ = {Vε : ε > 0}, Vε = {(x, y) ∈
X ×X : d(x, y) < ε}.

Proof. Let (X,Γ) be a semi-linear uniform space induced by a metric space

(X, d) which has mid point property. To show that (X,Γ) is a strong semi-

linear uniform space, letV ∈ Γ. Then there exists ϵ > 0 such that V = Vε. Let

x, y ∈ X, if d(x, y) < ε the proof is done. If not, there exists x1 ∈ X such that
1
2d(x, y) = d(x, x1) = d(x1, y), if d(x, x1) and d(x1, y) is less than ε we are done,

if not we can continue this way to obtain d(x, y) = d(x, xn)+d(xn, xn−1)+....+

d(x2, x1) + d(x1, ym) + d(ym, ym−1) + .....+ d(y1,y) and
1
2n d(x, y) = d(x, xn) =

d(xn, xn−1) = .... = d(x2, x1) and 1
2m d(x, y) = d(x1, ym) = d(ym, ym−1) =

..... = d(y1,y) . Thus for m,n satisfies Max
{

1
2n d(x, y),

1
2m d(x, y)

}
< ε we have

(x, y) ∈ (n+m)Vε. □

By Corollary 2.7. we have the following.

Corollary 3.11. Every convex or M- metric space (X, d) induces a strong

semi-linear uniform space (X,Γ).

Remark 3.12. In Example 4.3. (X, dis) bounded not convex and (X,Γ) is not

a strong semi-linear space. Also x sinx : (X,Γ) −→ (X,Γ) is not a strong

contraction.

The previous discussion leads to the following open questions.

Question 1. Let (X,Γ) be a complete strong semi-linear uniform space .

And f : (X,Γ) −→ (X,Γ) be contraction. Does f has a unique fixed point?

Question 2. Let (X,Γ) be a complete semi-linear uniform space and f :

(X,Γ) −→ (X,Γ) be a strong contraction. Does f has a unique fixed point?

Question 3. Let (X,Γ) be a complete strong semi-linear uniform space

and f : (X,Γ) −→ (X,Γ) be a strong contraction. Does f has a unique fixed

point?
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