Graded r-Ideals

Rashid Abu-Dawwasa, Malik Batainehb\(^*\)

aDepartment of Mathematics, Yarmouk University, Jordan.
bDepartment of Mathematics and Statistics, Jordan University of Science and Technology, Jordan.

E-mail: rrashid@yu.edu.jo
E-mail: msbataineh@just.edu.jo

Abstract. Let G be a group with identity e and R be a commutative G-graded ring with nonzero unity 1. In this article, we introduce the concept of graded r-ideals. A proper graded ideal P of a graded ring R is said to be a graded r-ideal if whenever $a, b \in h(R)$ such that $ab \in P$ and $Ann(a) = \{0\}$, then $b \in P$. We study and investigate the behavior of graded r-ideals to introduce several results. We introduced several characterizations for graded r-ideals; we proved that P is a graded r-ideal of R if and only if $aP = aR \cap P$ for all $a \in h(R)$ with $Ann(a) = \{0\}$. Also, P is a graded r-ideal of R if and only if $P = (P : a)$ for all $a \in h(R)$ with $Ann(a) = \{0\}$. Moreover, P is a graded r-ideal of R if and only if whenever A, B are graded ideals of R such that $AB \subseteq P$ and $A \cap r(h(R)) \neq \phi$, then $B \subseteq P$.

In this article, we introduce the concept of a huz-rings. A graded ring R is said to be a huz-ring if every homogeneous element of R is either a zero divisor or a unit. In fact, we proved that R is a huz-ring if and only if every graded ideal of R is a graded r-ideal. Moreover, assuming that R is a graded domain, we proved that $\{0\}$ is the only graded r-ideal of R.

Keywords: Graded ideals, Graded prime ideals, Graded r-ideals.

2000 Mathematics Subject Classification: 13A02

*Corresponding Author

Received 24 November 2016; Accepted 23 July 2018
©2019 Academic Center for Education, Culture and Research TMU
1. Introduction

Let G be a group with identity e. A ring R is said to be a G-graded ring if there exist additive subgroups R_g of R such that $R = \bigoplus_{g \in G} R_g$ and $R_g R_h \subseteq R_{gh}$ for all $g, h \in G$. The elements of R_g are called homogeneous of degree g and R_e (the identity component of R) is a subring of R and $1 \in R_e$. For $x \in R$, x can be written uniquely as $\sum_{g \in G} x_g$ where x_g is the component of x in R_g. Also we write $h(R) = \bigcup_{g \in G} R_g$ and $\text{supp}(R, G) = \{g \in G : R_g \neq 0\}$. For more details, see [3].

Let R be a G-graded ring and P be an ideal of R. Then P is called a G-graded ideal if $P = \bigoplus_{g \in G} (P \cap R_g)$, i.e., if $x \in P$ and $x = \sum_{g \in G} x_g$, then $x_g \in P$ for all $g \in G$. An ideal of a graded ring need not be graded; see the following example.

Example 1.1. Consider $R = \mathbb{Z}[i]$ and $G = \mathbb{Z}_2$. Then R is G-graded by $R_0 = \mathbb{Z}$ and $R_1 = i\mathbb{Z}$. Now, $P = \langle 1 + i \rangle$ is an ideal of R with $1 + i \in P$. If P is a graded ideal, then $1 \in P$, so $1 = a(1 + i)$ for some $a \in R$, i.e., $1 = (x + iy)(1 + i)$ for some $x, y \in \mathbb{Z}$. Thus $1 = x - y$ and $0 = x + y$, i.e., $2x = 1$ and hence $x = \frac{1}{2}$ a contradiction. So, P is not graded ideal.

Throughout this article, R will be a commutative ring with nonzero unity 1. For $a \in R$, we define $\text{Ann}(a) = \{r \in R : ra = 0\}$. An element $a \in R$ is said to be a regular element if $\text{Ann}(a) = \{0\}$, the set of all regular elements of R is denoted by $r(R)$. If A is a subset of R and P is an ideal of R, then we define $(P : A) = \{r \in R : rA \subseteq P\}$.

The notion of r-ideals was introduced and studied by Rostam Mohamadian in [2]. A proper ideal P of R is said to be an r-ideal (resp. pr-ideal) if whenever $a, b \in R$ such that $ab \in P$ and $\text{Ann}(a) = \{0\}$, then $b \in P$ (resp. $b^n \in P$ for some $n \in \mathbb{N}$).

In this article, we introduce the concept of graded r-ideals. A proper graded ideal P of a graded ring R is said to be a graded r-ideal (resp. graded pr-ideal) if whenever $a, b \in h(R)$ such that $ab \in P$ and $\text{Ann}(a) = \{0\}$, then $b \in P$ (resp. $b^n \in P$ for some $n \in \mathbb{N}$). We study and investigate the behavior of graded r-ideals to introduce several results.

We introduce several characterizations for graded r-ideals; we prove that P is a graded r-ideal of R if and only if $aP = aR \cap P$ for all $a \in h(R)$ with $\text{Ann}(a) = \{0\}$. Also, P is a graded r-ideal of R if and only if $P = (P : a)$ for all $a \in h(R)$ with $\text{Ann}(a) = \{0\}$. Moreover, P is a graded r-ideal of R if and only if whenever A, B are graded ideals of R such that $AB \subseteq P$ and $A \cap r(h(R)) \neq \phi$, then $B \subseteq P$.
A proper graded ideal of a graded ring R is said to be graded prime if whenever $a, b \in h(R)$ such that $ab \in P$, then either $a \in P$ or $b \in P$ ([1]). We prove that the intersection of two graded r-ideals is a graded r-ideal. On the other hand, if the intersection of two non-comparable graded prime ideals is a graded r-ideal, then both ideals are graded r-ideals. Moreover, we prove that every graded maximal r-ideal is graded prime.

If P is a graded r-ideal of R, we prove that P_n is an r-ideal of R, and $(P : a)$ is a graded r-ideal of R for all $a \in h(R) - P$. Also, we prove that if R is \mathbb{Z}-graded, then P is a graded pr-ideal of R if and only if \sqrt{P} is a graded r-ideal of R.

In this article, we introduce the concept of huz-rings. A graded ring R is said to be a huz-ring if every homogeneous element of R is either a zero divisor or a unit. In fact, we prove that R is a huz-ring if and only if every graded ideal of R is a graded r-ideal. Moreover, assuming that R is a graded domain, we prove that $\{0\}$ is the only graded r-ideal of R.

2. Graded r-Ideals

In this section, we introduce and study the concept of graded r-ideals.

Definition 2.1. Let R be a G-graded ring. A proper graded ideal P of R is said to be a graded r-ideal (resp. graded pr-ideal) if whenever $a, b \in h(R)$ such that $ab \in P$ and $Ann(a) = \{0\}$, then $b \in P$ (resp. $b^n \in P$ for some $n \in \mathbb{N}$).

Note that for a graded ideal P of a G-graded ring R, $P_g = P \cap R_g$ for $g \in G$.

Theorem 2.2. Let R be a G-graded ring and P be a graded ideal of R. Then P is a graded r-ideal if and only if $aP = aR \cap P$ for every $a \in h(R)$ with $Ann(a) = \{0\}$.

Proof. (\Rightarrow) Let $a \in h(R)$ such that $Ann(a) = \{0\}$. Then $aP \subseteq P$ and $aP \subseteq aR$, i.e., $aP \subseteq aR \cap P$. Let $x \in aR \cap P$. Then $x = az \in P$ for some $z \in R$. Since R is G-graded, $z = \sum_{g \in G} z_g$ and then $x = \sum_{g \in G} az_g \in P$ and since P is a graded ideal, $az_g \in P$ for all $g \in G$. Since P is a graded r-ideal, $z_g \in P$ for all $g \in G$ and then $z = \sum_{g \in G} z_g \in P$ which implies that $x = az \in aP$. Hence, $aP = aR \cap P$.

(\Leftarrow) Let $a, b \in h(R)$ such that $ab \in P$ and $Ann(a) = \{0\}$. Then $ab \in aR \cap P = aP$ and then $ab = ax$ for some $x \in P$ which implies that $a(b - x) = 0$. Since $Ann(a) = \{0\}$, $b - x = 0$, i.e., $b = x \in P$. Hence, P is a graded r-ideal.

Theorem 2.3. Let R be a G-graded ring and P be a graded ideal of R. If $aP_g = aR_h \cap P_g$ for all $g, h \in G$ and for all $a \in h(R)$ with $Ann(a) = \{0\}$, then P is a graded r-ideal of R.

Proof. Let \(a, b \in h(R) \) such that \(ab \in P \) and \(\text{Ann}(a) = \{0\} \). Then there exist \(g, h \in G \) such that \(a \in R_g \) and \(b \in R_h \) and then \(ab \in R_g R_h \cap P \subseteq R_{gh} \cap P = P_{gh} \). Now, \(ab \in aR_h \cap P_{gh} = aP_{gh} \), i.e., \(ab = ay \) for some \(y \in P_{gh} \) and then \(a(b - y) = 0 \). Since \(\text{Ann}(a) = \{0\} \), \(b = y \in P_{gh} \subseteq P \). Hence, \(P \) is a graded \(r \)-ideal of \(R \). \(\square \)

Theorem 2.4. Let \(R \) be a \(G \)-graded ring and \(P \) be a graded ideal of \(R \). Then \(P \) is a graded \(r \)-ideal if and only if \(P = \langle P : a \rangle \) for all \(a \in h(R) \) with \(\text{Ann}(a) = \{0\} \).

Proof. Suppose that \(P \) is a graded \(r \)-ideal of \(R \). Let \(a \in h(R) \) with \(\text{Ann}(a) = \{0\} \). Clearly, \(P \subseteq \langle P : a \rangle \). Let \(y \in \langle P : a \rangle \). Then \(ya \in P \). Since \(R \) is \(G \)-graded, \(y = \sum_{g \in G} y_g \) and then \(ya = \sum_{g \in G} y_g a \in P \) and since \(P \) is graded, \(y_g a \in P \) for all \(g \in G \). Since \(P \) is a graded \(r \)-ideal, \(y_g \in P \) for all \(g \in G \) and then \(y = \sum_{g \in G} y_g \in P \). Hence, \(P = \langle P : a \rangle \). Conversely, let \(a, b \in h(R) \) such that \(ab \in P \) and \(\text{Ann}(a) = \{0\} \). Then \(b \in \langle P : a \rangle = P \). Hence, \(P \) is a graded \(r \)-ideal of \(R \). \(\square \)

Theorem 2.5. Let \(R \) be a \(G \)-graded ring and \(P \) be a graded ideal of \(R \). If \(P_g = \langle P_g : R_g a \rangle \) for all \(g, h \in G \) and for all \(a \in h(R) \) with \(\text{Ann}(a) = \{0\} \), then \(P \) is a graded \(r \)-ideal of \(R \).

Proof. Let \(a, b \in h(R) \) such that \(ab \in P \) and \(\text{Ann}(a) = \{0\} \). Then \(a \in R_g \) and \(b \in R_h \) for some \(g, h \in G \) and then \(ab \in R_g R_h \cap P \subseteq R_{gh} \cap P = P_{gh} \), i.e., \(b \in \langle P_g : R_g a \rangle = P_{gh} \subseteq P \). Hence, \(P \) is a graded \(r \)-ideal of \(R \). \(\square \)

Theorem 2.6. Let \(R \) be a \(G \)-graded ring and \(P \) be a graded ideal of \(R \). Then \(P \) is a graded \(r \)-ideal if and only if whenever \(A, B \) are graded ideals of \(R \) such that \(AB \subseteq P \) and \(A \cap r(h(R)) \neq \emptyset \), then \(B \subseteq P \).

Proof. Suppose that \(P \) is a graded \(r \)-ideal of \(R \). Let \(A, B \) be two graded ideals of \(R \) such that \(AB \subseteq P \) and \(A \cap r(h(R)) \neq \emptyset \). Since \(A \cap r(h(R)) \neq \emptyset \), there exists \(a \in A \cap r(h(R)) \). Let \(g \in G \) and \(b \in B_g \). Then \(ab \in AB_g \subseteq AB \subseteq P \). Since \(P \) is a graded \(r \)-ideal, \(b \in P \). So, \(B_g \subseteq P \) for all \(g \in G \) which implies that \(B \subseteq P \). Conversely, let \(a, b \in h(R) \) such that \(ab \in P \) and \(\text{Ann}(a) = \{0\} \). Then \(A = \langle a \rangle \) and \(B = \langle b \rangle \) are graded ideals of \(R \) such that \(AB \subseteq P \) and \(a \in A \cap r(h(R)) \). By assumption, \(B \subseteq P \) and then \(b \in P \). Hence, \(P \) is a graded \(r \)-ideal of \(R \). \(\square \)

Theorem 2.7. If \(R \) is a \(G \)-graded domain, then \(\{0\} \) is a unique graded \(r \)-ideal of \(R \).

Proof. Let \(P \) be a nonzero proper graded ideal of \(R \). Then there exists \(0 \neq a = \sum_{g \in G} a_g \in P \) and then \(a_g \in P \) for all \(g \in G \) since \(P \) is graded. Since \(R \) is
a domain, $Ann(a_g) = \{0\}$ with $1.a_g \in P$. If P is a graded r-ideal, then $1 \in P$ which is a contradiction. Hence, $\{0\}$ is the only graded r-ideal of R.

Lemma 2.8. If R is a G-graded ring, then R_e contains all homogeneous idempotent elements of R.

Proof. Let $0 \neq x \in h(R)$ be an idempotent. Then $x \in R_g$ for some $g \in G$ and then $x = x^2 \in R_g \cap R_g^2$. Since $0 \neq x \in R_g \cap R_g^2$, $g^2 = g(\in G)$ which implies that $g = e$. Hence, $x \in R_e$. □

Theorem 2.9. Let R be a G-graded ring. Suppose that $\{x_i : i \in \Gamma\}$ is a set of homogeneous idempotent elements in R_e. Then $P = \sum_{i \in \Gamma} R_e x_i$ is an r-ideal of R_e.

Proof. Let $a, b \in R_e$ such that $ab \in P$ and $Ann(a) = \{0\}$. Let $z = \prod_{k=1}^{n} (1 - x_{i_k})$ where $ab = \sum_{j=1}^{n} r_j x_j$ for some $r_1......r_n \in R_e$. Then $abz = 0$. Since $Ann(a) = \{0\}$, $bz = 0$. On the other hand, there exists $r \in P$ such that $z = 1 - r$ and then $b(1 - r) = 0$ which implies that $b = br \in P$. Hence, P is an r-ideal of R_e. □

The next lemma is well known and clear; so we omit the proof.

Lemma 2.10. If P_1 and P_2 are graded ideals of a graded ring R, then $P_1 \cap P_2$ is a graded ideal of R.

Theorem 2.11. Let R be a G-graded ring. If P_1 and P_2 are graded r-ideals of R, then $P_1 \cap P_2$ is a graded r-ideal of R.

Proof. By Lemma 2.10, $P_1 \cap P_2$ is a graded ideal of R. Let $a, b \in h(R)$ such that $ab \in P_1 \cap P_2$ and $Ann(a) = \{0\}$. Then $ab \in P_1$. Since P_1 is a graded r-ideal, $b \in P_1$. Similarly, $b \in P_2$ and hence $b \in P_1 \cap P_2$. Therefore, $P_1 \cap P_2$ is a graded r-ideal of R. □

Theorem 2.12. Let R be a G-graded ring and P_1, P_2 be graded prime ideals of R which are not comparable. If $P_1 \cap P_2$ is a graded r-ideal of R, then P_1 and P_2 are graded r-ideals of R.

Proof. Let $a, b \in h(R)$ such that $ab \in P_1$ and $Ann(a) = \{0\}$. Suppose that $y \in P_2 - P_1$. Then $aby \in P_1 \cap P_2$. Since $P_1 \cap P_2$ is graded r-ideal, $by \in P_1 \cap P_2$ and then $by \in P_1$. Since P_1 is graded prime and $y \notin P_1$, $b \in P_1$. Hence, P_1 is a graded r-ideal of R. Similarly, P_2 is a graded r-ideal of R. □

If P is a graded ideal of a G-graded ring R, then \sqrt{P} need not to be a graded ideal of R; see ([4], Exercises 17 and 13 on pp. 127-128). We introduce the following.
Lemma 2.13. If P is a graded ideal of a \mathbb{Z}-graded ring R, then \sqrt{P} is a graded ideal of R.

Proof. Clearly, \sqrt{P} is an ideal of R. Let $x \in \sqrt{P}$ and write $x = \sum_{i=1}^{t} x_i$ where $x_i \in R_{n_i}$ and $n_1 < n_2 < \ldots < n_t$. Then $x_k \in P$ for some positive integer k. Of course, $x^k = x_1^k + \text{(higher terms)}$ and as P is graded, we should have that $x_1^k \in P$. Thus, $x_1 \in \sqrt{P}$ which implies that $x - x_1 \in \sqrt{P}$. Now, induct on the number of homogeneous components to conclude that $x_i \in \sqrt{P}$ for all $1 \leq i \leq t$. Hence, \sqrt{P} is a graded ideal of R. \square

Theorem 2.14. Let R be a \mathbb{Z}-graded ring and P be a graded ideal of R. Then P is a graded pr-ideal of R if and only if \sqrt{P} is a graded r-ideal of R.

Proof. Suppose that P is a graded pr-ideal of R. By Lemma 2.13, \sqrt{P} is a graded ideal of R. Let $a, b \in h(R)$ such that $ab \in \sqrt{P}$ and $Ann(a) = \{0\}$. Then $a^n b^n = (ab)^n \in P$ for some $n \in \mathbb{N}$. Since $a, b \in h(R)$, there exist $g, h \in G$ such that $a \in R_g$ and $b \in R_h$ and then $a^g \in R_{g^n}$ and $b^h \in R_{h^n}$ which implies that $a^n b^n \in h(R)$ such that $a^n b^n \in P$. Clearly, $Ann(a^n) = \{0\}$ and since P is a graded pr-ideal, $b^nm = (b^n)^m \in P$ for some $m \in \mathbb{N}$ which implies that $b \in \sqrt{P}$. Hence, \sqrt{P} is a graded r-ideal of R. Conversely, let $a, b \in h(R)$ such that $ab \in P$ and $Ann(a) = \{0\}$. Then $ab \in \sqrt{P}$ and since \sqrt{P} is a graded r-ideal, $b \in \sqrt{P}$ which implies that $b^n \in P$ for some $n \in \mathbb{N}$. Hence, P is a graded pr-ideal of R. \square

Using Theorem 2.14 and Theorem 2.2, we have the next corollary.

Corollary 2.15. Let R be a \mathbb{Z}-graded ring and P be a graded ideal of R. Then P is a graded pr-ideal if and only if $a \sqrt{P} = aR \cap \sqrt{P}$ for every $a \in h(R)$ with $Ann(a) = \{0\}$.

Using Theorem 2.14 and Theorem 2.4, we have the next corollary.

Corollary 2.16. Let R be a \mathbb{Z}-graded ring and P be a graded ideal of R. Then P is a graded pr-ideal if and only if $\sqrt{P} = (\sqrt{P} : a)$ for all $a \in h(R)$ with $Ann(a) = \{0\}$.

Theorem 2.17. If P is a graded r-ideal of a G-graded ring R, then $(P : a)$ is a graded r-ideal of R for all $a \in h(R) - P$.

Proof. Let $a \in h(R) - P$. Clearly, $(P : a)$ is an ideal of R. Let $x \in (P : a)$. Then $x \in R$ such that $xa \in P$. Since R is graded, $x = \sum_{g \in G} x_g$ where $x_g \in R_g$. Since $a \in h(R)$, $a \in R_h$ for some $h \in G$ and then $x_g a \in R_g R_h \subseteq R_{gh}$, i.e., $x_g a \in h(R)$ for all $g \in G$. Now, $xa = \sum_{g \in G} x_g a \in P$. Since P is a graded, $x_g a \in P$ for all $g \in G$, i.e., $x_g \in (P : a)$ for all $g \in G$. Hence, $(P : a)$ is a graded ideal of R.

Let \(b, c \in b(R) \) such that \(bc \in (P : a) \) and \(\text{Ann}(b) = \{0\} \). Then \(bca \in P \). Since \(P \) is a graded \(r \)-ideal, \(ca \in P \) which implies that \(c \in (P : a) \). Therefore, \((P : a) \) is a graded \(r \)-ideal of \(R \). \(\square \)

Theorem 2.18. Every graded maximal \(r \)-ideal of a graded ring \(R \) is graded prime.

Proof. Let \(P \) be a graded maximal \(r \)-ideal of \(R \). Suppose that \(a, b \in h(R) \) such that \(ab \in P \) and \(a \notin P \). Then by Theorem 2.17, \((P : a) \) is a graded \(r \)-ideal of \(R \). Clearly, \(P \subseteq (P : a) \) and \(b \in (P : a) \). By maximality of \(P \), \(P = (P : a) \) and then \(b \in P \). Hence, \(P \) is a graded prime ideal of \(R \). \(\square \)

Definition 2.19. A graded ring \(R \) is said to be an huz-ring if every homogeneous element of \(R \) is either a zero divisor or a unit.

The next theorem gives an example on huz-rings.

Theorem 2.20. Every graded finite ring is an huz-ring.

Proof. Let \(R \) be a \(G \)-graded finite ring. Assume that \(a \in h(R) \). Then \(a \in R_g \) for some \(g \in G \). Define \(\phi : R_{g-1} \to R_e \) by \(\phi(x) = ax \). If \(\phi \) is injective, then since \(R \) is finite, \(\phi \) is surjective and as \(1 \in R_e \), \(1 = ax \) for some \(x \in R_{g-1} \) and then \(a \) is a unit. Suppose that \(\phi \) is not injective. Then there exist \(x, y \in R_{g-1} \) with \(x \neq y \) such that \(ax = ay \). But then \(a(x - y) = 0 \) and \(x - y \neq 0 \), so \(a \) is a zero divisor. \(\square \)

If we drop the finite condition in Theorem 2.20, then the result is not true in general. See the following example.

Example 2.21. Let \(G = \mathbb{Z} \). Then clearly, the semigroup ring \(R[X; \mathbb{Z}] \) is a \(\mathbb{Z} \)-graded ring. If \(R \) is a field, then \(R[X; \mathbb{Z}] \) is a huz-ring; and if \(R = \mathbb{Z} \), then \(R[X; \mathbb{Z}] \) is not a huz-ring.

Finally, we prove that a graded ring \(R \) is an huz-ring if and only if every proper graded ideal of \(R \) is a graded \(r \)-ideal.

Theorem 2.22. A graded ring \(R \) is a huz-ring if and only if every proper graded ideal of \(R \) is a graded \(r \)-ideal.

Proof. Suppose that \(R \) is an huz-ring. Let \(P \) be a proper graded ideal of \(R \). Assume that \(a, b \in h(R) \) such that \(ab \in P \) and \(\text{Ann}(a) = \{0\} \). Since \(\text{Ann}(a) = \{0\} \), \(a \) is not zero divisor and since \(R \) is huz, \(a \) is a unit and then \(b = a^{-1}(ab) \in P \). Hence, \(P \) is a graded \(r \)-ideal of \(R \). Conversely, let \(a \in h(R) \) such that \(a \) is not a zero divisor. Then \(\text{Ann}(a) = \{0\} \). Suppose that \(P = (a) \). If \(P \) is proper, then \(P \) is a graded \(r \)-ideal of \(R \) by assumption. Let \(b \in h(R) \). Then \(ab \in P \) and then \(b \in P \) since \(P \) is a graded \(r \)-ideal. So, \(h(R) \subseteq P \). Since \(1 \in R_e \subseteq h(R) \), \(1 \in P \) which is a contradiction. So, \(P = R \), then \(1 \in P \) and then \(1 = xa \) for some \(x \in R \) which implies that \(a \) is a unit and hence \(R \) is an huz-ring. \(\square \)
Acknowledgments

The authors extend their thanks and gratitude to the referees for their efforts in reviewing the article.

References