Some Generalizations of Locally Closed Sets

Shyamapada Modaka and Takashi Noirib

aDepartment of Mathematics, University of Gour Banga
P.O. Mokdumpur, Malda 732 103, India.
b2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi
Kumamoto-ken, 869-5142 JAPAN.

E-mail: spmodak2000@yahoo.co.in
E-mail: t.noiri@nifty.com

Abstract. Arenas et al. \cite{1} introduced the notion of λ-closed sets as a generalization of locally closed sets. In this paper, we introduce the notions of λ-locally closed sets, Λ_{λ}-closed sets and λg-closed sets and obtain some decompositions of closed sets and continuity in topological spaces.

Keywords: λ-Open set, λ-Locally closed set, Λ_{λ}-Closed set, λg-Closed set, Decompositions of continuity.

2000 Mathematics subject classification: 54A05, 54C08.

1. Introduction and Preliminaries

The study of locally closed sets was introduced by Bourbaki \cite{3} in 1966 then the authors Ganster and Reilly \cite{6} have studied it extensively. A subset A of a topological space X is called locally closed if $A = U \cap F$, where U is open and F is closed. It is interesting that a locally closed set is a generalization of both open sets and closed sets. The generalization has also been discussed in completely regular Hausdorff spaces \cite{5} and has also been done on algebra with topology in \cite{12} and \cite{2}.

*Corresponding Author

Received 23 November 2016; Accepted 29 March 2017
©2019 Academic Center for Education, Culture and Research TMU
In this paper we consider a new type of sets in the topological space which is called λ-open sets. A set is said to be λ-open if it contains a nonempty open set. This idea is not a new idea. In literature, semi-open sets [7] and α-sets [11] are examples of that type of sets although preopen sets [10] is not an example of it. Because: let R be the usual real line and Q the rational numbers. Then $\text{Cl}(Q) = R$ and $Q \subseteq \text{Int}($Cl$(Q)) = R$ (where ‘Cl’ and ‘Int’ denote the closure and interior operators, respectively). But Q does not contain nonempty open set. However Dontechev [4] has introduced an S-space: A topological space X is called an S-space if every subset which contains a non-void open subset is open. But the concept of λ-open sets is different from Dontechev’s S-spaces.

Definition 1.1. A subset A of a topological space X is said to be λ-open if A contains a nonempty open set. The complement of a λ-open set is said to be λ-closed.

For a subset A of a topological space X, $\text{Int}_\lambda(A)$ and $\text{Cl}_\lambda(A)$ are defined as follows:

Definition 1.2. Let X be a topological space and A be a subset of X.
\[
\text{Int}_\lambda(A) = \bigcup\{U : U \subseteq A, U \text{ is } \lambda\text{-open in } X\};
\]
\[
\text{Cl}_\lambda(A) = \bigcap\{F : A \subseteq F, F \text{ is } \lambda\text{-closed in } X\}.
\]

Lemma 1.3. Let X be a topological space and A, B subsets of X.
(1) if $A \subseteq B$, then $\text{Int}_\lambda(A) \subseteq \text{Int}_\lambda(B)$ and $\text{Cl}_\lambda(A) \subseteq \text{Cl}_\lambda(B)$,
(2) $X \setminus \text{Int}_\lambda(A) = \text{Cl}_\lambda(X \setminus A)$,
(3) For any index set Δ, if A_α is λ-open (resp. λ-closed), then $\bigcup\{A_\alpha : \alpha \in \Delta\}$ is λ-open (resp. $\bigcap\{A_\alpha : \alpha \in \Delta\}$ is λ-closed),
(4) $\text{Int}_\lambda(A)$ is λ-open and $\text{Cl}_\lambda(A)$ is λ-closed.

Remark 1.4. The finite intersection of λ-open sets need not be λ-open. Let R be the usual real line, $A = (-1, 0]$ and $B = [0, 1)$. The A and B are λ-open but $A \cap B = \{0\}$ is not λ-open.

We generalize the locally closed set by using λ-open sets.

2. λ-Locally Closed Sets

Definition 2.1. A subset A of a topological space X is said to be λ-locally closed if $A = U \cap F$, where U is λ-open and F is closed.

Corollary 2.2. Let $f : X \rightarrow Y$ be a continuous function. If L is a λ-locally closed subset of Y, then $f^{-1}(L)$ is λ-locally closed in X.

From Definition 1.1 it is obvious that every locally closed set is λ-locally closed. But the converse need not hold in general.

Example 2.3. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a\}\}$. Then $C(X)(\text{all closed sets in } X) = \{\emptyset, X, \{b, c, d\}\}$. And λ-open sets are: $\emptyset, X, \{a\}$, $\{a, b\}$, $\{a, b, c\}$, $\{a, c\}$,
Some generalizations of locally closed sets 161

\{a, d\}, \{a, b, d\}, \{a, c, d\}. Therefore, \{d\} = \{a, d\} \cap \{b, c, d\} is a \(\lambda\)-locally closed set but it is not a locally closed set in \(X\).

Remark 2.4. A subset \(A\) of a topological space \(X\) is \(\lambda\)-locally closed if and only if \(X \setminus A\) is the union of a \(\lambda\)-closed set and an open set.

Remark 2.5. For a subset of a topological space, the following hold:
1. Every \(\lambda\)-open set is \(\lambda\)-locally closed.
2. Every closed set is \(\lambda\)-locally closed.

Theorem 2.6. For a subset \(A\) of a topological space \(X\), the following are equivalent:
1. \(A\) is \(\lambda\)-locally closed;
2. \(A = U \cap \text{Cl}(A)\) for some \(\lambda\)-open set \(U\);
3. \(A \cup (X \setminus \text{Cl}(A))\) is \(\lambda\)-open;
4. \(A \subseteq \text{Int}_\lambda[A \cup (X \setminus \text{Cl}(A))]\);
5. \(\text{Cl}(A) \setminus A\) is \(\lambda\)-closed.

Proof. (1) \(\Rightarrow\) (2): Suppose \(A\) is \(\lambda\)-locally closed. Then \(A = U \cap F\) where \(U\) is \(\lambda\)-open and \(F\) is closed. Then \(\text{Cl}(A) = \text{Cl}(U \cap F) \subseteq \text{Cl}(F) = F\). Then \(A \subseteq U \cap \text{Cl}(A) \subseteq U \cap F = A\) and hence \(A = U \cap \text{Cl}(A)\).

(2) \(\Rightarrow\) (3): \(X \setminus [A \cup (X \setminus \text{Cl}(A))] = (X \setminus A) \cap \text{Cl}(A) = \text{Cl}(A) \setminus A = \text{Cl}(A) \setminus (U \cap \text{Cl}(A)) = \text{Cl}(A) \setminus (U \cap \text{Cl}(A)) = (X \setminus U)\). Since \(U\) is \(\lambda\)-open, \(\text{Cl}(A) \cap (X \setminus U)\) is \(\lambda\)-closed and hence \(A \cup (X \setminus \text{Cl}(A))\) is \(\lambda\)-open.

(3) \(\Rightarrow\) (4): Since \(A \cup (X \setminus \text{Cl}(A))\) is a \(\lambda\)-open set containing \(A\), it is obvious that \(A \subseteq \text{Int}_\lambda[A \cup (X \setminus \text{Cl}(A))]\).

(4) \(\Rightarrow\) (1): \(A = A \cap \text{Cl}(A) \subseteq \text{Int}_\lambda[A \cup (X \setminus \text{Cl}(A))] \cap \text{Cl}(A) \subseteq [A \cup (X \setminus \text{Cl}(A))] \cap \text{Cl}(A) = A \cap \text{Cl}(A) = A\). Therefore, \(A = \text{Int}_\lambda[A \cup (X \setminus \text{Cl}(A))] \cap \text{Cl}(A)\) and \(A\) is \(\lambda\)-locally closed.

(3) \(\Leftrightarrow\) (5): It is obvious. \(\square\)

The union of two \(\lambda\)-locally closed sets need not be \(\lambda\)-locally closed.

Example 2.7. Let \(X = \{a, b, c, d\}\), \(\tau = \{\emptyset, X, \{a, b\}, \{c, d\}\}\). Then \(C(X) = \emptyset, X, \{c, d\}, \{a, b\}\) and \(\lambda\)-open sets are: \(\emptyset, X, \{a, b\}, \{c, d\}, \{a, b, c\}\), \(\{a, b, d\}, \{b, c, d\}\). \(\lambda\)-locally closed sets are: \(\emptyset, X, \{c, d\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}\). Therefore, \(\{a\}\) and \(\{c\}\) are \(\lambda\)-locally closed sets but their union \(\{a, c\}\) is not a \(\lambda\)-locally closed set.

3. \(\lambda_\lambda\)-Closed Sets

Locally closed sets in a topological space are introduced and investigated in [3] and [6]. As a generalization of locally closed sets, Arenas et al. [1] introduced the notion of \(\lambda\)-closed sets in a topological space. In this section, we introduce the notion of \(\lambda_\lambda\)-closed sets which is a generalization of \(\lambda\)-closed sets. We obtain some characterizations of \(\lambda_\lambda\)-closed sets and obtain decompositions of closed sets.
Definition 3.1. Let X be a topological space and A a subset of X. The subset $\Lambda_\lambda(A)$ is defined as follows: $\Lambda_\lambda(A) = \cap\{U : A \subseteq U, U$ is λ-open $\}$. A subset A is called a Λ_λ-set if $A = \Lambda_\lambda(A)$. If U is open in Definition 3.1, then a Λ_λ-set A is called a Λ-set [9].

Lemma 3.2. For any subsets A and B of a topological space X, the following hold:
1. $A \subseteq \Lambda_\lambda(A)$,
2. If $A \subseteq B$, then $\Lambda_\lambda(A) \subseteq \Lambda_\lambda(B)$,
3. $\Lambda_\lambda(\Lambda_\lambda(A)) = \Lambda_\lambda(A)$,
4. $\Lambda_\lambda(\bigcap_{\alpha \in \Delta} A_\alpha) \subseteq \bigcap_{\alpha \in \Delta} \Lambda_\lambda(A_\alpha)$ for any index set Δ.

Lemma 3.3. For any subset A of a topological space X, the following hold:
1. $\Lambda_\lambda(A)$ is a Λ_λ-set,
2. If A is λ-open, then A is a Λ_λ-set,
3. If A_α is a Λ_λ-set for each $\alpha \in \Delta$, then $\bigcap_{\alpha \in \Delta} A_\alpha$ is a Λ_λ-set.

Remark 3.4. The converse of Lemma 3.3 (2) need not hold as shown by the following example: Let R be the usual real line and $A = \{0\}$. Then A is a Λ_λ-set but it is not λ-open. Because $\{0\} \subseteq \Lambda_\lambda(\{0\}) \subseteq (-1,0] \cap \{0,1\} = \{0\}$ and hence $\Lambda_\lambda(\{0\}) = \{0\}$. Therefore, $A = \{0\}$ is a Λ_λ-set but it is not λ-open.

Definition 3.5. A subset A of a topological space X is said to be Λ_λ-closed (resp. λ-closed [1]) if $A = L \cap F$, where L is a Λ_λ-set (resp. Λ-set) and F is a closed set.

Lemma 3.6. For a subset of a topological space X, the following properties hold:
1. Every λ-locally closed set is Λ_λ-closed,
2. Every λ-closed set is Λ_λ-closed.

Proof. (1) By Lemma 3.3, every λ-open set is a Λ_λ-set and (1) holds.

(2) Let U be a Λ-set. Then,
$$U = \cap\{V : U \subseteq V, V is open\} \supseteq \cap\{V : U \subset V, V is \lambda-open\} \supseteq \cap\{V : U \subseteq V, V is \lambda-open\} \supseteq U$$
and hence U is a Λ_λ-set. Therefore, (2) holds. \qed

Remark 3.7. By Lemma 3.6, we obtain the following diagram.

```
DIAGRAM I
```

```
  locally closed ⇒ $\lambda$-locally closed
  ↓                ↓
$\lambda$-closed ⇒ $\Lambda_\lambda$-closed
```
Theorem 3.8. For a subset A of a topological space X, the following are equivalent:

1. A is Λ_λ-closed;
2. $A = U \cap \text{Cl}(A)$ for some Λ_λ-set U;
3. $A = \Lambda_\lambda(A) \cap \text{Cl}(A)$.

Proof. (1) \Rightarrow (2): Let A be a Λ_λ-closed set. Then $A = U \cap F$, where U is a Λ_λ-set and F is a closed set. Thus, we have $A \subseteq U \cap \text{Cl}(A) \subseteq U \cap \text{Cl}(F) = U \cap F = A$. Therefore, $A = U \cap \text{Cl}(A)$.

(2) \Rightarrow (3): Let $A = U \cap \text{Cl}(A)$ for some Λ_λ-set U. Since $A \subseteq U$, by Lemma 3.2, $\Lambda_\lambda(A) \subseteq \Lambda_\lambda(U) = U$ and hence $A \subseteq \Lambda_\lambda(A) \cap \text{Cl}(A) \subseteq U \cap \text{Cl}(A) = A$. Therefore, we obtain $A = \Lambda_\lambda(A) \cap \text{Cl}(A)$.

(3) \Rightarrow (1): Let $A = \Lambda_\lambda(A) \cap \text{Cl}(A)$. By Lemma 3.3, $\Lambda_\lambda(A)$ is a Λ_λ-set and $\text{Cl}(A)$ is closed. Therefore, A is Λ_λ-closed. □

Definition 3.9. Let X be a topological space. A subset A of X is said to be λg-closed (resp. g-closed [8]) if $\text{Cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is a λ-open (resp. open) set.

Theorem 3.10. For a subset A of a topological space X, the following are equivalent:

1. A is closed;
2. A is λ-locally closed and λg-closed;
3. A is Λ_λ-closed and λg-closed.

Proof. (1) \Rightarrow (2): Let A be closed in X. Since $A = X \cap A$ and X is a Λ_λ-set, A is λ-locally closed. Let U be any λ-open set containing A. Then $\text{Cl}(A) = A \subseteq U$ and hence A is λg-closed.

(2) \Rightarrow (3): By Lemma 3.6, every λ-locally closed set is Λ_λ-closed.

(3) \Rightarrow (1): Let A be Λ_λ-closed and λg-closed. Since A is Λ_λ-closed, $A = P \cap L$, where P is a Λ_λ-set and L is closed in X. Let V be any λ-open set containing A. Since A is λg-closed, $\text{Cl}(A) \subseteq V$ and hence $\text{Cl}(A) \subseteq \{V : A \subseteq V, V \text{ is } \lambda\text{-open} \} = \Lambda_\lambda(A)$. Therefore, $\text{Cl}(A) \subseteq \Lambda_\lambda(A) \subseteq \Lambda_\lambda(P) = P$. On the other hand, $A \subseteq L$ and $\text{Cl}(A) \subseteq \text{Cl}(L) = L$. Therefore, we obtain $\text{Cl}(A) \subseteq P \cap L = A$. Thus A is closed. □

Theorem 3.11. Let X be a topological space. If A_α is a Λ_λ-closed set for each $\alpha \in \Delta$, then $\cap_{\alpha \in \Delta} A_\alpha$ is Λ_λ-closed.

Proof. Let A_α be a Λ_λ-closed set for each $\alpha \in \Delta$. Then $A_\alpha = U_\alpha \cap F_\alpha$, where U_α is a Λ_λ-set and F_α is a closed set for each $\alpha \in \Delta$. By Lemma 3.3, $\cap_{\alpha \in \Delta} U_\alpha$ is a Λ_λ-set, $\cap_{\alpha \in \Delta} F_\alpha$ is closed and $\cap_{\alpha \in \Delta} A_\alpha = (\cap_{\alpha \in \Delta} U_\alpha) \cap (\cap_{\alpha \in \Delta} F_\alpha)$. Therefore, $\cap_{\alpha \in \Delta} A_\alpha$ is Λ_λ-closed. □
4. Decompositions of Continuity

In this section, we obtain the decompositions of continuity.

Definition 4.1. A function $f : X \to Y$ is said to be

1. λ-LC-continuous if $f^{-1}(V)$ is λ-locally closed in X for any closed set V of Y,
2. Λ_λ-continuous if $f^{-1}(V)$ is Λ_λ-closed in X for any closed set V of Y,
3. λg-continuous if $f^{-1}(V)$ is λg-closed in X for any closed set V of Y.

Theorem 4.2. For a function $f : X \to Y$, the following are equivalent:

1. f is continuous;
2. f is λ-LC-continuous and λg-continuous;
3. f is Λ_λ-continuous and λg-continuous.

Proof. This is an immediate consequence of Theorem 3.10. □

Remark 4.3. The following facts are shown by Examples 4.4 and 4.5 and Remark 4.6:

1. λ-LC-continuity and λg-continuity are independent of each other,
2. Λ_λ-continuity and λg-continuity are independent of each other.

Example 4.4. Let $X = Y = \{a, b, c, d\}$, $\tau = \sigma = \{\emptyset, X, \{a\}\}$. Then $C(X) = C(Y) = \{\emptyset, \{b, c, d\}\}$ and λ-open sets in X (resp. Y) are: $\emptyset, X, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c, d\}$.

λ-locally closed sets in X (resp. Y) are: $\emptyset, X, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c, d\}$.

Let $f : X \to Y$ by $f(a) = c, f(b) = b, f(c) = d, f(d) = a$. Then we have the following:

1. Since $f^{-1}(\{b, c, d\}) = \{a, b, c\}$, then f is not continuous.
2. Since $f^{-1}(\{b, c, d\}) = \{a, b, c\}$, then f is λ-LC-continuous.
3. Since $\text{Cl}(\{a, b, c\}) = X$ (i.e. $\{a, b, c\}$ is not λg-closed), then f is not λg-continuous.

Example 4.5. Let $X = Y = \{a, b, c, d\}$, $\tau = \sigma = \{\emptyset, X, \{a, b\}, \{c, d\}\}$. Then $C(X) = C(Y) = \{\emptyset, X, \{a, b\}, \{c, d\}\}$ and λ-open sets in X (resp. Y) are: $\emptyset, X, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}$. And λ-locally closed sets in X (resp. Y) are: $\emptyset, X, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, \{a\}, \{b\}, \{c\}, \{d\}$. Define $g : X \to Y$ by $g(a) = c, g(b) = b, g(c) = a, g(d) = d$. Then we have the following:

1. Since $g^{-1}(\{c, d\}) = \{a\}$, then g is not a continuous function.
2. Since $g^{-1}(\{c, d\}) = \{a\}$, it is not a λ-locally closed set in X. Then g is not a λ-LC-continuous function.
3. Since $g^{-1}(\{a, b\}) = \{b, c\} \subseteq \cap U : \{b, c\} \subseteq U, U$ is λ-open in X.
\{b, c \} \cap X = \{b, c \} \text{ and } g^{-1}(\{c, d \}) = \{a, d \} = \cap \{ U : \{a, d \} \subseteq U, U \text{ is } \lambda\text{-open in } X \} = \{a, d \} \cap X = \{a, d \} \text{ are } \Lambda_\lambda\text{-closed, then } \Lambda_\lambda\text{-continuous.}

Remark 4.6. (1) If every \(\lambda g\)-continuous function is \(\lambda\)-LC-continuous, then it is continuous from Theorem 4.2 This is not true from Example 4.4(1).

(2) If every \(\lambda g\)-continuous function is \(\Lambda_\lambda\)-continuous, then it is continuous from Theorem 4.2. This not true from Example 4.5(1).

ACKNOWLEDGMENTS

The authors wish to thank the referees for their valuable comments.

REFERENCES