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Abstract. For any integer k ≥ 1 and any graph G = (V,E) with min-
imum degree at least k − 1, we define a function f : V → {0, 1, 2} as
a Roman k-tuple dominating function on G if for any vertex v with
f(v) = 0 there exist at least k and for any vertex v with f(v) ̸= 0 at
least k − 1 vertices w in its neighborhood with f(w) = 2. The minimum
weight of a Roman k-tuple dominating function f on G is called the Ro-
man k-tuple domination number of the graph where the weight of f is
f(V ) =

∑
v∈V f(v).

In this paper, we initiate to study the Roman k-tuple domination
number of a graph, by giving some tight bounds for the Roman k-tuple
domination number of a garph, the Mycieleskian of a graph, and the
corona graphs. Also finding the Roman k-tuple domination number of
some known graphs is our other goal. Some of our results extend these
one given by Cockayne and et al. [1] in 2004 for the Roman domination
number.

Keywords: Roman k-tuple domination number, Roman k-tuple graph, k-
Tuple domination number, k-Tuple total domination number.
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1. Introduction

All graphs considered here are finite, undirected and simple. For standard
graph theory terminology not given here we refer to [9]. Let G = (V,E) be a
graph with the vertex set V of order n(G) and the edge set E of size m(G).
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The open neighborhood of a vertex v ∈ V is NG(v) = {u ∈ V | uv ∈ E}, while
its cardinality is the degree of v. The closed neighborhood of v is defined by
NG[v] = NG(v)∪{v}. Similarly, the open and closed neighborhoods of a subset
X ⊆ V are NG(X) = ∪v∈XNG(v) and NG[X] = NG(X)∪X, respectively. The
minimum and maximum degree of G are denoted by δ = δ(G) and ∆ = ∆(G),
respectively. If δ = ∆ = k, then G is called k-regular. We write Kn, Cn,
Pn, and Wn for a complete graph, a cycle, a path, and a wheel of order n,
respectively, while Kn1,...,np denotes a complete p-partite graph. Also G[S] and
G denote the subgraph induced by a subset S ⊆ V and the complement of G,
respectively. Also G ∼= H means that two graphs G and H are isomorphic.

For any integer k ≥ 1, the k-join G ◦k H of a graph G to a graph H of order
at least k is the graph obtained from the disjoint union of G and H and joining
each vertex of G to at least k vertices of H [5].

Domination in graphs is now well studied in graph theory and the literature
on this subject has been surveyed and detailed in the two books by Haynes,
Hedetniemi, and Slater [3, 4]. One type of domination is k-tuple domination
number that was introduced by Harary and Haynes [2].
Definition 1.1. [2] For any positive integer k, a subset S ⊆ V is a k-tuple
dominating set, abbreviated kDS, of the graph G, if |NG[v]∩S| ≥ k for every v ∈
V . The k-tuple domination number γ×k(G) of G is the minimum cardinality
among the k-tuple dominating sets of G.

Henning and Kazemi in [5] introduced another type of domination called
k-tuple total domination number of a graph which is an extension of the total
domination number.
Definition 1.2. [5] For any integer k ≥ 1, a subset S ⊆ V is called a k-
tuple total dominating set, abbreviated kTDS, of G if for every vertex v ∈ V ,
|N(v) ∩ S| ≥ k. The k-tuple total domination number γ×k,t(G) of G is the
minimum cardinality of a kTDS of G.

Note that the 1-tuple domination number (1-tuple total domination number)
is the classical domination number γ(G) (total domination number γt(G)). A
kDS (kTDS) of minimum cardinality of a graph G is called a min-kDS or
γ×k(G)-set (min-kTDS or γ×k,t(G)-set).

According to [1], Constantine the Great (Emperor of Rome) issued a decree
in the 4th century A.D. for the defense of his cities. He decreed that any city
without a legion stationed to secure it must neighbor another city having two
stationed legions. If the first were attacked, then the second could deploy a
legion to protect it without becoming vulnerable itself. The objective, of course,
is to minimize the total number of legions needed. According to it, Ian Steward
by an article in Scientific American, entitled �Defend the Roman Empire!� [8]
suggested the Roman dominating function.
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In [6], Kämmerling and Volkmann extended the Roman dominating function
to the Roman k-dominating function in this way that for any vertex v with
f(v) = 0 there are at least k vertices w in its neighborhood with f(w) = 2,
and they defined the Roman k-domination number γkR(G) of a graph G as the
minimum weight of a Roman k-dominating function f on G where the weight
of f is f(V ) =

∑
v∈V f(v).

This problem that for securing a city without a legion stationed or a city
with at least one legion stationed we need at least, respectively, k or k − 1

cities having two stationed legions, is our motivation to define the concept of
Roman k-tuple domination number which is another extension of the Roman
domination number.
Definition 1.3. For any integer k ≥ 1, a Roman k-tuple dominating function,
abbreviated RkDF, on a graph G with minimum degree at least k − 1 is a
function f : V → {0, 1, 2} such that for any vertex v with f(v) = 0 there exist
at least k and for any vertex v with f(v) ̸= 0 there exist at least k − 1 vertices
w in its neighborhood with f(w) = 2. The Roman k-tuple domination number
γ×kR(G) of a graph G is the minimum weight of a RkDF f on G.

The Roman 1-tuple domination number is the usual Roman domination
number γR(G).

A min-RkDF is a RkDF with the minimum weight. For a RkDF f let
(V0, V1, V2) be the ordered partition of V induced by f where Vi = {v ∈ V |
f(v) = i} for i = 0, 1, 2. Since there is a one-to-one correspondence between
the function f and the ordered partitions (V0, V1, V2) of V , we will write f =

(V0, V1, V2). Figure 1 shows a min-R2DF of cycle C10.
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Figure 1. γ×2R(C10) = 14

In this paper, we initiate to study the Roman k-tuple domination number
of a graph, by giving some tight bounds for the Roman k-tuple domination
number of a garph, the Mycieleskian of a graph, and the corona graphs. Also
finding the Roman k-tuple domination number of some known graphs is our
other goal. Some of our results extend these one given by Cockayne and et al.
[1] in 2004 for the Roman domination number.



104 Adel P. Kazemi

2. General results

In this section, we state some properties of the Roman k-tuple dominating
functions, and some tight bounds for the Roman k-tuple domination number
of a graph.

Proposition 2.1. For any min-RkDF f = (V0, V1, V2) on a graph G with
δ(G) ≥ k − 1, the following statements hold.

(a) γ×kR(G) ≥ γkR(G).
(b) V1 ∪ V2 is a kDS of G.
(c) V2 is a kDS of G[V0 ∪ V2].
(d) For k ≥ 2, V2 is a (k − 1)TDS of G.
(e) Every vertex of degree k − 1 belongs to V1 ∪ V2.
(f) G[V1] has maximum degree 1.
(g) Every vertex in V1 is adjacent to precisely k − 1 vertices in V2.
(h) Each vertex in V0 is adjacent to at most two vertices in V1.

Proof. We omit the proofs of (a)-(e); they are clear. Let f = (V0, V1, V2) be
any min-RkDF of G.

(f) For any x ∈ V1, since f ′ = (V0∪(N(x)∩V1), V1−N(x), V2∪{x}) with the
value f ′(V ) = f(V )− d+ 1, is a RkDF on G if and only if d ≤ 1, we conclude
that G[V1] has maximum degree 1.

(g) For any x ∈ V1, let |N(x) ∩ V2| = d. Then d ≥ k − 1. Since d ≥ k, for
some x ∈ V1, implies that f ′ = (V0 ∪ {x}, V1 − {x}, V2) is a RkDF on G with
the value f ′(V ) = f(V )− 1 = γ×kR(G)− 1, we obtain d = k − 1.

(h) For x ∈ V0, let |N(x) ∩ V1| = d. Since f ′ = (V0 ∪ (N(x) ∩ V1), V1 −
N(x), V2 ∪ {x}) is a RkDF on G with the value f ′(V ) = f(V )− d+ 2 ≥ f(V ),
we have d ≤ 2. □

As a consequence of Proposition 2.1 (c),(d), we have the following result.

Corollary 2.2. If G is a Roman k-tuple graph, that is γ×kR(G) = 2γ×k(G),
then

2max{γ×(k−1),t(G), γ×k(G)} ≤ γ×kR(G).

For any graph G = (V,E) of order n and with minimum degree at least
k−1 ≥ 1, since (∅, ∅, V ) is a RkDF on G, we have γ×kR(G) ≤ 2n. On the other
hand, since for any RkDF f = (V0, V1, V2), |V2| ≥ k, we have γ×kR(G) ≥ 2k.
Also, it can be easily verified that γ×kR(G) = 2k if and only if G = Kk or
G = H ◦k Kk for some graph H. Therefore we have proved next theorem.

Theorem 2.3. For any graph G of order n and with δ(G) ≥ k − 1 ≥ 1,

2k ≤ γ×kR(G) ≤ 2n,

and γ×kR(G) = 2k if and only if G = Kk or G = H ◦k Kk for some graph H.
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Theorem 2.3 characterizes graphs G with γ×kR(G) = 2k. Next proposition
characterizes graphs G with γ×kR(G) = 2k + 1. First we construct a graph.

Graphs Ak. Let n ≥ k+1 ≥ 3. For n = k+1 let Ak be the complete graph
Kk+1 minus an edge, and for n > k + 1 let Ak be the graph with the vertex
set V = {vi | 1 ≤ i ≤ n} such that the induced subgraph Ak[{vi | 1 ≤ i ≤
k+1}] ∼= Kk+1 −{vkvk+1}, and for any i ≥ k+2, {vj | 1 ≤ j ≤ k} ⊆ NAk

(vi).

Proposition 2.4. For any graph G with δ(G) ≥ k− 1 ≥ 1, γ×kR(G) = 2k+1

if and only if G ∼= Ak.

Proof. Let G be a graph with δ(G) ≥ k − 1 ≥ 1. If G ∼= Ak, then obviousely
(V0, V1, V2) is a min-RkDF on G where V2 = {vi | 1 ≤ i ≤ k}, V1 = {vk+1} and
V0 = V (Ak)− V1 ∪ V2, and so γ×kR(G) = 2k + 1.

Conversely, let f = (V0, V1, V2) be a min-RkDF on G with weight 2k + 1.
Hence |V2| = k and |V1| = 1. If V2 = {vi | 1 ≤ i ≤ k} and V1 = {vk+1}, then
γ×kR(G) = 2k+1 implies that there exists a vertex in V2, say vk, which is not
adjacent to vk+1, that is, G ∼= Ak. □

Note that if k ≥ 2 and G is (k − 1)-regular, then γ×kR(G) = 2n. We will
show that its converse holds only for k = 2. For k ≥ 3, for example, if G

is a graph which is obtained by the complete bipartite graph Kk,k minus a
matching of size k − 1, then γ×kR(G) = 4k while G is not (k − 1)-regular.

Proposition 2.5. For any graph G of order n and without isolate vertex,
γ×2R(G) = 2n if and only if G = ℓK2 for some ℓ ≥ 1.

Proof. Let G = (V,E) be a graph of order n and without isolate vertex, and let
γ×2R(G) = 2n. Since deg(w) ≥ 2, for some vertex w, implies that the function
({w}, ∅, V − {w}) is a R2DF on G with weight less than 2n, we conclude
G = ℓK2 for some ℓ ≥ 1. Since the proof of inverse case is trivial, we have
completed our proof. □

Cockayne and et al. in [1] proved that for any graph G,

γ(G) ≤ γR(G) ≤ 2γ(G). (2.1)

As an extension of inequality (2.1), next theorem improves the lower bound 2k

given in Theorem 2.3 for k ≥ 2.

Theorem 2.6. For any graph G with δ(G) ≥ k − 1 ≥ 1,

γ×k(G) + k ≤ γ×kR(G) ≤ 2γ×k(G),

and the lower bound is tight.

Proof. Since for any min-kDS S of G = (V,E), the function f = (V − S, ∅, S)
is a RkDF on G, we have γ×kR(G) ≤ 2|S| = 2γ×k(G). On the other hand,
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since for any min-RkDF f = (V0, V1, V2) on G, V1 ∪ V2 is a kDS of G, we have

γ×kR(G) = 2|V2|+ |V1| ≥ γ×k(G) + |V2| ≥ γ×k(G) + k.

For any graph H of order k, the lower bound is tight for G = Kk ◦∗(k−1)Kk.
Because (∅, V (Kk), V (Kk)) is a min-RkDF on G and V (Kk) is a min-kDS of
G. □

Following E. J. Cockayne, P. A. Dreyer Jr., S. M. Hedetniemi and S. T.
Hedetniemi [1], we will say that a graph G is a Roman k-tuple graph if γ×kR(G) =

2γ×k(G). Next proposition characterizes the Roman k-tuple graphs.

Proposition 2.7. A graph G with δ(G) ≥ k − 1 is a Roman k-tuple graph if
and only if it has a min-RkDF f = (V0, ∅, V2), that is, V2 is a min-kDS of G.

Proof. Let G be a Roman k-tuple graph, and let S be a min-kDS of G. Since
f = (V − S, ∅, S) is a RkDF on G with weight f(V ) = 2|S| = 2γ×k(G) =

γ×kR(G), we conclude that f is a min-RkDF.
Conversely, if f = (V0, ∅, V2) is a min-RkDF on G, then γ×kR(G) = 2|V2|,

and V2 is a kDS of G. Hence γ×k(G) ≤ |V2| = γ×kR(G)/2. Applying Theorem
2.6 implies γ×kR(G) = 2γ×k(G), that is, G is a Roman k-tuple graph. □

Corollary 2.8. [1] A graph G is a Roman graph if and only if it has a min-RDF
f = (V0, ∅, V2).

3. Complete bipartite graphs, paths, cycles and wheels

Here, we calculate the Roman k-tuple domination number of a complete
bipartite graph, a cycle, a path, and a wheel.

Proposition 3.1. For any integer n ≥ m ≥ k − 1 ≥ 1,

γ×kR(Kn,m) =


3k − 3 + n if n ≥ m = k − 1,

4k − 2 if n ≥ m = k,

4k − 1 if n = m = k + 1,

4k if n > m ≥ k + 1.

Proof. Assume that V (Kn,m) is partitioned to the independent sets X and
Y such that |X| = n and |Y | = m. Since the Roman k-tuple dominating
functions given in each of the following cases have minimum weight, our proof
is completed.

• n ≥ m = k − 1. Consider f = (∅, ∅, X ∪ Y ) when n = m, and consider
f = (∅, V1, V2) when n > m in which Y ⊆ V2, |V2 ∩ X| = k − 1 and
V1 = X − V2.

• n ≥ m = k. Consider f = (V0, ∅, V2) where |V2∩Y | = k, |V2∩X| = k−1

and V0 = X ∪ Y − V2.
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• n = m = k+1. Consider f = (V0, V1, V2) where |V2∩Y | = k, |V2∩X| =
k − 1, V1 = Y − V2 and V0 = X ∪ Y − V1 ∪ V2.

• n > m ≥ k. Consider f = (V0, ∅, V2) where |V2 ∩ X| = |V2 ∩ Y | = k

and V0 = X ∪ Y − V2.
□

Corollary 3.2. If n > m ≥ k + 1 ≥ 3, then γ×kR(Kn,m) = kγR(Kn,m).

Proof. It is sufficient to consider

γ×R(Kn,m) =


2 if n ≥ m = 1,

3 if n ≥ m = 2,

4 if n ≥ m ≥ 3.

□

In the next two propositions, we will calculate γ×2R(Cn) and γ×2R(Pn)

(notice γ×3R(Cn) = 2n by Proposition 2.1).

Proposition 3.3. For any cycle Cn of order n ≥ 3, γ×2R(Cn) = 2⌈ 2n
3 ⌉.

Proof. Let Cn be a cycle with V (Cn) = {1, 2, ..., n} and E(Cn) = {ij | j ≡ i+1

(mod n), 1 ≤ i ≤ n}. Since (V0, ∅, V (Cn) − V0) is a R2DF on Cn where
V0 = {3t+ 1 | 0 ≤ t ≤ ⌊n

3 ⌋ − 1}, we have γ×2R(Cn) ≤ 2⌈ 2n
3 ⌉.

On the other hand, since in each R2DF every three consecutive vertices
have at least weight 4, we have γ×2R(Cn) ≥ ⌈ 4n

3 ⌉. Since ⌈ 4n
3 ⌉ = 2⌈ 2n

3 ⌉ where
n ̸≡ 2 (mod 3), we consider n ≡ 2 (mod 3). Then ⌈ 4n

3 ⌉ = 2⌈ 2n
3 ⌉ − 1. Now let

f = (V0, V1, V2) be a min-R2DF on Cn. Since every vertex in V2 is adjacent to
at least one vertex in V2 and f has minimum weight, we conclude i− 1, i ∈ V2

implies i+ 1 ∈ V0 as possible as. Therefore for 0 ≤ t ≤ ⌊n
3 ⌋ − 1, f(3t+ 1) = 0

and f(3t) = f(3t + 2) = 2. This implies f(n − 2) = f(n − 1) = 2, and so
γ×2R(Cn) = f(V (Cn)) = ⌈ 4n

3 ⌉+ 1 = 2⌈ 2n
3 ⌉. □

Proposition 3.4. For any path Pn of order n ≥ 2,

γ×2R(Pn) =


2⌈ 2n

3 ⌉ if n ≡ 1, 2 (mod 3),

2⌈ 2n
3 ⌉+ 1 if n = 3,

2⌈ 2n
3 ⌉+ 2 otherwise.

Proof. Let Pn be a path with V (Pn) = {1, 2, ..., n} and let E(Pn) = {ij | j =

i + 1, 1 ≤ i ≤ n − 1}. Since (∅, ∅, V (Pn)) is the only min-R2DF on P2 and
(∅, {1}, {2, 3}) is a min-R2DF on P3, we consider n ≥ 4. Let f = (V0, V1, V2)

be a min-R2DF on Pn. Then f(1) = f(n) = 1, and f(2) = f(3) = f(n− 2) =

f(n − 1) = 2, which implies γ×2R(P4) = 6, γ×2R(P5) = 8, γ×2R(P6) = 10,
as desired. So, we assume n ≥ 7. Let L = V (Pn) − {1, 2, 3, n − 2, n − 1, n}.
Since every three consecutive vertices in L have at least weight 4 and every
two consecutive vertices in it have at least weight 2, we conclude (V0, V1, V2)
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is a min-R2DF on Pn where V0 = {3t + 1 | 1 ≤ t ≤ ⌊n−1
3 ⌋ − 1}, V1 = {1, n},

V2 = V (Pn)− V0 ∪ V1, and this completes our proof. □

Since it can be easily verified that for any n ≥ 3,

γ×2(Cn) =

{
⌈ 2n

3 ⌉ if n is odd,
⌊ 2n

3 ⌋ if n is even,

and for any n ≥ 2,

γ×2(Pn) =

{
⌈ 2n

3 ⌉ if n ≡ 0, 2, 5, 8 (mod 9),

⌈ 2n
3 ⌉+ 1 otherwise,

by Propositions 3.3 and 3.4, the next result charactrizes cycles and paths which
are Roman 2-tuple graph.

Proposition 3.5. i. Any cycle Cn is a Roman 2-tuple graph if and only
if n ̸≡ 2, 4 (mod 6).

ii. Any path Pn is a Roman 2-tuple graph if and only if n ̸= 3 and n ̸≡
0, 1, 4, 7 (mod 9).

Finally, we consider wheels. We recall that Wn denotes a wheel of order n ≥
4 with V (Wn) = {v0, v1, · · · , vn−1} such that deg(v0) = n− 1 and deg(vi) = 3

for 1 ≤ i ≤ n − 1. Here, we calculate γ×kR(Wn) when 1 ≤ k ≤ 4 (because
δ(Wn) = 3 ≥ k − 1). Since γR(Wn) = 2 and γ×4R(Wn) = 2n, we consider
k = 2, 3. First we recall a result from [6].

Lemma 3.6. [6] For any wheel Wn of order n ≥ 4 and any integer k,

γkR(Wn) =


2 if k = 1,

⌈ 2n+4
3 ⌉ if k = 2,

n if k ≥ 3.

Proposition 3.7. For any wheel Wn of order n ≥ 4,

γ×kR(Wn) =

{
⌈ 2n+4

3 ⌉ if k = 2,

2n− 2⌊n−1
3 ⌋ if k = 3.

Proof. We prove in the following two cases.
• k = 2. Let X = {v3t+1 | 0 ≤ t ≤ ⌊n−1

3 ⌋ − 1} ∪ {v0} and let V0 =

V (Wn)− (V1 ∪ V2) in a R2DF (V0, V1, V2) on Wn. Since

f = (V0, V1, V2) =


(V0, ∅, X ∪ {vn−2}) if n ≡ 0 (mod 3),

(V0, ∅, X) if n ≡ 1 (mod 3),

(V0, {vn−2}, X) if n ≡ 2 (mod 3),

is a R2DF on Wn with weight ⌈ 2(n−1)
3 ⌉ + 2 = ⌈ 2n+4

3 ⌉, we obtain
γ×2R(Wn) = ⌈ 2n+4

3 ⌉, by Proposition 2.1-(a) and Lemma 3.6.
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• k = 3. Let f = (V0, V1, V2) be a minimal R3DF on Wn. Since every
vertex, except probably v0, has degree 3 and v0 is adjacent to all other
n − 1 vertices, we conclude v0 ∈ V2. Also, we know vi ∈ V2, for some
1 ≤ i ≤ n − 1, implies vi−1, vi+1 ∈ V2. By considering these facts and
the minimality of the weight of f , we obtain V1 = ∅ and |V0| ≤ ⌊n−1

3 ⌋.
Hence γ×3R(Wn) ≥ 2|V2| = 2n − 2|V0| ≥ 2n − 2⌊n−1

3 ⌋. On the other
hand, since ({v3t+1 | 0 ≤ t ≤ ⌊n−1

3 ⌋− 1}, ∅, V (Wn)− V0) is a R3DF on
Wn with weight 2n− 2⌊n−1

3 ⌋, we obtain γ×3R(Wn) = 2n− 2⌊n−1
3 ⌋.

□

4. Mycieleskian of a Graph

In this section, we give some shap bounds for the Roman k-tuple domination
number of the Mycieleskian of a graph in terms of the same number of the
graph and k. Also we present the Roman k-tuple domination number of the
Mycieleskian of complete graphs. First we define the Mycieleskian of a graph.

Definition 4.1. [9] The Mycieleskian M(G) of a graph G = (V,E) is a graph
with vertex set V ∪ U ∪ {w}, and edge set E ∪ {ujvi | vjvi ∈ E and uj ∈
U} ∪ {ujw | uj ∈ U} where U = {uj | vj ∈ V } and ({w} ∪ U) ∩ V = ∅.

Figure 2 shows the Mycileskian of K5.

v1

v2

v3

v4

v5

u1

u2

u3

u4

u5 w

Figure 2. The Mycileskian of K5

Theorem 4.2. For any graph G with δ(G) ≥ k − 1 ≥ 1,

γ×kR(G) + min{k − 1, 2} ≤ γ×kR(M(G)) ≤ γ×kR(G) + 2k.

Proof. Let G be a graph with δ(G) ≥ k − 1 ≥ 1 and vertex set V = {vi | 1 ≤
i ≤ n}. Since for any min-RkDF f = (V0, V1, V2) on G, the function g =

(W0,W1,W2) is a RkDF on M(G) with weight γ×kR(G) + 2k where W2 =

V2 ∪ U ′ ∪ {w} for some subset U ′ ⊆ U of cardinality k − 1, W1 = V1 and
W0 = V0 ∪ (U − U ′), we obtain γ×kR(M(G)) ≤ γ×kR(G) + 2k.

Now let f = (V0, V1, V2) be a min-RkDF on M(G) such that |V1 ∩ U | and
|V2 ∩ U | is as possible as minimum. Let L = {i | ui ∈ V1}, L′ = {i | vi ∈ V1},
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T = {i | ui ∈ V2}, and T ′ = {i | vi ∈ V2} where |T | = t ≥ k − 1(because of
NM(G)(w) = U), |T ′| = t′, |L| = ℓ, and |L′| = ℓ′. By proving γ×kR(M(G)) ≥
γ×kR(G)+min{k−1, 2} in the following three cases, our proof will be completed.

Case 1. w ∈ V0. Then t ≥ k and

|NM(G)(vi) ∩ V2 ∩ V |


= k − 1 if i ∈ L,

≥ k − 1 if i ∈ T,

≥ k if i ̸∈ L ∪ T.

Let

L0 = {vi ∈ V0 | i ∈ L} ∪ {vi ∈ V0 | i ∈ T, and |NM(G)(vi) ∩ V2 ∩ V | = k − 1}

be a set of cardinality ℓ0. Then ℓ ≤ ℓ0 ≤ ℓ + t. By choosing V ′
2 = V2 ∩ V ,

V ′
1 = (V1 ∩ V ) ∪ L0, V ′

0 = V − (V ′
1 ∪ V ′

2), since f ′ = (V ′
0 , V

′
1 , V

′
2) is a RkDF on

G, we have
γ×kR(G) ≤ f ′(V )

= γ×kR(M(G)) + ℓ0 − ℓ− 2t.

Hence
γ×kR(M(G)) ≥ γ×kR(G) + 2t+ ℓ− ℓ0

≥ γ×kR(G) + t

≥ γ×kR(G) + k.

Case 2. w ∈ V1. Then t = k − 1, and ℓ ≤ 1. Because if ℓ ≥ 2, then by
choosing V ′

1 = V1 ∩ V , V ′
2 = V2 ∪ {w}, V ′

0 = V (M(G)) − V ′
1 ∪ V ′

2 the function
f ′ = (V ′

0 , V
′
1 , V

′
2) is a RkDF on M(G), and so

γ×kR(M(G)) ≤ f ′(V )

= 2(|V2|+ 1) + (|V1| − 1)− |U ∪ V1|
= γ×kR(M(G)) + 1− ℓ,

implying that ℓ ≤ 1. Hence

|NM(G)(vi) ∩ V2 ∩ V |
{

≥ k − 1 if i ∈ T ∪ L,

≥ k if i ̸∈ L ∪ T.

Let
L1 = {vi ∈ V0 | i ∈ T ∪ L, and |NM(G)(vi) ∩ V2 ∩ V | = k − 1}

be a set of cardinality ℓ1. Hence ℓ1 ≤ k. Then f ′ = (V ′
0 , V

′
1 , V

′
2) is a RkDF on

G where V ′
2 = V2 ∩ V , V ′

1 = (V1 ∩ V ) ∪ L1, V ′
0 = V − (V ′

1 ∪ V ′
2), and so

γ×kR(G) ≤ f ′(V )

= 2|V2|+ |V1| − 2k + 1 + ℓ1 − ℓ

= γ×kR(M(G))− 2k + 1 + ℓ1 − ℓ.

Hence
γ×kR(M(G)) ≥ γ×kR(G) + 2k − ℓ1 + ℓ− 1

≥ γ×kR(G) + k − 1.
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Case 3. w ∈ V2. (Notice that we may assume that there is no min-RkDF
g on M(G) with g(w) ̸= 2.) Then

|NM(G)(vi) ∩ V2 ∩ V |
{

≥ k − 2 if i ∈ T ∪ L,

≥ k − 1 if i ̸∈ L ∪ T.

• Subcase 3.1. T ∩ T ′ = ∅. Then the function f ′ = (V ′
0 , V

′
1 , V

′
2) is a

RkDF on G where V ′
2 = (V2∩V )∪{vi | i ∈ T}, V ′

1 = (V1∩V )−{vi | i ∈
T, vi ∈ V1} and V ′

0 = V − (V ′
1 ∪ V ′

2), and so

γ×kR(G) ≤ f ′(V )

= 2|V2|+ |V1| − f(U)− f(w) + 2t− |T ∩ L′|
= γ×kR(M(G))− ℓ− 2− |T ∩ L′|
≤ γ×kR(M(G))− 2,

which implies γ×kR(M(G)) ≥ γ×kR(G) + 2.
• Subcase 3.2. T ∩T ′ ̸= ∅. Let f ′′ be a function which is obtained from
f ′ in Subcase 3.1 by adding some needed vertices from NG[vi] to V ′

2 or
V ′
1 if

|NG(vi) ∩ V2| <
{

k if f ′(vi) = 0,

k − 1 if f ′(vi) ̸= 0

(this is possible because |NG[vi]| ≥ k).Then f ′′ is a RkDF on G, and
so

γ×kR(G) ≤ f ′′(V )

= γ×kR(M(G))− f(U)− f(w) + 2|T − T ′| − |L′ ∩ T |+ p

= γ×kR(M(G))− ℓ− 2− 2|T ∩ T ′| − |T ∩ L′|+ p

≤ γ×kR(M(G))− 2,

where f ′′(V (G))− f ′(V (G)) = p. The last inequality is obtained from
the facts p ≤ 2t, |T ∩ T ′|+ |T ∩ L′| ≤ |T | = t, and |T ∩ T ′| ≤ t. Hence
γ×kR(M(G)) ≥ γ×kR(G) + 2.

□

By γ×kR(Kn) = 2k, the next theorem states that the upper bound given in
Theorem 4.2 is tight.

Theorem 4.3. For any n ≥ k ≥ 2, γ×kR(M(Kn)) = 4k.

Proof. Let V (Kn) = {vi | 1 ≤ i ≤ n}, and let V (M(Kn)) = V ∪ U ∪ {w}. Let
f = (V0, V1, V2) be a min-RkDF on M(Kn). We show that f(V (M(Kn))) ≥ 4k.
Since NM(Kn)(w) = U and NM(Kn)(ui) ⊆ V ∪ {w} for each ui ∈ U , we have
|V2 ∩ U | ≥ k − 1 and |V2 ∩ V | ≥ k − 1. Let V2 ∩ V = {vi | i ∈ I} and
V2 ∩ U = {ui | i ∈ J} for some I, J ⊆ {1, 2, ..., n}. Then

f(V (M(Kn))) = 2(|I|+ |J |) + f(w) + f(U − V2) + f(V − V2),

and we continue our proof in the following two cases.
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• |J | = k − 1. Then w ∈ V1 ∪ V2.
◦ |I| = k − 1. Then U − V2 ⊆ V1, and so

f(V (M(Kn))) ≥ 4(k − 1) + 1 + 2(n− k + 1)

= 4k − 3 + 2(n− k + 1).

Since n ≤ 2k − 3 implies ui, vi ∈ V2 for some i ∈ J , and so
|NM(Kn)(ui) ∩ V2| < k − 1, we have n ≥ 2k − 2. Then, since

f(V (M(Kn))) ≥ 4k − 3 + 2(n− k + 1)

≥ 4k − 3 + 2(k − 1)

= 6k − 5

≥ 4k,

when k ≥ 3, we assume k = 2. Since γ×2R(M(K2)) = 2⌈ 10
3 ⌉ =

8 = 4k by Proposition 3.3, we assume n ≥ 3 (and so n−k+1 ≥ 2)
which implies

f(V (M(Kn))) ≥ 4k − 3 + 2(n− k + 1)

≥ 4k + 1.

◦ |I| ≥ k. Since f has minimum weight, we have |I| = k, and so

f(V (M(Kn))) = 2k + 2(k − 1) + f(w) + f(V1 ∩ U).

If V1 ∩U = ∅, then U ∩ V0 = U − V2. Since every vertex in U ∩ V0

must be adjacent to all vertices in V2 ∩ V , we have V2 ∩ V ⊆
{vi | i ∈ J}, which is not possible. Therefore V1 ∩ U ̸= ∅, and so
f(V (M(Kn))) ≥ 4k.

• |J | ≥ k. Then

f(V (M(Kn))) ≥ 2(|I|+ |J |) + f(U − V2) + f(V − V2) + f(w).

Since |J | ≥ k + 1 or |I| ≥ k impily f(V (M(Kn))) ≥ 4k, we assume
|J | = k and |I| = k− 1. This implies I ∩ J = ∅, and so n ≥ 2k− 1. On
the other hand, |I| = k − 1 implies U − V2 ⊆ V1, and so f(U − V2) ≥
|U | − k = n− k ≥ k − 1. Therefore

f(V (M(Kn))) ≥ 2(2k − 1) + k − 1

= 5k − 3.

Since 5k − 3 ≥ 4k when k ≥ 3, we assume k = 2. But then {vi | i ∈
J} ⊆ V1, which implies f(V (M(Kn))) ≥ 5k − 3 + 2 ≥ 4k.

Finally, by choosing a subset W2 ⊆ V (M(Kn)) with this property that
|W2∩V | = |W2∩U | = k, and W0 = V (M(Kn))−W2, the function (W0, ∅,W2)

is a RkDF on M(Kn) with weight 4k, implying that γ×kR(M(Kn)) = 4k.
Figure 3 shows some min-R3DFs for K5 and M(K5).

□
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Figure 3. γ×3R(K5) = 6 (left), and γ×3R(M(K5)) = 12 (right)

5. The Corona Graphs

Here, we study Roman k-tuple domination number of corona graphs. We
recall that for any graphs G and H of orders n and m, respectively, the corona
graph cor(G,H) is a graph obtained from G and H by taking one copy of G
and n copies of H and joining with an edge each vertex from the i-th copy of
H with the i-th vertex of G. Hereafter, in cor(G,H) we will denote the set of
vertices of G by V = {v1, v2, · · · , vn} and the i-th copy of H by Hi = (Wi, Ei).

First we give some bounds for the k-tuple domination number of a corona
graph.

Theorem 5.1. For any graphs G and H with δ(H) ≥ k − 2 ≥ 0,

k|V (G)| ≤ γ×k(cor(G,H)) ≤ (|V (H)|+ 1)|V (G)|,

and these bounds are tight, and γ×k(cor(G,H)) = k|V (G)| if and only if H =

Kk−1 or H = F ◦k−1 Kk−1 for some graph F .

Proof. Since for any kDS S of cor(G,H) and any vertex w in Hi, |Ncor(G,H)[w]∩
S| ≥ k, and since V (cor(G,H)) is a kDS of cor(G,H), we have

k|V (G)| ≤ γ×k(cor(G,H)) ≤ (|V (H)|+ 1)|V (G)|.

Obviously, γ×k(cor(G,H)) = k|V (G)| if and only if H = Kk−1 or H = F ◦k−1

Kk−1 for some graph F . For the upper bound, if H is a (k− 2)-regular graph,
then γ×k(cor(G,H)) = (|V (H)|+ 1)|V (G)|. □

Theorem 5.2. For any graphs G and H with δ(H) ≥ k − 1 ≥ 1,

2k|V (G)| ≤ γ×kR(cor(G,H)) ≤ 2γ×k(cor(G,H)).

Proof. By Theorem 2.6, it is sufficient to prove the lower bound. Let f =

(V0, V1, V2) be a RkDF on cor(G,H) and let vi be a vertex of G. We con-
tinueour proof in the following cases. Recall that for any subset T ⊆ V ,
f(T ) =

∑
v∈T f(v).

• f(vi) = 0. If there exists a vertex v ∈ Wi ∩V0, then |NWi
(v)∩V2| ≥ k,

and so f(Wi ∪ {vi}) ≥ 2k. If there exists a vertex v ∈ Wi ∩ V1,
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then |NWi
(v) ∩ V2| ≥ k − 1. Now k ≥ 2 implies that there exists a

vertex v′ ∈ NWi
(v) ∩ V2, and so |NWi

(v′) ∩ V2| ≥ k − 1. Therefore
|(NWi

(v) ∪ NWi
(v′)) ∩ V2| ≥ k which implies f(Wi ∪ {vi}) ≥ 2k + 1.

Finally, if f(v′) = 2 for any v′ ∈ Wi, then f(Wi ∪ {vi}) ≥ 2k.
• f(vi) = 1. If there exists a vertex v ∈ Wi ∩V0, then |NWi

(v)∩V2| ≥ k,
and so f(Wi ∪ {vi}) ≥ 2k + 1. If there exists a vertex v ∈ Wi ∩ V1,
then |NWi(v) ∩ V2| ≥ k − 1. Now k ≥ 2 implies that there exists a
vertex v′ ∈ NWi(v) ∩ V2, and so |NWi(v

′) ∩ V2| ≥ k − 1. Therefore
|(NWi

(v) ∪ NWi
(v′)) ∩ V2| ≥ k which implies f(Wi ∪ {vi}) ≥ 2k + 2.

Finally, if f(v′) = 2 for any v′ ∈ Wi, then f(Wi ∪ {vi}) ≥ 2k + 1.
• f(vi) = 2. If there exists a vertex v ∈ Wi∩V0, then |NWi(v)∩V2| ≥ k−1,

and so f(Wi ∪ {vi}) ≥ 2k. If there exists a vertex v ∈ Wi ∩ V1, then
|NWi

(v)∩V2| ≥ k−2, and so f(Wi∪{vi}) ≥ 2k−1. Since f(Wi∪{vi}) =
2k− 1 if and only if H = Kk−1, we obtain f(Wi ∪ {vi}) ≥ 2k. Finally,
if f(v′) = 2 for any v′ ∈ Wi, then f(Wi ∪ {vi}) ≥ 2k.

□

The following theorem is obtained by Theorems 5.1 and 5.2.

Theorem 5.3. For any graphs G and H with δ(H) ≥ k−2 ≥ 0, γ×kR(cor(G,H)) =

2k|V (G)| if and only if H = Kk−1 or H = F ◦k−1 Kk−1 for some graph F .

6. Some Questions and Problems

Finally, we end our paper with some useful questions and problems.

Question 6.1. Is M(G) a Roman k-tuple graph if G is a Roman k-tuple graph?

Question 6.2. For any Roman k-tuple graph G, is there a Roman k-tuple
graph H such that G = M(H)?

Question 6.3. Find graphs G whose Roman k-tuple domination number achieves
the bounds in Theorem 4.2?

Question 6.4. For any graph G, whether γ×2R(G) ≥ 2γR(G)?

Problem 6.5. Find γ×kR(M(Cn)) for 2 ≤ k ≤ 4 and γ×kR(M(Pn)) for 2 ≤
k ≤ 3.

Problem 6.6. Find the Roman k-tuple domatic number of a graph.

Problem 6.7. Characterize graphs G with γ×2R(G) = γR(G).

Problem 6.8. Characterize graphs G with γ×kR(G) = γkR(G).

In [7], the authors have defined the total Roman dominating function on
a graph G as a Roman domination function f = (V0, V1, V2) on it with this
additional property that the induced subgraph G[V1∪V2] has no isolated vertex,
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and in a similar way, they have defined the total Roman domination number
γtR(G) of G. Since γtR(G) ≤ γ×kR(G) ≤ γ×(k+1)R(G) for any k ≥ 2, we have

γtR(G) ≤ γ×2R(G). (6.1)

So, the fnext problem is natural to appear.

Problem 6.9. Find graphs G satisfying γ×2R(G) = γtR(G).
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