Some Generalizations of Locally Closed Sets

Shyamapada Modak∗a and Takashi Noiriib

aDepartment of Mathematics, University of Gour Banga
P.O. Mokdumpur, Malda 732 103, India.
b2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi
Kumamoto-ken, 869-5142 JAPAN.

E-mail: spmodak2000@yahoo.co.in
E-mail: t.noiri@nifty.com

Abstract. Arenas et al. [1] introduced the notion of λ-closed sets as a generalization of locally closed sets. In this paper, we introduce the notions of λ-locally closed sets, Λλ-closed sets and λg-closed sets and obtain some decompositions of closed sets and continuity in topological spaces.

Keywords: λ-Open set, λ-Locally closed set, Λλ-Closed set, λg-Closed set, Decompositions of continuity.

2000 Mathematics subject classification: 54A05, 54C08.

1. Introduction and Preliminaries

The study of locally closed sets was introduced by Bourbaki [3] in 1966 then the authors Ganster and Reilly [6] have studied it extensively. A subset A of a topological space X is called locally closed if \(A = U \cap F \), where U is open and F is closed. It is interesting that a locally closed set is a generalization of both open sets and closed sets. The generalization has also been discussed in completely regular Hausdorff spaces [5] and has also been done on algebra with topology in [12] and [2].

∗Corresponding Author

Received 23 November 2016; Accepted 29 March 2017
©2019 Academic Center for Education, Culture and Research TMU
In this paper we consider a new type of sets in the topological space which is called \(\lambda \)-open sets. A set is said to be \(\lambda \)-open if it contains a nonempty open set. This idea is not a new idea. In literature, semi-open sets [7] and \(\alpha \)-sets [11] are examples of that type of sets although preopen sets [10] is not an example of it. Because: let \(\mathbb{R} \) be the usual real line and \(Q \) the rational numbers. Then \(\text{Cl}(Q) = \mathbb{R} \) and \(Q \subseteq \text{Int}(\text{Cl}(Q)) = \mathbb{R} \) (where ‘\(\text{Cl} \)’ and ‘\(\text{Int} \)’ denote the closure and interior operators, respectively). But \(Q \) does not contain nonempty open set. However Dontechev [4] has introduced an \(S \)-space: A topological space \(X \) is called an \(S \)-space if every subset which contains a non-void open subset is open. But the concept of \(\lambda \)-open sets is different from Dontechev’s \(S \)-spaces.

Definition 1.1. A subset \(A \) of a topological space \(X \) is said to be \(\lambda \)-open if \(A \) contains a nonempty open set. The complement of a \(\lambda \)-open set is said to be \(\lambda \)-closed.

For a subset \(A \) of a topological space \(X \), \(\text{Int}_\lambda(A) \) and \(\text{Cl}_\lambda(A) \) are defined as follows:

Definition 1.2. Let \(X \) be a topological space and \(A \) be a subset of \(X \).

\[
\text{Int}_\lambda(A) = \bigcup \{ U : U \subseteq A, \text{ } U \text{ } \text{is } \lambda\text{-open in } X \};
\]

\[
\text{Cl}_\lambda(A) = \bigcap \{ F : A \subseteq F, F \text{ } \text{is } \lambda\text{-closed in } X \}.
\]

Lemma 1.3. Let \(X \) be a topological space and \(A, B \) subsets of \(X \).

1. if \(A \subseteq B \), then \(\text{Int}_\lambda(A) \subseteq \text{Int}_\lambda(B) \) and \(\text{Cl}_\lambda(A) \subseteq \text{Cl}_\lambda(B) \).
2. \(X \setminus \text{Int}_\lambda(A) = \text{Cl}_\lambda(X \setminus A) \).
3. For any index set \(\Delta \), if \(A_\alpha \) is \(\lambda \)-open (resp. \(\lambda \)-closed), then \(\bigcup \{ A_\alpha : \alpha \in \Delta \} \) is \(\lambda \)-open (resp. \(\bigcap \{ A_\alpha : \alpha \in \Delta \} \) is \(\lambda \)-closed).
4. \(\text{Int}_\lambda(A) \) is \(\lambda \)-open and \(\text{Cl}_\lambda(A) \) is \(\lambda \)-closed.

Remark 1.4. The finite intersection of \(\lambda \)-open sets need not be \(\lambda \)-open. Let \(\mathbb{R} \) be the usual real line, \(A = (-1, 0] \) and \(B = [0, 1) \). The \(A \) and \(B \) are \(\lambda \)-open but \(A \cap B = \{0\} \) is not \(\lambda \)-open.

We generalize the locally closed set by using \(\lambda \)-open sets.

2. \(\lambda \)-Locally Closed Sets

Definition 2.1. A subset \(A \) of a topological space \(X \) is said to be \(\lambda \)-locally closed if \(A = U \cap F \), where \(U \) is \(\lambda \)-open and \(F \) is closed.

Corollary 2.2. Let \(f : X \to Y \) be a continuous function. If \(L \) is a \(\lambda \)-locally closed subset of \(Y \), then \(f^{-1}(L) \) is \(\lambda \)-locally closed in \(X \).

From Definition 1.1 it is obvious that every locally closed set is \(\lambda \)-locally closed. But the converse need not hold in general.

Example 2.3. Let \(X = \{a, b, c, d\} \), \(\tau = \{\emptyset, X, \{a\}\} \). Then \(\mathcal{C}(X) \) (all closed sets in \(X \)) = \{\emptyset, X, \{b, c, d\}\}. And \(\lambda \)-open sets are: \(\emptyset, X, \{a\}, \{a, b\}, \{a, b, c\}, \{a, c\} \),
The union of two \(\lambda\)-locally closed sets need not be \(\lambda\)-locally closed.

Example 2.7. Let \(X = \{a, b, c, d\}\), \(\tau = \{\emptyset, X, \{a, b\}, \{c, d\}\}\). Then \(C(X) = \emptyset, X, \{a, d\}, \{a, b\}\) and \(\lambda\)-open sets are: \(\emptyset, X, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\). \(\lambda\)-locally closed sets are: \(\emptyset, X, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\). Therefore, \(\{a\}\) and \(\{c\}\) are \(\lambda\)-locally closed sets but their union \(\{a, c\}\) is not a \(\lambda\)-locally closed set.

3. \(A_\lambda\)-Closed Sets

Locally closed sets in a topological space are introduced and investigated in [3] and [6]. As a generalization of locally closed sets, Arenas et al. [1] introduced the notion of \(\lambda\)-closed sets in a topological space. In this section, we introduce the notion of \(A_\lambda\)-closed sets which is a generalization of \(\lambda\)-closed sets. We obtain some characterizations of \(A_\lambda\)-closed sets and obtain decompositions of closed sets.
Definition 3.1. Let X be a topological space and A a subset of X. The subset $\Lambda_\lambda(A)$ is defined as follows: $\Lambda_\lambda(A) = \bigcap \{ U : A \subseteq U, \ U \text{ is } \lambda\text{-open} \}$.

A subset A is called a Λ_λ-set if $A = \Lambda_\lambda(A)$. If U is open in Definition 3.1, then a Λ_λ-set A is called a Λ-set [9].

Lemma 3.2. For any subsets A and B of a topological space X, the following hold:

(1) $A \subseteq \Lambda_\lambda(A)$,
(2) If $A \subseteq B$, then $\Lambda_\lambda(A) \subseteq \Lambda_\lambda(B)$,
(3) $\Lambda_\lambda(\Lambda_\lambda(A)) = \Lambda_\lambda(A)$,
(4) $\Lambda_\lambda(\bigcap_{\alpha \in \Delta} A_\alpha) \subseteq \bigcap_{\alpha \in \Delta} \Lambda_\lambda(A_\alpha)$ for any index set Δ.

Lemma 3.3. For any subset A of a topological space X, the following hold:

(1) $\Lambda_\lambda(\Lambda_\lambda(A))$ is a Λ_λ-set,
(2) If A is λ-open, then A is a Λ_λ-set,
(3) If A_α is a Λ_λ-set for each $\alpha \in \Delta$, then $\bigcap_{\alpha \in \Delta} A_\alpha$ is a Λ_λ-set.

Remark 3.4. The converse of Lemma 3.3 (2) need not hold as shown by the following example: Let R be the usual real line and $A = \{0\}$. Then A is a Λ_λ-set but it is not λ-open. Because $\{0\} \subseteq \Lambda_\lambda(\{0\}) \subseteq (-1,0] \cap [0,1) = \{0\}$ and hence $\Lambda_\lambda(\{0\}) = \{0\}$. Therefore, $A = \{0\}$ is a Λ_λ-set but it is not λ-open.

Definition 3.5. A subset A of a topological space X is said to be Λ_λ-closed (resp. λ-closed [1]) if $A = L \cap F$, where L is a Λ_λ-set (resp. Λ-set) and F is a closed set.

Lemma 3.6. For a subset of a topological space X, the following properties hold:

(1) Every λ-locally closed set is Λ_λ-closed,
(2) Every λ-closed set is Λ_λ-closed.

Proof. (1) By Lemma 3.3, every λ-open set is a Λ_λ-set and (1) holds.
(2) Let U be a Λ-set. Then,

$$U = \bigcap \{ V : U \subseteq V, V \text{ is open} \} \supseteq \bigcap \{ V : U \subset V, V \text{ is } \lambda\text{-open} \} \supseteq U$$

and hence U is a Λ_λ-set. Therefore, (2) holds. \qed

Remark 3.7. By Lemma 3.6, we obtain the following diagram.

DIAGRAM I

\[
\begin{array}{ccc}
\text{locally closed} & \Rightarrow & \lambda\text{-locally closed} \\
\downarrow & & \downarrow \\
\lambda\text{-closed} & \Rightarrow & \Lambda_\lambda\text{-closed}
\end{array}
\]
Theorem 3.8. For a subset \(A \) of a topological space \(X \), the following are equivalent:

1. \(A \) is \(\Lambda_\lambda \)-closed;
2. \(A = U \cap \text{Cl}(A) \) for some \(\Lambda_\lambda \)-set \(U \);
3. \(A = \Lambda_\lambda (A) \cap \text{Cl}(A) \).

Proof. (1) \(\Rightarrow \) (2): Let \(A \) be a \(\Lambda_\lambda \)-closed set. Then \(A = U \cap F \), where \(U \) is a \(\Lambda_\lambda \)-set and \(F \) is a closed set. Thus, we have \(A \subseteq U \cap \text{Cl}(A) \subseteq U \cap \text{Cl}(F) = U \cap F = A \). Therefore, \(A = U \cap \text{Cl}(A) \).

(2) \(\Rightarrow \) (3): Let \(A = U \cap \text{Cl}(A) \) for some \(\Lambda_\lambda \)-set \(U \). Since \(A \subseteq U \), by Lemma 3.2 \(\Lambda_\lambda (A) \subseteq \Lambda_\lambda (U) = U \) and hence \(A \subseteq \Lambda_\lambda (A) \cap \text{Cl}(A) \subseteq U \cap \text{Cl}(A) = A \).

Therefore, we obtain \(A = \Lambda_\lambda (A) \cap \text{Cl}(A) \).

(3) \(\Rightarrow \) (1): Let \(A = \Lambda_\lambda (A) \cap \text{Cl}(A) \). By Lemma 3.3, \(\Lambda_\lambda (A) \) is a \(\Lambda_\lambda \)-set and \(\text{Cl}(A) \) is closed. Therefore, \(A \) is \(\Lambda_\lambda \)-closed.

\(\Box \)

Definition 3.9. Let \(X \) be a topological space. A subset \(A \) of \(X \) is said to be \(\lambda g \)-closed (resp. \(g \)-closed [8]) if \(\text{Cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is a \(\lambda \)-open (resp. open) set.

Theorem 3.10. For a subset \(A \) of a topological space \(X \), the following are equivalent:

1. \(A \) is closed;
2. \(A \) is \(\lambda \)-locally closed and \(\lambda g \)-closed;
3. \(A \) is \(\Lambda_\lambda \)-closed and \(\lambda g \)-closed.

Proof. (1) \(\Rightarrow \) (2): Let \(A \) be closed in \(X \). Since \(A = X \cap A \) and \(A \) is a \(\Lambda_\lambda \)-set, \(A \) is \(\lambda \)-locally closed. Let \(U \) be any \(\lambda \)-open set containing \(A \). Then \(\text{Cl}(A) = A \subseteq U \) and hence \(A \) is \(\lambda g \)-closed.

(2) \(\Rightarrow \) (3): By Lemma 3.6, every \(\lambda \)-locally closed set is \(\Lambda_\lambda \)-closed.

(3) \(\Rightarrow \) (1): Let \(A \) be \(\Lambda_\lambda \)-closed and \(\lambda g \)-closed. Since \(A \) is \(\Lambda_\lambda \)-closed and \(\lambda g \)-closed, \(A = P \cap L \), where \(P \) is a \(\Lambda_\lambda \)-set and \(L \) is closed in \(X \). Let \(V \) be any \(\lambda \)-open set containing \(A \). Since \(A \) is \(\lambda g \)-closed, \(\text{Cl}(A) \subseteq V \) and hence \(\text{Cl}(A) \subseteq \cap \{V : A \subseteq V, V \text{ is } \lambda \text{-open}\} = \Lambda_\lambda (A) \). Therefore, \(\text{Cl}(A) \subseteq \Lambda_\lambda (A) \subseteq \Lambda_\lambda (P) = P \). On the other hand, \(A \subseteq L \) and \(\text{Cl}(A) \subseteq \text{Cl}(L) = L \). Therefore, we obtain \(\text{Cl}(A) \subseteq P \cap L = A \). Thus \(A \) is closed.

\(\Box \)

Theorem 3.11. Let \(X \) be a topological space. If \(A_\alpha \) is a \(\Lambda_\lambda \)-closed set for each \(\alpha \in \Delta \), then \(\cap_{\alpha \in \Delta} A_\alpha \) is \(\Lambda_\lambda \)-closed.

Proof. Let \(A_\alpha \) be a \(\Lambda_\lambda \)-closed set for each \(\alpha \in \Delta \). Then \(A_\alpha = U_\alpha \cap F_\alpha \), where \(U_\alpha \) is a \(\Lambda_\lambda \)-set and \(F_\alpha \) is a closed set for each \(\alpha \in \Delta \). By Lemma 3.3, \(\cap_{\alpha \in \Delta} U_\alpha \) is a \(\Lambda_\lambda \)-set, \(\cap_{\alpha \in \Delta} F_\alpha \) is closed and \(\cap_{\alpha \in \Delta} A_\alpha = (\cap_{\alpha \in \Delta} U_\alpha) \cap (\cap_{\alpha \in \Delta} F_\alpha) \). Therefore, \(\cap_{\alpha \in \Delta} A_\alpha \) is \(\Lambda_\lambda \)-closed.

\(\Box \)
4. Decompositions of Continuity

In this section, we obtain the decompositions of continuity.

Definition 4.1. A function \(f : X \to Y \) is said to be

1. \(\lambda \)-LC-continuous if \(f^{-1}(V) \) is \(\lambda \)-locally closed in \(X \) for any closed set \(V \) of \(Y \),
2. \(\Lambda_\lambda \)-continuous if \(f^{-1}(V) \) is \(\Lambda_\lambda \)-closed in \(X \) for any closed set \(V \) of \(Y \),
3. \(\lambda g \)-continuous if \(f^{-1}(V) \) is \(\lambda g \)-closed in \(X \) for any closed set \(V \) of \(Y \).

Theorem 4.2. For a function \(f : X \to Y \), the following are equivalent:

1. \(f \) is continuous;
2. \(f \) is \(\lambda \)-LC-continuous and \(\lambda g \)-continuous;
3. \(f \) is \(\Lambda_\lambda \)-continuous and \(\lambda g \)-continuous.

Proof. This is an immediate consequence of Theorem 3.10 \(\square \)

Remark 4.3. The following facts are shown by Examples 4.4 and 4.5 and Remark 4.6:

1. \(\lambda \)-LC-continuity and \(\lambda g \)-continuity are independent of each other,
2. \(\Lambda_\lambda \)-continuity and \(\lambda g \)-continuity are independent of each other.

Example 4.4. Let \(X = Y = \{a, b, c, d\} \), \(\tau = \sigma = \{\emptyset, X, \{a\}\} \). Then \(C(X) = C(Y) = \{\emptyset, \{b, c, d\}\} \) and \(\lambda \)-open sets in \(X \) (resp. \(Y \)) are: \(\emptyset, X, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c, d\} \). \(\lambda \)-locally closed sets in \(X \) (resp. \(Y \)) are: \(\emptyset, X, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c, d\} \).

Define a function \(f : X \to Y \) by \(f(a) = c, f(b) = b, f(c) = d, f(d) = a \). Then we have the following:

1. Since \(f^{-1}(\{a, b\}) = \{a, b\} \), then \(f \) is not continuous.
2. Since \(f^{-1}(\{b, c, d\}) = \{a, b, c\} \), then \(f \) is \(\lambda \)-LC-continuous.
3. Since \(Cl(\{a, b, c\}) = X \) (i.e. \(\{a, b, c\} \) is not \(\lambda g \)-closed), then \(f \) is not \(\lambda g \)-continuous.

Example 4.5. Let \(X = Y = \{a, b, c, d\} \), \(\tau = \sigma = \{\emptyset, X, \{a, b\}, \{c, d\}\} \). Then \(C(X) = C(Y) = \{\emptyset, X, \{a, b\}, \{c, d\}\} \) and \(\lambda \)-open sets in \(X \) (resp. \(Y \)) are: \(\emptyset, X, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\} \). \(\lambda \)-locally closed sets in \(X \) (resp. \(Y \)) are: \(\emptyset, X, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, \{a\}, \{b\}, \{c\}, \{d\} \). Define \(g : X \to Y \) by \(g(a) = c, g(b) = b, g(c) = a, g(d) = d \). Then we have the following:

1. Since \(g^{-1}(\{c, d\}) = \{a, d\} \), then \(g \) is not a continuous function.
2. Since \(g^{-1}(\{c, d\}) = \{a, d\} \), it is not a \(\lambda \)-locally closed set in \(X \). Then \(g \) is not a \(\lambda \)-LC-continuous function.
3. Since \(g^{-1}(\{a, b\}) = \{b, c\} \subseteq \cap \{U : \{b, c\} \subseteq U, U \text{ is } \lambda \text{-open in } X\} = \emptyset \), then \(g \) is not a \(\lambda \)-LC-continuous function.
Some generalizations of locally closed sets

\{b, c\} \cap X = \{b, c\} and \(g^{-1}(\{c, d\}) = \{a, d\} = \cap \{U : \{a, d\} \subseteq U, U \text{ is } \lambda\text{-open in } X\}

= \{a, d\} \cap X = \{a, d\} are \(\Lambda_\lambda\)-closed, then \(\Lambda_\lambda\)-continuous.

Remark 4.6. (1) If every \(\lambda g\)-continuous function is \(\lambda\)-LC-continuous, then it is continuous from Theorem 4.2. This is not true from Example 4.4(1).

(2) If every \(\lambda g\)-continuous function is \(\Lambda_\lambda\)-continuous, then it is continuous from Theorem 4.2. This not true from Example 4.5(1).

Acknowledgments

The authors wish to thank the referees for their valuable comments.

References