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ABSTRACT. Let R be a ring. The ring R is called weakly prime cen-
ter(WPC ring) if ab € Z(R) implies that aRb is an ideal of R. In this
paper, we prove that every left(right) duo ring is a WPC ring. Also we
introduce some classes of rings with nilpotent Jacobson radical which are
WPC rings. Finally, we prove that a simple ring is a WPC ring if and

only if it is a domain.
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1. INTRODUCTION

In this paper, all rings have identity elements. The class of weakly prime
center rings or simply WPC rings is introduced in [4]. In [4] some properties
of these rings was investigated. Also the relation of WPC rings and other
classes of rings such as clean rings, exchange rings and semi periodic rings has
been studied. A ring R is called weakly prime center(WPC ring) if ab € Z(R)
implies that aRb is an ideal of R. It is clear that every commutative ring is a
WPC ring. So WPC rings are a generalization of commutative rings. In this
paper, we prove that every left(right) duo ring is a WPC ring. Also we prove
that a simple ring is a WPC ring if and only if it is a domain. Also we correct
a mistake in [4].
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Here we give some notions and definitions. We denote the center of a ring R
by Z(R). Also the Jacobson radical of the ring R is denoted by J(R). A ring
with no non-zero nilpotent element is called a reduced ring. A ring R is called
reversible if ab = 0 implies that ba = 0. For example every reduced ring is
reversible. A ring R is called semicommutative if ab = 0 implies that aRb = 0.
Every reversible ring is semicommutative. A ring R is called an abelian ring if
every idempotent element is central. Semicommutative rings are abelian rings.
A ring R is called left(right) duo ring if every left(right) ideal of R is a two
sided ideal. A ring R is called left(right) quasiduo if every maximal left(right)
ideal of R is an ideal. A ring R is directly finite if ab = 1 implies that ba = 1
for any a,b € R. An ideal A of a ring R is idempotent-lifting if A C J(R) and

R
every idempotent of 1 has the form = + A, where x is an idempotent of R.

A ring R is semi-local if is a semisimple artinian ring. A semi-local ring

R
J(R)
R is semi-perfect if J(R) is idempotent-lifting. A ring R is a Von Neumann
regular ring if a € aRa for each a € R. A ring R is a strongly regular ring if
a € a®R for each a € R. Tt is well known that a ring R is a strongly regular
ring if and only if R is a Von Neumann regular ring and R is a reduced ring.

For any other unexplained notations or definitions see [2] and [3].
2. MAIN RESULTS
In this section we state our main results.

Lemma 2.1. Let R be a ring and a,b € R
(1) If ab € U(R), then aRb = R.
(2) Assume ab € Z(R). Ifa € U(R) orb e U(R), then aRb = abR = Rab.

Proof. (1) Assume abu = uab=1. ThenaR = R = Rb. SoaRb = Rb = R.
(2) Assume a € U(R). Then aR = R = Ra. So aRb = Rb = Rab = abR.
]

Lemma 2.2. If R is a semicommutative ring whose center is a field, then R
is a WPC ring.

Proof. Let Z(R) = F. If ab € F, then ab=0or ab € F* C U(R). If ab = 0,
then aRb = 0 is a two sided ideal. If ab € F* C U(R), then aRb = R by
Lemma 2.1. ]

Corollary 2.3. If R is a reduced ring whose center is a field, then R is a WPC
ring.

EXAMPLE 2.4. If k is a field and R = k(X)) is the free algebra on set X, then
R is a WPC ring.

The following proposition of [4] gives a class of local WPC rings.
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Theorem 2.5. [4, Proposition 2.2] Let R be a local ring. If J(R) is commu-
tative, then R is WPC.

Corollary 2.6. Let R be a local ring. If J(R)? =0, then R is a WPC ring.

EXAMPLE 2.7. If R is a local ring, then R/J(R)? is a WPC ring by Corollary
2.6.

Theorem 2.8. Let F' be field and R = F @ J(R) be a local F—algebra. If
J(R)* =0 and (J(R)*NZ(R))J(R) =0, then R is a WPC ring.

Proof. Let ab € Z(R). Note that aRb is an F—vector space. If a € U(R) or
b € U(R), then aRb is a two sided ideal by Lemma 2.1. So assume a,b € J(R).
Hence aJ(R)bJ(R) = 0. Also ab € J(R)*(Z(R). So abJ(R) = 0. Hence
aRbJ(R) = aFbJ(R) + aJ(R)bJ(R) = abJ(R) + aJ(R)bJ(R) = 0. Therefore
aRbR = aRbF + aRbJ(R) = aRb+ abJ(R) = aRb. Similarly RaRb = aRb. So

aRb is an ideal and R is a WPC ring. |
a b c d
0 a e f
Corollary 2.9. Let F be a field. If R = { 00 a g sa,bye,de, f,g €
0 0 0 a
F}, then R is a WPC ring.
0 b ¢ d
0 0 e f
Proof. Let I = { 00 0 g i bye,dye, f,g € F}. Then R/I = F and
0 0 0O
a 0 0 d
.y 0 a 00
I*=0. Hence I = J(R) and R=F@ J(R). Also Z(R) = { 00 a 0
0 0 0 a
a,d € F}. So (J(R)>NZ(R))J(R) = 0. Hence R is a WPC ring by Theorem
2.8. O

Corollary 2.10. Let F be field. If R = F@ J(R) is a local F—algebra and
J(R)? =0, then R is a WPC ring.

Proof. 1t is clear that (J(R)?(Z(R))J(R) = 0. Hence R is a WPC ring by

Theorem 2.8. O
a b c

Corollary 2.11. Let F be a field. If R={| 0 a d | :a,b,e,d € F}, then
0 0 a

R is a WPC ring.
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0 b ¢
Proof. Since J(R)={| 0 0 d | :b,¢,d € F}, we conclude that J(R)3 = 0.
0 0 O

Hence R is a WPC ring by Corollary 2.10. O
a ai2 a3 - Q1n
0 a az3 ' Q2n
Remark 212, Let R, = {| 0 0 @ - asn | . q.a;; € F}. Then
0 0 0 - a
Rj3 is a semicommutative ring by [1, Proposition 1.2]. But R,, is not semicom-
01 -1 0 0] 00000
00 0 00 0 00 11
mutative forn > 4. LetA=|0 0 0 0 O |,B=|0 0 0 1 1 |,C=
00 0 00 000 00
00 0 O O_ 00 0 0 O
00011 0000 0]
0 00 0O 000 00
0 000 O0fandD=|0 0 0 0 O |.Then AB=0and ARB =
000 0O 0 00 01
00 0 0 O 00 0 O O_
000 f f 0000 1
0O 00 0 O 00 0 0 O
{|0 0 0 0 0 |:feF}.SoCeARB.ButCD=|0 0 0 0 0 | ¢
000 0O 0 00 0O
000 0O 000 0O

ARB. So ARB is not an ideal. Hence Rj is not a WPC ring. A similar proof
shows that R,, is not a WPC ring for n > 5.

Theorem 2.13. If R is a left(right) duo ring, then R is a WPC ring.

Proof. Assume R is a left duo ring. Let ab € Z(R). Then aR C Ra and
bR C Rb. So abR C aRb C Rab = abR. Hence aRb = Rab = abR is a two
sided ideal. O

Remark 2.14. Since every strongly regular ring is duo ring, strongly regular
rings are WPC rings. This is a part of [4, Proposition 2.6].

For the proof of the next theorem we need the following lemma.
Lemma 2.15. [4, Lemma 2.1.] The WPC rings are directly finite.

In [4, Remark 2.3] it is proved that for a division ring D, My(D) is a simple
ring which is not a WPC ring. In the next theorem, we classify all simple WPC
rings.
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Theorem 2.16. A simple ring R is a WPC ring if and only if it is a domain.

Proof. Since R is a simple ring, Z(R) is a field. If R is a domain, then the
proof follows from Corollary 2.3. Conversely, assume R is a simple WPC ring.
If ab = 0, then aRb is an ideal. So aRb = 0 or aRb = R. If aRb = R, then
there exists an 7 € R such that arb = 1. Since WPC rings are directly finite,
rba = 1. This implies that b = rbab = 0. Hence R = aRb = 0 which is a
contradiction. So aRb = 0. Since ann;(Rb) is a two sided ideal, ann;(Rb) =0
or ann;(Rb) = R. If ann;(Rb) = 0, then a = 0. If ann;(Rb) = R, then b = 0.
So R is a domain. |

The following Lemma is an interesting property of idempotents in WPC
rings which is stated in the proof of [4, Theorem 3.1-part 1].

Lemma 2.17. Let R be a WPC ring. If e € R is an idempotent element, then
eR(1 —e)Re = 0. In particular, (eR(1—e)R)> =0 and (R(1 —e)Re)> =0 and
eR(1 —e)R,R(1 —e)Re C J(R).

Proof. The equation e(1—e) = 0 implies that eR(1 —e) is an ideal of R. Hence
eR(1—e)R C eR(1—e). SoeR(1—e)Re C eR(1—e)Re C eR(1—e)e = 0. Hence
(eR(1—e)R)? = (R(1—e)Re)? = 0 which implies that eR(1—e)R, R(1—e)Re C
J(R). O

Theorem 2.18. Let R be a WPC ring. If J(R) is idempotent-lifting, then
R/J(R) is an abelian ring.

Proof. Let x € R/J(R) be an idempotent of the ring R/J(R). So there is an
idempotent e € R such that x = e+ J(R). Sore —ere = (1 —e)re € J(R) and
er(l—e) =er —ere € J(R) by Lemma 2.17. This implies that re —er € J(R).
Sox € Z(R/J(R)). Hence R/J(R) is an abelian ring. O

Theorem 2.19. Let R be a WPC ring. If R is a semi-perfect ring, then
R/J(R) is direct product of finitely many division ring. In particular, R is
quasiduo Ting.

Proof. Since R/J(R) is an Artinian semisimple ring, it is isomorphic to di-
rect product of finitely many matrix rings over some division rings by Artin-
Wedderburn theorem. Also J(R) is an idempotent-lifting ideal. So R/J(R) is
an abelian ring by Theorem 2.18. Hence R/J(R) is a product of finitely many
division rings. Since R/J(R) is a quasiduo ring, R is a quasiduo ring. O

Corollary 2.20. If R is an Artinian WPC ring, then R is a quasiduo ring.

a b
N c]:a,b,cEZg,}

is not a WPC ring. But its computations are not correct. In fact, we prove
that R is a WPC ring.

In [4, Remark 2.4] it is mentioned that the ring R = { [
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a b

Theorem 2.21. Let F be a field. If R = {[ 0 . } ta,b,c € F}, then R is a

WPC ring.

Proof. First note that Z(R) = {[ 8 2 ] :a € F} is a field. Let A =

I / / / /
a b €RandB=| ¢ b, € Rbesuch that AB = | %% ab/—i—bc €
0 ¢ 0 ¢ 0 cc
Z(R). If 0 # AB € Z(R), then AB € U(R) and ARB = R by Lemma 2.1.
If AB =0, then ARB C {[ 8 g ] :d € F} = J(R). The set ARB is an
F—subspace of J(R) and dimpJ(R) = 1. So ARB = 0 or ARB = J(R).
Hence R is a WPC ring.

]

a b . . .
0 ] :a,b,c € F} is not a semicommutative
c

ring since it is not an abelian ring. So R is an example of a WPC ring which
is not semicommutative. Hence the converse of Theorem 2.2 is not true.

Remark 2.22. The ring R = { {
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