Some Generalizations of Locally Closed Sets

Shyamapada Modak*a and Takashi Noirib

aDepartment of Mathematics, University of Gour Banga
P.O. Mokdumpur, Malda 732 103, India.
b2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi
Kumamoto-ken, 869-5142 JAPAN.
E-mail: spmodak2000@yahoo.co.in
E-mail: t.noiri@nifty.com

Abstract. Arenas et al. \cite{1} introduced the notion of \(\lambda\)-closed sets as a generalization of locally closed sets. In this paper, we introduce the notions of \(\lambda\)-locally closed sets, \(\Lambda\)-closed sets and \(\lambda\)\(g\)-closed sets and obtain some decompositions of closed sets and continuity in topological spaces.

Keywords: \(\lambda\)-Open set, \(\lambda\)-Locally closed set, \(\Lambda\)-Closed set, \(\lambda\)\(g\)-Closed set, Decompositions of continuity.

2000 Mathematics subject classification: 54A05, 54C08.

1. Introduction and Preliminaries

The study of locally closed sets was introduced by Bourbaki \cite{3} in 1966 then the authors Ganster and Reilly \cite{6} have studied it extensively. A subset \(A\) of a topological space \(X\) is called locally closed if \(A = U \cap F\), where \(U\) is open and \(F\) is closed. It is interesting that a locally closed set is a generalization of both open sets and closed sets. The generalization has also been discussed in completely regular Hausdorff spaces \cite{5} and has also been done on algebra with topology in \cite{12} and \cite{2}.

*Corresponding Author

Received 23 November 2016; Accepted 29 March 2017
©2019 Academic Center for Education, Culture and Research TMU
In this paper we consider a new type of sets in the topological space which is called \(\lambda \)-open sets. A set is said to be \(\lambda \)-open if it contains a nonempty open set. This idea is not a new idea. In literature, semi-open sets [7] and \(\alpha \)-sets [11] are examples of that type of sets although preopen sets [10] is not an example of it. Because: let \(\mathbb{R} \) be the usual real line and \(Q \) the rational numbers. Then \(\text{Cl}(Q) = \mathbb{R} \) and \(Q \subseteq \text{Int}(\text{Cl}(Q)) = \mathbb{R} \) (where ‘Cl’ and ‘Int’ denote the closure and interior operators, respectively). But \(Q \) does not contain nonempty open set. However Dontechev [4] has introduced an \(S \)-space: A topological space \(X \) is called an \(S \)-space if every subset which contains a non-void open subset is open. But the concept of \(\lambda \)-open sets is different from Dontechev’s \(S \)-spaces.

Definition 1.1. A subset \(A \) of a topological space \(X \) is said to be \(\lambda \)-open if \(A \) contains a nonempty open set. The complement of a \(\lambda \)-open set is said to be \(\lambda \)-closed.

For a subset \(A \) of a topological space \(X \), \(\text{Int}_\lambda(A) \) and \(\text{Cl}_\lambda(A) \) are defined as follows:

Definition 1.2. Let \(X \) be a topological space and \(A \) be a subset of \(X \).

\[
\text{Int}_\lambda(A) = \bigcup\{U : U \subseteq A, U \text{ is } \lambda\text{-open in } X\};
\]

\[
\text{Cl}_\lambda(A) = \bigcap\{F : A \subseteq F, F \text{ is } \lambda\text{-closed in } X\}.
\]

Lemma 1.3. Let \(X \) be a topological space and \(A, B \) subsets of \(X \).

1. if \(A \subseteq B \), then \(\text{Int}_\lambda(A) \subseteq \text{Int}_\lambda(B) \) and \(\text{Cl}_\lambda(A) \subseteq \text{Cl}_\lambda(B) \),
2. \(X \setminus \text{Int}_\lambda(A) = \text{Cl}_\lambda(X \setminus A) \),
3. For any index set \(\Delta \), if \(A_\alpha \) is \(\lambda \)-open (resp. \(\lambda \)-closed), then \(\bigcup\{A_\alpha : \alpha \in \Delta\} \) is \(\lambda \)-open (resp. \(\bigcap\{A_\alpha : \alpha \in \Delta\} \) is \(\lambda \)-closed),
4. \(\text{Int}_\lambda(A) \) is \(\lambda \)-open and \(\text{Cl}_\lambda(A) \) is \(\lambda \)-closed.

Remark 1.4. The finite intersection of \(\lambda \)-open sets need not be \(\lambda \)-open. Let \(\mathbb{R} \) be the usual real line, \(A = (-1, 0] \) and \(B = [0, 1) \). The \(A \) and \(B \) are \(\lambda \)-open but \(A \cap B = \{0\} \) is not \(\lambda \)-open.

We generalize the locally closed set by using \(\lambda \)-open sets.

2. \(\lambda \)-Locally Closed Sets

Definition 2.1. A subset \(A \) of a topological space \(X \) is said to be \(\lambda \)-locally closed if \(A = U \cap F \), where \(U \) is \(\lambda \)-open and \(F \) is closed.

Corollary 2.2. Let \(f : X \to Y \) be a continuous function. If \(L \) is a \(\lambda \)-locally closed subset of \(Y \), then \(f^{-1}(L) \) is \(\lambda \)-locally closed in \(X \).

From Definition 1.1 it is obvious that every locally closed set is \(\lambda \)-locally closed. But the converse need not hold in general.

Example 2.3. Let \(X = \{a, b, c, d\} \), \(\tau = \{\emptyset, X, \{a\}\} \). Then \(C(X) \{\text{all closed sets in } X\} = \{\emptyset, X, \{b, c, d\}\} \). And \(\lambda \)-open sets are: \(\emptyset, X, \{a\}, \{a, b\}, \{a, b, c\}, \{a, c\}, \).
Some generalizations of locally closed sets

161

{a, d}, {a, b, d}, {a, c, d}. Therefore, \(\{d\} = \{a, d\} \cap \{b, c, d\} \) is a \(\lambda \)-locally closed set but it is not a locally closed set in \(X \).

Remark 2.4. A subset \(A \) of a topological space \(X \) is \(\lambda \)-locally closed if and only if \(X \setminus A \) is the union of a \(\lambda \)-closed set and an open set.

Remark 2.5. For a subset of a topological space, the following hold:

1. Every \(\lambda \)-open set is \(\lambda \)-locally closed.
2. Every closed set is \(\lambda \)-locally closed.

Theorem 2.6. For a subset \(A \) of a topological space \(X \), the following are equivalent:

1. \(A \) is \(\lambda \)-locally closed;
2. \(A = U \cap \Cl(A) \) for some \(\lambda \)-open set \(U \);
3. \(A \cup (X \setminus \Cl(A)) \) is \(\lambda \)-open;
4. \(A \subseteq \Int_\lambda[A \cup (X \setminus \Cl(A))] \);
5. \(\Cl(A) \setminus A \) is \(\lambda \)-closed.

Proof. (1) \(\Rightarrow \) (2): Suppose \(A \) is \(\lambda \)-locally closed. Then \(A = U \cap F \) where \(U \) is \(\lambda \)-open and \(F \) is closed. Then \(\Cl(A) = \Cl(U \cap F) \subseteq \Cl(F) = F \). Then \(A \subseteq U \cap \Cl(A) \subseteq U \cap F = A \) and hence \(A = U \cap \Cl(A) \).

(2) \(\Rightarrow \) (3): \(X \setminus [A \cup (X \setminus \Cl(A))] = (X \setminus A) \cap \Cl(A) = \Cl(A) \setminus A = \Cl(A) \setminus (U \setminus \Cl(A)) = \Cl(A) \setminus U = \Cl(A) \cap (X \setminus U) \). Since \(U \) is \(\lambda \)-open, \(\Cl(A) \cap (X \setminus U) \) is \(\lambda \)-closed and hence \(A \cup (X \setminus \Cl(A)) \) is \(\lambda \)-open.

(3) \(\Rightarrow \) (4): Since \(A \cup (X \setminus \Cl(A)) \) is a \(\lambda \)-open set containing \(A \), it is obvious that \(A \subseteq \Int_\lambda[A \cup (X \setminus \Cl(A))] \).

(4) \(\Rightarrow \) (1): \(A = A \cap \Cl(A) \subseteq \Int_\lambda[A \cup (X \setminus \Cl(A))] \cap \Cl(A) \subseteq [A \cup (X \setminus \Cl(A))] \cap \Cl(A) = A \cap \Cl(A) = A \). Therefore, \(A = \Int_\lambda[A \cup (X \setminus \Cl(A))] \cap \Cl(A) \) and \(A \) is \(\lambda \)-locally closed.

(3) \(\iff \) (5): It is obvious.

The union of two \(\lambda \)-locally closed sets need not be \(\lambda \)-locally closed.

Example 2.7. Let \(X = \{a, b, c, d\} \), \(\tau = \{\emptyset, X, \{a, b\}, \{c, d\}\} \). Then \(\Cl(X) = \{\emptyset, X, \{a, d\}\} \) and \(\lambda \)-open sets are: \(\emptyset, X, \{a, b\}, \{c, d\}, \{a, b, c, d\} \). \(\lambda \)-locally closed sets are: \(\emptyset, X, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{c, d\}, \{a\}, \{b\} \). Therefore, \(\{a\} \) and \(\{c\} \) are \(\lambda \)-locally closed sets but their union \(\{a, c\} \) is not a \(\lambda \)-locally closed set.

3. **\(\Lambda_\lambda \)-Closed Sets**

Locally closed sets in a topological space are introduced and investigated in [3] and [6]. As a generalization of locally closed sets, Arenas et al. [1] introduced the notion of \(\lambda \)-closed sets in a topological space. In this section, we introduce the notion of \(\Lambda_\lambda \)-closed sets which is a generalization of \(\lambda \)-closed sets. We obtain some characterizations of \(\Lambda_\lambda \)-closed sets and obtain decompositions of closed sets.
Definition 3.1. Let X be a topological space and A a subset of X. The subset $\Lambda_\lambda(A)$ is defined as follows: $\Lambda_\lambda(A) = \cap\{U : A \subseteq U, U \text{ is } \lambda\text{-open}\}$.

A subset A is called a Λ_λ-set if $A = \Lambda_\lambda(A)$. If U is open in Definition 3.1, then a Λ_λ-set A is called a Λ-set [9].

Lemma 3.2. For any subsets A and B of a topological space X, the following hold:

1. $A \subseteq \Lambda_\lambda(A)$,
2. If $A \subseteq B$, then $\Lambda_\lambda(A) \subseteq \Lambda_\lambda(B)$,
3. $\Lambda_\lambda(\Lambda_\lambda(A)) = \Lambda_\lambda(A)$,
4. $\Lambda_\lambda(\cap_{\alpha \in \Delta} A_\alpha) \subseteq \cap_{\alpha \in \Delta} \Lambda_\lambda(A_\alpha)$ for any index set Δ.

Lemma 3.3. For any subset A of a topological space X, the following hold:

1. $\Lambda_\lambda(A)$ is a Λ_λ-set,
2. If A is λ-open, then A is a Λ_λ-set,
3. If A_α is a Λ_λ-set for each $\alpha \in \Delta$, then $\cap_{\alpha \in \Delta} A_\alpha$ is a Λ_λ-set.

Remark 3.4. The converse of Lemma 3.3 (2) need not hold as shown by the following example: Let \mathbb{R} be the usual real line and $A = \{0\}$. Then A is a Λ_λ-set but it is not λ-open. Because $\{0\} \subseteq \Lambda_\lambda(\{0\}) \subseteq (-1,0] \cap [0,1) = \{0\}$ and hence $\Lambda_\lambda(\{0\}) = \{0\}$. Therefore, $A = \{0\}$ is a Λ_λ-set but it is not λ-open.

Definition 3.5. A subset A of a topological space X is said to be Λ_λ-closed (resp. λ-closed [1]) if $A = L \cap F$, where L is a Λ_λ-set (resp. Λ-set) and F is a closed set.

Lemma 3.6. For a subset of a topological space X, the following properties hold:

1. Every λ-locally closed set is Λ_λ-closed,
2. Every λ-closed set is Λ_λ-closed.

Proof. (1) By Lemma 3.3, every λ-open set is a Λ_λ-set and (1) holds.

(2) Let U be a Λ-set. Then,

$$U = \cap\{V : U \subseteq V, V \text{ is open}\} \supseteq \cap\{V : U \subset V, V \text{ is } \lambda\text{-open}\} \supseteq U$$

and hence U is a Λ_λ-set. Therefore, (2) holds. \qed

Remark 3.7. By Lemma 3.6, we obtain the following diagram.

<table>
<thead>
<tr>
<th>locally closed</th>
<th>\Rightarrow</th>
<th>λ-locally closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>\downarrow</td>
<td>\downarrow</td>
<td>\downarrow</td>
</tr>
<tr>
<td>λ-closed</td>
<td>\Rightarrow</td>
<td>Λ_λ-closed</td>
</tr>
</tbody>
</table>
Some generalizations of locally closed sets

Theorem 3.8. For a subset A of a topological space X, the following are equivalent:

(1) A is Λ_λ-closed;

(2) $A = U \cap \text{Cl}(A)$ for some Λ_λ-set U;

(3) $A = \Lambda_\lambda(A) \cap \text{Cl}(A)$.

Proof. (1) \Rightarrow (2): Let A be a Λ_λ-closed set. Then $A = U \cap F$, where U is a Λ_λ-set and F is a closed set. Thus, we have $A \subseteq U \cap \text{Cl}(A) \subseteq U \cap \text{Cl}(F) = U \cap F = A$. Therefore, $A = U \cap \text{Cl}(A)$.

(2) \Rightarrow (3): Let $A = U \cap \text{Cl}(A)$ for some Λ_λ-set U. Since $A \subseteq U$, by Lemma 3.2 $\Lambda_\lambda(A) \subseteq \Lambda_\lambda(U) = U$ and hence $A \subseteq \Lambda_\lambda(A) \cap \text{Cl}(A) \subseteq U \cap \text{Cl}(A) = A$. Therefore, we obtain $A = \Lambda_\lambda(A) \cap \text{Cl}(A)$.

(3) \Rightarrow (1): Let $A = \Lambda_\lambda(A) \cap \text{Cl}(A)$. By Lemma 3.3, $\Lambda_\lambda(A)$ is a Λ_λ-set and $\text{Cl}(A)$ is closed. Therefore, A is Λ_λ-closed. \square

Definition 3.9. Let X be a topological space. A subset A of X is said to be λg-closed (resp. g-closed [8]) if $\text{Cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is a λ-open (resp. open) set.

Theorem 3.10. For a subset A of a topological space X, the following are equivalent:

(1) A is closed;

(2) A is λ-locally closed and λg-closed;

(3) A is Λ_λ-closed and λg-closed.

Proof. (1) \Rightarrow (2): Let A be closed in X. Since $A = X \cap A$ and X is a Λ_λ-set, A is λ-locally closed. Let U be any λ-open set containing A. Then $\text{Cl}(A) = A \subseteq U$ and hence A is λg-closed.

(2) \Rightarrow (3): By Lemma 3.6, every λ-locally closed set is Λ_λ-closed.

(3) \Rightarrow (1): Let A be Λ_λ-closed and λg-closed. Since A is Λ_λ-closed, $A = P \cap L$, where P is a Λ_λ-set and L is closed in X. Let V be any λ-open set containing A. Since A is λg-closed, $\text{Cl}(A) \subseteq V$ and hence $\text{Cl}(A) \subseteq \cap \{V : A \subseteq V, V$ is λ-open $\} = \Lambda_\lambda(A)$. Therefore, $\text{Cl}(A) \subseteq \Lambda_\lambda(A) \subseteq \Lambda_\lambda(P) = P$. On the other hand, $A \subseteq L$ and $\text{Cl}(A) \subseteq \text{Cl}(L) = L$. Therefore, we obtain $\text{Cl}(A) \subseteq P \cap L = A$. Thus A is closed. \square

Theorem 3.11. Let X be a topological space. If A_α is a Λ_λ-closed set for each $\alpha \in \Delta$, then $\cap_{\alpha \in \Delta} A_\alpha$ is Λ_λ-closed.

Proof. Let A_α be a Λ_λ-closed set for each $\alpha \in \Delta$. Then $A_\alpha = U_\alpha \cap F_\alpha$, where U_α is a Λ_λ-set and F_α is a closed set for each $\alpha \in \Delta$. By Lemma 3.3, $\cap_{\alpha \in \Delta} U_\alpha$ is a Λ_λ-set, $\cap_{\alpha \in \Delta} F_\alpha$ is closed and $\cap_{\alpha \in \Delta} A_\alpha = (\cap_{\alpha \in \Delta} U_\alpha) \cap (\cap_{\alpha \in \Delta} F_\alpha)$. Therefore, $\cap_{\alpha \in \Delta} A_\alpha$ is Λ_λ-closed. \square
4. Decompositions of Continuity

In this section, we obtain the decompositions of continuity.

Definition 4.1. A function \(f : X \to Y \) is said to be

1. \(\lambda\)-LC-continuous if \(f^{-1}(V) \) is \(\lambda\)-locally closed in \(X \) for any closed set \(V \) of \(Y \),
2. \(\Lambda\lambda \)-continuous if \(f^{-1}(V) \) is \(\Lambda\lambda \)-closed in \(X \) for any closed set \(V \) of \(Y \),
3. \(\lambda g \)-continuous if \(f^{-1}(V) \) is \(\lambda g \)-closed in \(X \) for any closed set \(V \) of \(Y \).

Theorem 4.2. For a function \(f : X \to Y \), the following are equivalent:

1. \(f \) is continuous;
2. \(f \) is \(\lambda\)-LC-continuous and \(\lambda g \)-continuous;
3. \(f \) is \(\Lambda\lambda \)-continuous and \(\lambda g \)-continuous.

Proof. This is an immediate consequence of Theorem 3.10 \(\square \)

Remark 4.3. The following facts are shown by Examples 4.4 and 4.5 and Remark 4.6:

1. \(\lambda\)-LC-continuity and \(\lambda g \)-continuity are independent of each other,
2. \(\Lambda\lambda \)-continuity and \(\lambda g \)-continuity are independent of each other.

Example 4.4. Let \(X = Y = \{a, b, c, d\}, \tau = \sigma = \{\emptyset, X, \{a\}\} \). Then \(C(X) = C(Y) = \{\emptyset, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}\} \) and \(\lambda \)-open sets in \(X \) (resp. \(Y \)) are: \(\emptyset, X, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c, d\}\). \(\lambda \)-locally closed sets in \(X \) (resp. \(Y \)) are: \(\emptyset, X, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c, d\}\). Define a function \(f : X \to Y \) by \(f(a) = c, f(b) = b, f(c) = d, f(d) = a \). Then we have the following:

1. Since \(f^{-1}(\{b, c, d\}) = \{a, b, c\} \), then \(f \) is not continuous.
2. Since \(f^{-1}(\{b, c, d\}) = \{a, b, c\} \), then \(f \) is \(\lambda\)-LC-continuous.
3. Since \(Cl(\{a, b, c\}) = Y \) (i.e. \(\{a, b, c\} \) is not \(\lambda g \)-closed), then \(f \) is not \(\lambda g \)-continuous.
4. Since \(\{a, b, c\} \subseteq \bigcap\{U : \{a, b, c\} \subseteq U, U \ is \ \lambda\)-open \} = \{a, b, c\} \) and \(\{a, b, c\} \cap X = \{a, b, c\} \), then \(\{a, b, c\} \) is \(\Lambda\lambda \)-closed. Thus \(f \) is \(\Lambda\lambda \)-continuous.

Example 4.5. Let \(X = Y = \{a, b, c, d\}, \tau = \sigma = \{\emptyset, X, \{a\}, \{c\}\} \). Then \(C(X) = C(Y) = \{\emptyset, X, \{a\}, \{c\}\} \) and \(\lambda \)-open sets in \(X \) (resp. \(Y \)) are: \(\emptyset, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}\). \(\lambda \)-locally closed sets in \(X \) (resp. \(Y \)) are: \(\emptyset, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}\). Define \(g : X \to Y \) by \(g(a) = c, g(b) = b, g(c) = a, g(d) = d \). Then we have the following:

1. Since \(g^{-1}(\{c, d\}) = \{a\} \), then \(g \) is not a continuous function.
2. Since \(g^{-1}(\{c, d\}) = \{a\} \), it is not a \(\lambda \)-locally closed set in \(X \). Then \(g \) is not a \(\lambda\)-LC-continuous function.
3. Since \(g^{-1}(\{a, b\}) = \{b, c\} \subseteq \bigcap\{U : \{b, c\} \subseteq U, U \ is \ \lambda\)-open in \(X \) =
Some generalizations of locally closed sets

\{b, c\} \cap X = \{b, c\} and \(g^{-1}(\{c, d\}) = \{a, d\} = \cap\{U : \{a, d\} \subseteq U, U \text{ is } \lambda\text{-open in } X\}

\{a, d\} \cap X = \{a, d\} are \(\Lambda_{\lambda}\)-closed, then \(\Lambda_{\lambda}\)-continuous.

Remark 4.6.

1. If every \(\lambda g\)-continuous function is \(\lambda\)-LC-continuous, then it is continuous from Theorem 4.2. This is not true from Example 4.4(1).

2. If every \(\lambda g\)-continuous function is \(\Lambda_{\lambda}\)-continuous, then it is continuous from Theorem 4.2. This not true from Example 4.5(1).

Acknowledgments

The authors wish to thank the referees for their valuable comments.

References