دوره 5، شماره 1 - ( 2-1389 )                   جلد 5 شماره 1 صفحات 19-26 | برگشت به فهرست نسخه ها


XML Print


چکیده:  

Let R be a commutative integral domain with quotient field K and let P be a nonzero strongly prime ideal of R. We give several characterizations of such ideals. It is shown that (P : P) is a valuation domain with the unique maximal ideal P. We also study when P^{&minus1} is a ring. In fact, it is proved that P^{&minus1} = (P : P) if and only if P is not invertible. Furthermore, if P is invertible, then R = (P : P) and P is a principal ideal of R.

نوع مطالعه: پژوهشي | موضوع مقاله: عمومى