Some Generalizations of Locally Closed Sets

Shyamapada Modak*\(^{a} \) and Takashi Noiri\(^{b} \)

\(^{a} \)Department of Mathematics, University of Gour Banga
P.O. Mokdumpur, Malda 732 103, India.

\(^{b} \)2949-1 Shiokita-cho, Hinagu, Yatsushi-ru-shi
Kumamoto-ken, 869-5142 JAPAN.

E-mail: spmodak2000@yahoo.co.in
E-mail: t.noiri@nifty.com

Abstract. Arenas et al. [1] introduced the notion of \(\lambda \)-closed sets as a generalization of locally closed sets. In this paper, we introduce the notions of \(\lambda \)-locally closed sets, \(\Lambda \)-\(\lambda \)-closed sets and \(\lambda g \)-closed sets and obtain some decompositions of closed sets and continuity in topological spaces.

Keywords: \(\lambda \)-Open set, \(\lambda \)-Locally closed set, \(\Lambda \)-\(\lambda \)-Closed set, \(\lambda g \)-Closed set, Decompositions of continuity.

2000 Mathematics subject classification: 54A05, 54C08.

1. Introduction and Preliminaries

The study of locally closed sets was introduced by Bourbaki [3] in 1966 then the authors Ganster and Reilly [6] have studied it extensively. A subset \(A \) of a topological space \(X \) is called locally closed if \(A = U \cap F \), where \(U \) is open and \(F \) is closed. It is interesting that a locally closed set is a generalization of both open sets and closed sets. The generalization has also been discussed in completely regular Hausdorff spaces [5] and has also been done on algebra with topology in [12] and [2].

*Corresponding Author

Received 23 November 2016; Accepted 29 March 2017
©2019 Academic Center for Education, Culture and Research TMU
In this paper we consider a new type of sets in the topological space which is called \(\lambda \)-open sets. A set is said to be \(\lambda \)-open if it contains a nonempty open set. This idea is not a new idea. In literature, semi-open sets [7] and \(\alpha \)-sets [11] are examples of that type of sets although preopen sets [10] is not an example of it. Because: let \(\mathbb{R} \) be the usual real line and \(Q \) the rational numbers. Then \(\text{Cl}(Q) = \mathbb{R} \) and \(Q \subseteq \text{Int(Cl}(Q)) = \mathbb{R} \) (where ‘\(\text{Cl} \)’ and ‘\(\text{Int} \)’ denote the closure and interior operators, respectively). But \(Q \) does not contain nonempty open set. However Dontechev [4] has introduced an \(S \)-space: A topological space \(X \) is called an \(S \)-space if every subset which contains a non-void open subset is open. But the concept of \(\lambda \)-open sets is different from Dontechev’s \(S \)-spaces.

Definition 1.1. A subset \(A \) of a topological space \(X \) is said to be \(\lambda \)-open if \(A \) contains a nonempty open set. The complement of a \(\lambda \)-open set is said to be \(\lambda \)-closed.

For a subset \(A \) of a topological space \(X \), \(\text{Int}_{\lambda}(A) \) and \(\text{Cl}_{\lambda}(A) \) are defined as follows:

Definition 1.2. Let \(X \) be a topological space and \(A \) be a subset of \(X \).
\[
\text{Int}_{\lambda}(A) = \bigcup \{U : U \subseteq A, U \text{ is } \lambda \text{-open in } X\};
\]
\[
\text{Cl}_{\lambda}(A) = \bigcap \{F : A \subseteq F, F \text{ is } \lambda \text{-closed in } X\}.
\]

Lemma 1.3. Let \(X \) be a topological space and \(A, B \) subsets of \(X \).

1. if \(A \subseteq B \), then \(\text{Int}_{\lambda}(A) \subseteq \text{Int}_{\lambda}(B) \) and \(\text{Cl}_{\lambda}(A) \subseteq \text{Cl}_{\lambda}(B) \),
2. \(X \setminus \text{Int}_{\lambda}(A) = \text{Cl}_{\lambda}(X \setminus A) \),
3. For any index set \(\Delta \), if \(A_\alpha \) is \(\lambda \)-open (resp. \(\lambda \)-closed), then \(\bigcup \{A_\alpha : \alpha \in \Delta\} \) is \(\lambda \)-open (resp. \(\bigcap \{A_\alpha : \alpha \in \Delta\} \) is \(\lambda \)-closed),
4. \(\text{Int}_{\lambda}(A) \) is \(\lambda \)-open and \(\text{Cl}_{\lambda}(A) \) is \(\lambda \)-closed.

Remark 1.4. The finite intersection of \(\lambda \)-open sets need not be \(\lambda \)-open. Let \(\mathbb{R} \) be the usual real line, \(A = (-1, 0] \) and \(B = [0, 1) \). The \(A \) and \(B \) are \(\lambda \)-open but \(A \cap B = \{0\} \) is not \(\lambda \)-open.

We generalize the locally closed set by using \(\lambda \)-open sets.

2. \(\lambda \)-Locally Closed Sets

Definition 2.1. A subset \(A \) of a topological space \(X \) is said to be \(\lambda \)-locally closed if \(A = U \cap F \), where \(U \) is \(\lambda \)-open and \(F \) is closed.

Corollary 2.2. Let \(f : X \rightarrow Y \) be a continuous function. If \(L \) is a \(\lambda \)-locally closed subset of \(Y \), then \(f^{-1}(L) \) is \(\lambda \)-locally closed in \(X \).

From Definition 1.1 it is obvious that every locally closed set is \(\lambda \)-locally closed. But the converse need not hold in general.

Example 2.3. Let \(X = \{a, b, c, d\} \), \(\tau = \{\emptyset, X, \{a\}\} \). Then \(C(X) \) (all closed sets in \(X \)) = \(\{\emptyset, X, \{b, c, d\}\} \). And \(\lambda \)-open sets are: \(\emptyset, X, \{a\}, \{a, b\}, \{a, b, c\}, \{a, c\}, \).
{a, d}, {a, b, d}, {a, c, d}. Therefore, \(\{d\} = \{a, d\} \cap \{b, c, d\}\) is a \(\lambda\)-locally closed set but it is not a locally closed set in \(X\).

Remark 2.4. A subset \(A\) of a topological space \(X\) is \(\lambda\)-locally closed if and only if \(X \setminus A\) is the union of a \(\lambda\)-closed set and an open set.

Remark 2.5. For a subset of a topological space, the following hold:

1. Every \(\lambda\)-open set is \(\lambda\)-locally closed,
2. Every closed set is \(\lambda\)-locally closed.

Theorem 2.6. For a subset \(A\) of a topological space \(X\), the following are equivalent:

1. \(A\) is \(\lambda\)-locally closed;
2. \(A = U \cap \text{Cl}(A)\) for some \(\lambda\)-open set \(U\);
3. \(A \cup (X \setminus \text{Cl}(A))\) is \(\lambda\)-open;
4. \(A \subseteq \text{Int}_\lambda[A \cup (X \setminus \text{Cl}(A))];\)
5. \(\text{Cl}(A) \setminus A\) is \(\lambda\)-closed.

Proof. (1) \(\Rightarrow\) (2): Suppose \(A\) is \(\lambda\)-locally closed. Then \(A = U \cap F\) where \(U\) is \(\lambda\)-open and \(F\) is closed. Then \(\text{Cl}(A) = \text{Cl}(U \cap F) \subseteq \text{Cl}(F) = F\). Then \(A \subseteq U \cap \text{Cl}(A) \subseteq U \cap F = A\) and hence \(A = U \cap \text{Cl}(A)\).

(2) \(\Rightarrow\) (3): \(X \setminus [A \cup (X \setminus \text{Cl}(A))]) = (X \setminus A) \cap \text{Cl}(A) = \text{Cl}(A) \setminus A = \text{Cl}(A) \setminus (U \cap \text{Cl}(A)) = \text{Cl}(A) \setminus U = \text{Cl}(A) \cap (X \setminus U)\). Since \(U\) is \(\lambda\)-open, \(\text{Cl}(A) \cap (X \setminus U)\) is \(\lambda\)-closed and hence \(A \cup (X \setminus \text{Cl}(A))\) is \(\lambda\)-open.

(3) \(\Rightarrow\) (4): Since \(A \cup (X \setminus \text{Cl}(A))\) is a \(\lambda\)-open set containing \(A\), it is obvious that \(A \subseteq \text{Int}_\lambda[A \cup (X \setminus \text{Cl}(A))];\)

(4) \(\Rightarrow\) (1): \(A = A \cap \text{Cl}(A) \subseteq \text{Int}_\lambda[A \cup (X \setminus \text{Cl}(A))]; \cap \text{Cl}(A) \subseteq [A \cup (X \setminus \text{Cl}(A))]; \cap \text{Cl}(A) = A; \text{Cl}(A) = A\). Therefore, \(A = \text{Int}_\lambda[A \cup (X \setminus \text{Cl}(A))]; \cap \text{Cl}(A)\) and \(A\) is \(\lambda\)-locally closed.

(3) \(\Leftrightarrow\) (5): It is obvious. \(\square\)

The union of two \(\lambda\)-locally closed sets need not be \(\lambda\)-locally closed.

Example 2.7. Let \(X = \{a, b, c, d\}\), \(\tau = \{\emptyset, X, \{a, b\}, \{c, d\}\}\). Then \(C(X) = \emptyset, X, \{c, d\}, \{a, b\}\) and \(\lambda\)-open sets are: \(\emptyset, X, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\) \(\lambda\)-locally closed sets are: \(\emptyset, X, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, \{c\}, \{d\}, \{a\}, \{b\}\). Therefore, \(\{a\}\) and \(\{c\}\) are \(\lambda\)-locally closed sets but their union \(\{a, c\}\) is not a \(\lambda\)-locally closed set.

3. \(A_\lambda\)-Closed Sets

Locally closed sets in a topological space are introduced and investigated in [3] and [6]. As a generalization of locally closed sets, Arenas et al. [1] introduced the notion of \(\lambda\)-closed sets in a topological space. In this section, we introduce the notion of \(A_\lambda\)-closed sets which is a generalization of \(\lambda\)-closed sets. We obtain some characterizations of \(A_\lambda\)-closed sets and obtain decompositions of closed sets.
Definition 3.1. Let X be a topological space and A a subset of X. The subset $\Lambda_{\lambda}(A)$ is defined as follows: $\Lambda_{\lambda}(A) = \cap\{U : A \subseteq U, U \text{ is } \lambda\text{-open} \}.$

A subset A is called a Λ_{λ}-set if $A = \Lambda_{\lambda}(A)$. If U is open in Definition 3.1, then a Λ_{λ}-set A is called a Λ-set [9].

Lemma 3.2. For any subsets A and B of a topological space X, the following hold:

1. $A \subseteq \Lambda_{\lambda}(A),$
2. If $A \subseteq B$, then $\Lambda_{\lambda}(A) \subseteq \Lambda_{\lambda}(B),$
3. $\Lambda_{\lambda}(\Lambda_{\lambda}(A)) = \Lambda_{\lambda}(A),$
4. $\Lambda_{\lambda}(\cap_{\alpha \in \Delta} A_{\alpha}) \subseteq \cap_{\alpha \in \Delta} \Lambda_{\lambda}(A_{\alpha})$ for any index set Δ.

Lemma 3.3. For any subset A of a topological space X, the following hold:

1. $\Lambda_{\lambda}(A)$ is a Λ_{λ}-set,
2. If A is λ-open, then A is a Λ_{λ}-set,
3. If A_{α} is a Λ_{λ}-set for each $\alpha \in \Delta$, then $\cap_{\alpha \in \Delta} A_{\alpha}$ is a Λ_{λ}-set.

Remark 3.4. The converse of Lemma 3.3 (2) need not hold as shown by the following example: Let R be the usual real line and $A = \{0\}$. Then A is a Λ_{λ}-set but it is not λ-open. Because $\{0\} \subseteq \Lambda_{\lambda}(\{0\}) \subseteq (-1,0] \cap [0,1) = \{0\}$ and hence $\Lambda_{\lambda}(\{0\}) = \{0\}$. Therefore, $A = \{0\}$ is a Λ_{λ}-set but it is not λ-open.

Definition 3.5. A subset A of a topological space X is said to be Λ_{λ}-closed (resp. λ-closed [1]) if $A = L \cap F$, where L is a Λ_{λ}-set (resp. Λ-set) and F is a closed set.

Lemma 3.6. For a subset of a topological space X, the following properties hold:

1. Every λ-locally closed set is Λ_{λ}-closed,
2. Every λ-closed set is Λ_{λ}-closed.

Proof. (1) By Lemma 3.3, every λ-open set is a Λ_{λ}-set and (1) holds.

(2) Let U be a Λ-set. Then,

$$U = \cap\{V : U \subseteq V, V \text{ is open} \} \supseteq \cap\{V : U \subset V, V \text{ is } \lambda\text{-open} \} \supseteq U$$

and hence U is a Λ_{λ}-set. Therefore, (2) holds. □

Remark 3.7. By Lemma 3.6, we obtain the following diagram.

```
DIAGRAM I

\text{locally closed} \Rightarrow \lambda\text{-locally closed} \\
\downarrow \quad \downarrow

\lambda\text{-closed} \Rightarrow \Lambda_{\lambda}\text{-closed}
```
Some generalizations of locally closed sets

Theorem 3.8. For a subset A of a topological space X, the following are equivalent:

1. A is Λ_λ-closed;
2. $A = U \cap \text{Cl}(A)$ for some Λ_λ-set U;
3. $A = \Lambda_\lambda(A) \cap \text{Cl}(A)$.

Proof. (1) \Rightarrow (2): Let A be a Λ_λ-closed set. Then $A = U \cap F$, where U is a Λ_λ-set and F is a closed set. Thus, we have $A \subseteq U \cap \text{Cl}(A) \subseteq U \cap \text{Cl}(F) = U \cap F = A$. Therefore, $A = U \cap \text{Cl}(A)$.

(2) \Rightarrow (3): Let $A = U \cap \text{Cl}(A)$ for some Λ_λ-set U. Since $A \subseteq U$, by Lemma 3.2 $\Lambda_\lambda(A) \subseteq \Lambda_\lambda(U) = U$ and hence $A \subseteq \Lambda_\lambda(A) \cap \text{Cl}(A) \subseteq U \cap \text{Cl}(A) = A$. Therefore, we obtain $A = \Lambda_\lambda(A) \cap \text{Cl}(A)$.

(3) \Rightarrow (1): Let $A = \Lambda_\lambda(A) \cap \text{Cl}(A)$. By Lemma 3.3, $\Lambda_\lambda(A)$ is a Λ_λ-set and $\text{Cl}(A)$ is closed. Therefore, A is Λ_λ-closed.

□

Definition 3.9. Let X be a topological space. A subset A of X is said to be λg-closed (resp. g-closed [8]) if $\text{Cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is a λ-open (resp. open) set.

Theorem 3.10. For a subset A of a topological space X, the following are equivalent:

1. A is closed;
2. A is λ-locally closed and λg-closed;
3. A is Λ_λ-closed and λg-closed.

Proof. (1) \Rightarrow (2): Let A be closed in X. Since $A = X \cap A$ and X is a Λ_λ-set, A is λ-locally closed. Let U be any λ-open set containing A. Then $\text{Cl}(A) = A \subseteq U$ and hence A is λg-closed.

(2) \Rightarrow (3): By Lemma 3.6, every λ-locally closed set is Λ_λ-closed.

(3) \Rightarrow (1): Let A be Λ_λ-closed and λg-closed. Since A is Λ_λ-closed, $A = P \cap L$, where P is a Λ_λ-set and L is closed in X. Let V be any λ-open set containing A. Since A is λg-closed, $\text{Cl}(A) \subseteq V$ and hence $\text{Cl}(A) \subseteq \cap \{V : A \subseteq V, V \text{ is } \lambda \text{-open} \} = \Lambda_\lambda(A)$. Therefore, $\text{Cl}(A) \subseteq \Lambda_\lambda(A) \subseteq \Lambda_\lambda(P) = P$. On the other hand, $A \subseteq L$ and $\text{Cl}(A) \subseteq \text{Cl}(L) = L$. Therefore, we obtain $\text{Cl}(A) \subseteq P \cap L = A$. Thus A is closed.

□

Theorem 3.11. Let X be a topological space. If A_α is a Λ_λ-closed set for each $\alpha \in \Delta$, then $\cap_{\alpha \in \Delta} A_\alpha$ is Λ_λ-closed.

Proof. Let A_α be a Λ_λ-closed set for each $\alpha \in \Delta$. Then $A_\alpha = U_\alpha \cap F_\alpha$, where U_α is a Λ_λ-set and F_α is a closed set for each $\alpha \in \Delta$. By Lemma 3.3, $\cap_{\alpha \in \Delta} U_\alpha$ is a Λ_λ-set, $\cap_{\alpha \in \Delta} F_\alpha$ is closed and $\cap_{\alpha \in \Delta} A_\alpha = (\cap_{\alpha \in \Delta} U_\alpha) \cap (\cap_{\alpha \in \Delta} F_\alpha)$. Therefore, $\cap_{\alpha \in \Delta} A_\alpha$ is Λ_λ-closed.

□
4. Decompositions of Continuity

In this section, we obtain the decompositions of continuity.

Definition 4.1. A function \(f : X \to Y \) is said to be

1. \(\lambda \)-LC-continuous if \(f^{-1}(V) \) is \(\lambda \)-locally closed in \(X \) for any closed set \(V \) of \(Y \),
2. \(\Lambda \lambda \)-continuous if \(f^{-1}(V) \) is \(\Lambda \lambda \)-closed in \(X \) for any closed set \(V \) of \(Y \),
3. \(\lambda g \)-continuous if \(f^{-1}(V) \) is \(\lambda g \)-closed in \(X \) for any closed set \(V \) of \(Y \).

Theorem 4.2. For a function \(f : X \to Y \), the following are equivalent:

1. \(f \) is continuous;
2. \(f \) is \(\lambda \)-LC-continuous and \(\lambda g \)-continuous;
3. \(f \) is \(\Lambda \lambda \)-continuous and \(\lambda g \)-continuous.

Proof. This is an immediate consequence of Theorem 3.10 \(\square \)

Remark 4.3. The following facts are shown by Examples 4.4 and 4.5 and Remark 4.6:

1. \(\lambda \)-LC-continuity and \(\lambda g \)-continuity are independent of each other,
2. \(\Lambda \lambda \)-continuity and \(\lambda g \)-continuity are independent of each other.

Example 4.4. Let \(X = Y = \{a, b, c, d\} \), \(\tau = \sigma = \{\emptyset, X, \{a\}\} \). Then \(C(X) = C(Y) = \{\emptyset, \{b, c, d\}\} \) and \(\lambda \)-open sets in \(X \) (resp. \(Y \)) are: \(\emptyset, X, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c, d\} \). \(\lambda \)-locally closed sets in \(X \) (resp. \(Y \)) are: \(\emptyset, X, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c, d\} \). Define a function \(f : X \to Y \) by \(f(a) = c, f(b) = b, f(c) = d, f(d) = a \). Then we have the following:
 1. Since \(f^{-1}(\{b, c, d\}) = \{a, b\} \), then \(f \) is \(\lambda \)-closed.
 2. Since \(f^{-1}(\{b, c, d\}) = \{a, b\} \), then \(f \) is \(\lambda \)-LC-continuous.
 3. Since \(C\{\{a, b, c\}\} = X \) (i.e. \(\{a, b, c\} \) is not \(\lambda g \)-closed), then \(f \) is not \(\lambda g \)-continuous.
 4. Since \(\{a, b, c\} \subseteq \cap\{U : \{a, b, c\} \subseteq U, U \) is \(\lambda \)-open \} = \{a, b, c\} \) and \(\{a, b, c\} \cap X = \{a, b, c\} \), then \(\{a, b, c\} \) is \(\Lambda \lambda \)-closed. Thus \(f \) is \(\Lambda \lambda \)-continuous.

Example 4.5. Let \(X = Y = \{a, b, c, d\} \), \(\tau = \sigma = \{\emptyset, X, \{a\}, \{c, d\}\} \). Then \(C(X) = C(Y) = \{\emptyset, X, \{a\}, \{c, d\}\} \) and \(\lambda \)-open sets in \(X \) (resp. \(Y \)) are: \(\emptyset, X, \{a\}, \{c, d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c, d\} \). And \(\lambda \)-locally closed sets in \(X \) (resp. \(Y \)) are: \(\emptyset, X, \{a\}, \{c, d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c, d\} \). Define \(g : X \to Y \) by \(g(a) = c, g(b) = b, g(c) = a, g(d) = d \). Then we have the following:
 1. Since \(g^{-1}(\{c, d\}) = \{a, d\} \), then \(g \) is not a continuous function.
 2. Since \(g^{-1}(\{c, d\}) = \{a, d\} \), it is not a \(\lambda \)-locally closed set in \(X \). Then \(g \) is not a \(\lambda \)-LC-continuous function.
 3. Since \(g^{-1}(\{a, b\}) = \{b, c\} \subseteq \cap\{U : \{b, c\} \subseteq U, U \) is \(\lambda \)-open in \(X \) =
\{b, c\} \cap X = \{b, c\} and \ g^{-1}(\{c, d\}) = \{a, d\} = \cap\{U : \{a, d\} \subseteq U, \ U \ is \ \lambda\text{-open in } X\} = \{a, d\} \cap X = \{a, d\} \ are \ \Lambda_\lambda\text{-closed, then } \Lambda_\lambda\text{-continuous.}

Remark 4.6. (1) If every \ \lambda g\text{-continuous function is } \lambda\text{-LC-continuous, then it is continuous from Theorem 4.2} This is not true from Example 4.4(1).

(2) If every \ \lambda g\text{-continuous function is } \Lambda_\lambda\text{-continuous, then it is continuous from Theorem 4.2. This not true from Example 4.5(1).}

Acknowledgments

The authors wish to thank the referees for their valuable comments.

References

5. A. A. Estaji, \ \gamma\text{-Weak Ideals and Prime Weak Ideals, Iranian Journal of Mathematical Sciences and Informatics, 7(2), (2012), 53–62.}