A Submodule-Based Zero Divisor Graph for Modules

Sakineh Babaeia, Shiroyeh Payrovi∗,a, Esra Sengelen Sevimb

aDepartment of Mathematics, Imam Khomeini International University, Postal Code: 34149-1-6818, Qazvin, Iran.
bDepartment of Mathematics, Istanbul Bilgi University, Kazim Karabekir Cad. No: 2/13, 34060 Eyup-Istanbul, Turkey.

E-mail: sbabaei@edu.ikiu.ac.ir
E-mail: shpayrovi@sci.ikiu.ac.ir
E-mail: esra.sengelen@bilgi.edu.tr

Abstract. Let R be a commutative ring with identity and M be an R-module. The zero divisor graph of M is denoted by $\Gamma(M)$. In this study, we are going to generalize the zero divisor graph $\Gamma(M)$ to submodule-based zero divisor graph $\Gamma(M, N)$ by replacing elements whose product is zero with elements whose product is in some submodule N of M. The main objective of this paper is to study the interplay of the properties of submodule N and the properties of $\Gamma(M, N)$.

Keywords: Zero divisor graph, Submodule-based zero divisor graph, Semisimple module.

1. Introduction

Let R be a commutative ring with identity. The zero divisor graph of R, denoted $\Gamma(R)$, is an undirected graph whose vertices are the nonzero zero divisor of R with two distinct vertices x and y are adjacent by an edge if and only

∗Corresponding Author

Received 08 September 2016; Accepted 18 December 2016
©2019 Academic Center for Education, Culture and Research TMU
The idea of a zero divisor graph of a commutative ring was introduced by Beck in [3] where he was mainly interested with colorings of rings. The definition above first is appeared in [2], which contains several fundamental results concerning $\Gamma(R)$. The zero-divisor graph of a commutative ring is further examined by Anderson, Levy and Shapiro, Mulay in [1, 9]. Also, the ideal-based zero divisor graph of R is defined by Redmond, in [12].

The zero divisor graph for modules over commutative rings has been defined by Behboodi in [4] as a generalization of zero divisor graph of rings. Let R be a commutative ring and M be an R-module, for $x \in M$, we denote the annihilator of the factor module M/Rx by I_x. An element $x \in M$ is called a zero divisor, if either $x = 0$ or $I_xI_yM = 0$ for some $y \neq 0$ with $I_y \subset R$. The set of zero divisors of M is denoted by $Z(M)$ and the associated graph to M with vertices in $Z^*(M) = Z(M) \setminus \{0\}$ is denoted by $\Gamma(M)$, such that two different vertices x and y are adjacent provided $I_xI_yM = 0$.

In this paper, we introduce the submodule-based zero divisor graph that is a generalization of zero divisor graph for modules. Let R be a commutative ring, M be an R-module and N be a proper submodule of M. An element $x \in M$ is called zero divisor with respect to N, if either $x \in N$ or $I_xI_yM \subseteq N$ for some $y \in M \setminus N$ with $I_y \subset R$. We denote $Z(M, N)$ for the set of zero divisors of M with respect to N. Also, we denote the associated graph to M with vertices $Z^*(M, N) = Z(M, N) \setminus N$ by $\Gamma(M, N)$, and two different vertices x and y are adjacent provided $I_xI_yM \subseteq N$.

In the second section, we define a submodule-based zero divisor graph for a module and we study basic properties of this graph. In the third section, if M is a finitely generated semisimple R-module such that its homogenous components are simple and N is a submodule of M, we determine some relations between $\Gamma(M, N)$ and $\Gamma(M/N)$, where M/N is the quotient module of M, we show that the clique number and chromatic number of $\Gamma(M, N)$ are equal. Also, we determine some submodule of M such that $\Gamma(M, N)$ is an empty or a complete bipartite graph.

Let Γ be a (undirected) graph. We say that Γ is connected if there is a path between any two distinct vertices. For vertex x the number of graph edges which touch x is called the degree of x and is denoted by $\deg(x)$. For vertices x and y of Γ, we define $d(x, y)$ to be the length of a shortest path between x and y, if there is no path, then $d(x, y) = \infty$. The diameter of Γ is $\text{diam}(\Gamma) = \sup\{d(x, y)|x \text{ and } y \text{ are vertices of } \Gamma\}$. The girth of Γ, denoted by $\text{gr}(\Gamma)$, is the length of a shortest cycle in Γ ($\text{gr}(\Gamma) = \infty$ if Γ contains no cycle).

A graph Γ is complete if any two distinct vertices are adjacent. The complete graph with n vertices is denoted by K^n (we allow n to be an infinite cardinal). The clique number, $\omega(\Gamma)$, is the greatest integer $n > 1$ such that $K^n \subseteq \Gamma$, and $\omega(\Gamma) = \infty$ if $K^n \subseteq \Gamma$ for all $n \geq 1$. A complete bipartite graph is a graph Γ which may be partitioned into two disjoint nonempty vertex sets V_1 and V_2.
such that two distinct vertices are adjacent if and only if they are in different vertex sets. If one of the vertex sets is a singleton, then we call that Γ is a star graph. We denote the complete bipartite graph by $K^{m,n}$, where $|V_1| = m$ and $|V_2| = n$ (again, we allow m and n to be infinite cardinals); so a star graph is $K^{1,n}$, for some $n \in \mathbb{N}$.

The chromatic number, $\chi(\Gamma)$, of a graph Γ is the minimum number of colors needed to color the vertices of Γ, so that no two adjacent vertices share the same color. A graph Γ is called planar if it can be drawn in such a way that no two edges intersect.

Throughout this study, R is a commutative ring with nonzero identity, M is a unitary R-module and N is a proper submodule of M. Given any subset S of M, the annihilator of S is denoted by $\text{ann}(S) = \{r \in R | rs = 0 \text{ for all } s \in S\}$ and the cardinal number of S is denoted by $|S|$.

2. Submodule-based Zero Divisor Graph

Recall that R is a commutative ring, M is an R-module and N is a proper submodule of M. For $x \in M$, we denote $\text{ann}(M/Rx)$ by I_x.

Definition 2.1. Let M be an R-module and N be a proper submodule of M. An $x \in M$ is called a zero divisor with respect to N if $x \in N$ or $I_xI_yM \subseteq N$ for some $y \in M \setminus N$ with $I_y \subseteq R$.

We denote the set of zero divisors of M with respect to N by $Z(M,N)$ and $Z^*(M,N) = Z(M,N) \setminus N$. The submodule-based zero divisor graph of M with respect to N, $\Gamma(M,N)$, is an undirected graph with vertices $Z^*(M,N)$ such that distinct vertices x and y are adjacent if and only if $I_xI_yM \subseteq N$.

The following example shows that $Z(M/N)$ and $Z(M,N)$ are different from each other.

Example 2.2. Let $M = \mathbb{Z} \oplus \mathbb{Z}$ and $N = 2\mathbb{Z} \oplus 0$. Then $I_{(m,n)} = 0$, for all $(m,n) \in \mathbb{Z} \oplus \mathbb{Z}$. But $I_{(m,n) + N} = 2n\mathbb{Z}$ whenever $m \in 2\mathbb{Z}$ and $I_{(m,n) + N} = 2\mathbb{Z}$ whenever $m \not\in 2\mathbb{Z}$. Thus $(1,0), (1,1) \in Z^*(M,N)$ are adjacent in $\Gamma(M,N)$, but $(1,0) + N, (1,1) + N \not\in Z^*(M/N)$.

Proposition 2.3. If $Z^*(M,N) = \emptyset$, then $\text{ann}(M/N)$ is a prime ideal of R.

Proof. Suppose that $\text{ann}(M/N)$ is not prime. Then there are ideals I and J of R such that $IJM \subset N$ but $IM \not\subset N$ and $JM \not\subset N$. Let $x \in IM \setminus N$ and $y \in JM \setminus N$. Then $I_xJ_yM \subseteq IJM \subseteq N$ and $I_y \subseteq R$. Thus $x \in Z^*(M,N)$, a contradiction. Hence, $\text{ann}(M/N)$ is a prime ideal of R. \qed

Lemma 2.4. Let $x, y \in Z^*(M,N)$. If $x - y$ is an edge in $\Gamma(M,N)$, then for each $0 \neq r \in R$, either $ry \in N$ or $x - ry$ is also an edge in $\Gamma(M,N)$.

Proof. Let $x, y \in Z^*(M,N)$ and $r \in R$. Assume that $x - y$ is an edge in $\Gamma(M,N)$ and $ry \not\in N$. Then $I_xI_yM \subseteq N$. It is clear that $I_{rx} \subseteq I_x$. So that $I_xI_{ry}M \subseteq I_xI_yM \subseteq N$ and therefore, $x - ry$ is an edge in $\Gamma(M,N)$. \qed
It is shown that the graphs are defined in [12] and [4], are connected with diameter less than or equal to three. Moreover, it shown that if those graphs contain a cycle, then they have the girth less than or equal to four. In the next theorems, we extend these results to a submodule-based zero divisor graph.

Theorem 2.5. $\Gamma(M, N)$ is a connected graph and $\text{diam}(\Gamma(M, N)) \leq 3$.

Proof. Let x and y be distinct vertices of $\Gamma(M, N)$. Then, there are $a, b \in Z^*(M, N)$ with $I_aI_xM \subseteq N$ and $I_yI_bM \subseteq N$ (we allow $a, b \in \{x, y\}$). If $I_aI_bM \subseteq N$, then $x - a - b - y$ is a path, thus $d(x, y) \leq 3$. If $I_aI_bM \not\subseteq N$, then $Ra \cap Rb \not\subseteq N$, and for every $d \in (Ra \cap Rb) \setminus N$, $x - d - y$ is a path of length 2, $d(x, y) \leq 2$, by Lemma 2.4. Hence, we conclude that $\text{diam}(\Gamma(M, N)) \leq 3$. □

Theorem 2.6. If $\Gamma(M, N)$ contains a cycle, then $\text{gr}(\Gamma(M, N)) \leq 4$.

Proof. We have $\text{gr}(\Gamma(M, N)) \leq 7$, by Proposition 1.3.2 in [7] and Theorem 2.5. Assume that $x_1 - x_2 - \cdots - x_7 - x_1$ is a cycle in $\Gamma(M, N)$. If $x_1 = x_4$ then it is clear that $\text{gr}(\Gamma(M, N)) \leq 3$. So, suppose that $x_1 \neq x_4$. Then we have the following two cases:

Case 1. If x_1 and x_4 are adjacent in $\Gamma(M, N)$, then $x_1 - x_2 - x_3 - x_4 - x_1$ is a cycle and $\text{gr}(\Gamma(M, N)) \leq 4$.

Case 2. Suppose that x_1 and x_4 are not adjacent in $\Gamma(M, N)$. Then $I_{x_1}I_{x_4}M \not\subseteq N$ and so there is a $z \in (Rx_1 \cap Rx_4) \setminus N$. If $z = x_1$, then $z \neq x_4$ and $x_1 - x_2 - z - x_7 - x_1$ is a cycle in $\Gamma(M, N)$, by Lemma 2.4. If $z \neq x_1$, then by Lemma 2.4, $x_1 - x_2 - z - x_7 - x_1$ is a cycle and $\text{gr}(\Gamma(M, N)) \leq 4$.

For cycles with length 5 or 6, by using a similar argument as above, one can shows that $\text{gr}(\Gamma(M, N)) \leq 4$. □

Example 2.7. Assume that $M = \mathbb{Z}$ and p, q are two prime numbers. If $N = p\mathbb{Z}$, then $\Gamma(M, N) = \emptyset$. If $N = pq\mathbb{Z}$, then $\Gamma(M, N)$ is an infinite complete bipartite graph with vertex set $V_1 \cup V_2$, where $V_1 = p\mathbb{Z} \setminus pq\mathbb{Z}$ and $V_2 = q\mathbb{Z} \setminus pq\mathbb{Z}$ and so $\text{gr}(\Gamma(M, N)) = 4$.

Corollary 2.8. If N is a prime submodule of M, then $\text{diam}(\Gamma(M, N)) \leq 2$ and $\text{gr}(\Gamma(M, N)) = 3$, whenever it contains a cycle.

Proof. Let x, y be two distinct vertices which are not adjacent in $\Gamma(M, N)$. Thus there is an $a \in M \setminus N$ such that $I_aI_xM \subseteq N$. Since N is a prime submodule, then $I_aM \subseteq N$. Thus $I_aI_bM \subseteq N$, and then $x - a - y$ is a path in $\Gamma(M, N)$. Then $\text{diam}(\Gamma(M, N)) \leq 2$. □

Lemma 2.9. Let $|\Gamma(M, N)| \geq 3$, $\text{gr}(\Gamma(M, N)) = \infty$ and $x \in Z^*(M, N)$ with $\text{deg}(x) > 1$. Then $Rx = \{0, x\}$ and $\text{ann}(x)$ is a prime ideal of R.

Proof. First we show that $Rx = \{0, x\}$. Let $u - x - v$ be a path in $\Gamma(M, N)$. Then $u - v$ is not an edge in $\Gamma(M, N)$ since $\text{gr}(\Gamma(M, N)) = \infty$. If $x \neq rx$ for some $r \in R$ and $rx \not\in N$, then by Lemma 2.4, $rx - u - x - v - rx$ is a cycle in
Γ(M, N), that is a contradiction. So, for every r ∈ R either rx = x or rx ∈ N. If there is an r ∈ R such that rx ∈ N, then we have either (1 + r)x ∈ N or (1 + r)x = x. These imply that x ∈ N or rx = 0. Therefore, we have shown that Rx = {0, x}.

Let a, b ∈ R and abx = 0. Then bx = 0 or bx = x. Hence, bx = 0 or ax = 0. So, ann(x) is a prime ideal of R.

□

Theorem 2.10. If N is a nonzero submodule of M and gr(Γ(M, N)) = ∞, then Γ(M, N) is a star graph.

Proof. Suppose that Γ(M, N) is not a star graph. Then there is a path in Γ(M, N) such as u − x − y − v. By Lemma 2.9, we have Rv = {0, y} and by assumption u and y are not adjacent, thus Iy M ≠ 0. So that Iy M = Ry. Also, x − y − v is a path, thus Ix Iy M ⊆ N and Ix Iy M ⊆ N. Hence, Iy Ry ⊆ N and Ix Ry ⊆ N. On the other hand, for every nonzero n ∈ N, we have

Iu Iy+n M ⊆ Iu Rx(y+n) ⊆ Iu(Ry+n) ⊆ N

and similarly Iy Ix+n M ⊆ N. So that x − y − v − (y + n) − x is a cycle in Γ(M, N), a contradiction. Therefore, Γ(M, N) is a star graph. □

Theorem 2.11. Let N be a nonzero submodule of M, |Γ(M, N)| ≥ 3 and Γ(M, N) is a star graph. Then the following statements are true:

(i) If x is the center vertex, then Ix = ann(M).

(ii) Γ(M, N) is a subgraph of Γ(M).

Proof. (i) By Lemma 2.9, we have Rx = {0, x}. Thus either Ix M = 0 or Ix M = Rx. Assume that Ix M = Rx. If y is a vertex of Γ(M, N) such that y ≠ x, then deg(y) = 1 and Ix Iy M ⊆ N. Thus Iy Rx ⊆ N. Since Ix+n Iy M ⊆ Iy Rx(x+n) ⊆ N for every nonzero element n ∈ N it concludes that y = x + n. In this case, every other vertices of Γ(M, N) are adjacent to y, a contradiction. Hence, Ix M = 0 and Ix = ann(M).

(ii) It is obvious. □

Theorem 2.12. If |N| ≥ 3 and Γ(M, N) is a complete bipartite graph which is not a star graph, then Ix2 M ⊆ N, for every x ∈ Z∗(M, N).

Proof. Let Z∗(M, N) = V1 ∪ V2, where V1 ∩ V2 = ∅. Suppose that Ix2 M ⊆ N for some x ∈ Z∗(M, N). Without loss of generality, we can assume that x ∈ V1. By a similar argument with Lemma 2.9, either Rx = {0, x} or there is an r ∈ R such that x ≠ rx and rx ∈ N. If Rx = {0, x}, then Ix M = Rx. Thus Ix Rx ⊆ N. Now, for every y ∈ V2 and n ∈ N we get

Iy Ix+n M ⊆ Iy Rx(x+n) ⊆ Iy(Rx+N) ⊆ N

and Ix Ix+n M ⊆ N. Then, x + n ∈ V1 ∩ V2, a contradiction. So, assume that x ≠ rx and rx ∈ N for some r ∈ R. Since Irx+x ⊆ Ix, then Ix Irx+x M ⊆ N and for all y ∈ V2, Iy Irx+x M ⊆ N. Thus rx+x ∈ V1 ∩ V2, a contradiction. □
An R-module X is called a multiplication-like module if, for each nonzero submodule Y of X, $\text{ann}(X) \subset \text{ann}(X/Y)$. Multiplication-like module have been studied in [8, 13].

A vertex x of a connected graph G is a cut-point, if there are vertices u, v of G such that x is in every path from u to v and $x \neq u, x \neq v$. For a connected graph G, an edge E of G is defined to be a bridge if $G - \{E\}$ is disconnected, see [6].

Theorem 2.13. Let M be a multiplication-like module and N be a nonzero submodule of M. Then $\Gamma(M, N)$ has no cut-points.

Proof. Suppose that x is a cut-point of $\Gamma(M, N)$. Then there exist vertices $u, v \in M \setminus N$ such that x lies on every path from u to v. By Theorem 2.5, the shortest path from u to v has length 2 or 3.

Case 1. Suppose that $u-x-v$ is a path of shortest length from u to v. Since x is a cut point, u, v aren’t in a cycle. By a similar argument to that of Lemma 2.9, we have $Rx = \{0, x\}$. On the other hand, $I_x M \subseteq Rx$ and M is a multiplication-like module, so we have $I_x M = Rx$. Hence $I_x Rx \subseteq N$ and $I_x M \subseteq N$. Also, for every nonzero $u \in N$, we have $I_u I_{z+n} M \subseteq I_u (Rx + N) \subseteq N$ and $I_u I_{z+n} M \subseteq N$. Therefore, $u - (x + n) - v$ is a path from u to v, a contradiction.

Case 2. Suppose that $u-x-y-v$ is a path in $\Gamma(M, N)$. Then, we have $I_x M = Rx$ and for every nonzero $n \in N$, we have $I_y I_{z+n} M \subseteq N$ and $I_y I_{z+n} M \subseteq N$. Thus $u - (x + n) - y - v$ is a path from u to v, a contradiction. □

Theorem 2.14. Let M be a multiplication-like module and N be a nonzero submodule of M. Then $\Gamma(M, N)$ has a bridge if and only if $\Gamma(M, N)$ is a graph on two vertices.

Proof. If $|\Gamma(M, N)| = 3$, then $\Gamma(M, N) = K^3$, by Theorem 2.11, and it has no bridge. Assume that $|\Gamma(M, N)| \geq 4$ and $x - y$ is a bridge. Thus there is not a cycle containing $x - y$. Without loss of generality, we can assume that $\text{deg}(x) > 1$. Thus, there exists a vertex $z \neq y$ such that $z - x$ is an edge of $\Gamma(M, N)$. Then $Rx = \{0, x\}$ and $I_x M = Rx$. Hence, for every $n \in N$, $I_z I_{z+n} M \subseteq N$ and $I_y I_{z+n} M \subseteq N$, a contradiction. Therefore, $\Gamma(M, N)$ has not a bridge. The converse is clear. □

3. **Submodule-based Zero Divisor Graph of Semisimple Modules**

A nonzero R-module X is called simple if its only submodules are (0) and X. An R-module X is called semisimple if it is a direct sum of simple modules. Also, X is called homogenous semisimple if it is a direct sum of isomorphic simple modules.

In this section, R is a commutative ring and M is a finitely generated semisimple R-module such that its homogenous components are simple and
N is a submodule of M. The following theorem has a crucial role in this section.

Theorem 3.1. Let $x, y \in M \setminus N$. Then x, y are adjacent in $\Gamma(M, N)$ if and only if $Rx \cap Ry \subseteq N$.

Proof. Let $M = \bigoplus_{i \in I} M_i$, where M_i’s are non-isomorphic simple submodules of M. By assumption N is a submodule of M, so there exists a subset A of I such that $M = N \oplus \left(\bigoplus_{i \in A} M_i \right)$ and so $\text{ann}(M/N) = \text{ann}(\bigoplus_{i \in A} M_i) = \bigcap_{i \in A} \text{ann}(M_i)$. Assume that $x, y \in M \setminus N$ are adjacent in $\Gamma(M, N)$ and $Rx \cap Ry \not\subseteq N$. Thus there exists $\alpha \in I$ such that $M_\alpha \subseteq (Rx \cap Ry) \setminus N$. Also, there exist subsets $B \subseteq I$ and $C \subseteq I$ such that $M = Rx \oplus \left(\bigoplus_{i \in B} M_i \right)$ and $M = Ry \oplus \left(\bigoplus_{i \in C} M_i \right)$. Therefore, $I_x = \bigcap_{i \in B} \text{ann}(M_i)$ and $I_y = \bigcap_{i \in C} \text{ann}(M_i)$. Since $I_x I_y M \subseteq N$, we have $I_x I_y \subseteq \text{ann}(M/N)$. For every $i, j \in I$, $\text{ann}(M_i)$ and $\text{ann}(M_j)$ are coprime, then

$$I_x I_y = \left(\bigcap_{i \in B} \text{ann}(M_i) \right) \left(\bigcap_{i \in C} \text{ann}(M_i) \right) = \prod_{i \in B \cup C} \text{ann}(M_i) \subseteq \bigcap_{i \in A} \text{ann}(M_i) \subseteq \text{ann}(M_r),$$

for all $r \in A$. Thus for any $r \in A$ there exists $j_r \in B \cup C$ such that $\text{ann}(M_{j_r}) \subseteq \text{ann}(M_r)$. So that $\text{ann}(M_{j_r}) = \text{ann}(M_r)$ implies that $M_{j_r} \cong M_r$. Hence, $M_\alpha \subseteq \bigoplus_{i \in A} M_i \subseteq \bigoplus_{j \in B \cup C} M_j$.

Thus there exists $\gamma \in B \cup C$ such that $M_\alpha = M_\gamma$, also

$$M_\alpha \subseteq Rx \cap Ry = \left(\bigoplus_{i \in I \setminus \gamma} M_i \right) \cap \left(\bigoplus_{i \in \gamma} M_i \right).$$

Therefore, $\alpha \in I \setminus (B \cup C)$, a contradiction. The converse is obvious. \square

Corollary 3.2. Let $x, y \in M \setminus N$ be such that $x + N \neq y + N$. Then

(i) x and y are adjacent in $\Gamma(M, N)$ if and only if $x + N$ and $y + N$ are adjacent in $\Gamma(M/N)$.

(ii) if x and y are adjacent in $\Gamma(M, N)$, then all distinct elements of $x + N$ and $y + N$ are adjacent in $\Gamma(M, N)$.

Proof. (i) Let $M = \bigoplus_{i \in I} M_i$, where M_i’s are non-isomorphic simple submodules of M. Suppose that x and y are adjacent in $\Gamma(M, N)$, $Rx = \bigoplus_{i \in A} M_i$, $Ry = \bigoplus_{i \in B} M_i$ and $N = \bigoplus_{i \in C} M_i$. Then $Rx + N = \bigoplus_{i \in A \cup C} M_i$ and $Ry + N = \bigoplus_{i \in B \cup C} M_i$. Thus,

$$(Rx + N) \cap (Ry + N) = \bigoplus_{i \in (A \cup C) \cap (B \cup C)} M_i = \bigoplus_{i \in (A \cap B) \cup C} M_i = (Rx \cap Ry) + N.$$

By Theorem 3.1, we have $Rx \cap Ry \subseteq N$ hence,

$$I_x + I_y + NM \subseteq (Rx + N) \cap (Ry + N) = (Rx \cap Ry) + N = N.$$
Therefore, \(x + N \) and \(y + N \) are adjacent in \(\Gamma(M/N) \). The converse is obvious.

(ii) Let \(x, y \in Z^*(M, N) \) be adjacent in \(\Gamma(M, N) \). Then \(Rx \cap Ry \subseteq N \) by Theorem 3.1. So for every \(n, n' \in N \) we have

\[
I_{x+n} I_{y+n'} M \subseteq R(x+n) \cap R(y+n') \subseteq (Rx+N) \cap (Ry+N) = N.
\]

Hence, \(x + n \) and \(y + n' \) are adjacent in \(\Gamma(M, N) \).

In the following theorem, we prove that the clique number of graphs \(\Gamma(M, N) \) and \(\Gamma(M/N) \) are equal.

Theorem 3.3. If \(N \) is a nonzero submodule of \(M \), then \(\omega(\Gamma(M/N)) = \omega(\Gamma(M, N)) \).

Proof. First we show that \(I_{m+n}^2 M \not\subseteq N \) for each \(0 \neq m + n \in M/N \).

Assume that \(N = \oplus_{i \in A} M_i \) and \(m = (m_i)_{i \in I} \in M \setminus N \). Then \(I_{m+n} = \bigcap_{i \notin A, m_i = 0} \text{ann}(M_i) \). Hence, \(I_{m+n} = I_{m+n}^2 \). Thus \(I_{m+n}^2 M \notsubseteq N \) since there is at least one \(j \in I \setminus A \) such that \(m_j \neq 0 \).

Now, Corollary 3.2 implies that \(\omega(\Gamma(M/N)) \leq \omega(\Gamma(M, N)) \). Thus, it is enough to consider the case where \(\omega(\Gamma(M/N)) = d < \infty \). Assume that \(G \) is a complete subgraph of \(\Gamma(M, N) \) with vertices \(m_1, m_2, \ldots, m_{d+1} \), we provide a contradiction. Consider the subgraph \(G_* \) of \(\Gamma(M/N) \) with vertices \(m_1, m_2, \ldots, m_{d+1} + N \). By Corollary 3.2, \(G_* \) is a complete subgraph of \(\Gamma(M, N) \). Thus \(m_j + N = m_k + N \) for some \(1 \leq j, k \leq d+1 \) with \(j \neq k \) since \(\omega(\Gamma(M/N)) = d \). We have \(I_{m_j} I_{m_k} M \subseteq N \). Therefore, \(Rm_j \cap Rm_k \subseteq N \) and so \(I_{m_j} + I_{m_k} + N M \subseteq N \). Hence, \(I_{m_j}^2 + N M \subseteq N \), that is a contradiction.

In the following theorem, we show that there is a relation between \(\omega(\Gamma(M, N)) \) and \(\chi(\Gamma(M, N)) \).

Theorem 3.4. Assume that \(M = \bigoplus_{i \in I} M_i \), where \(M_i \)’s are non-isomorphic simple submodules of \(M \) and \(N = \bigoplus_{i \in A} M_i \) is a submodule of \(M \) for some \(A \subset I \). Then \(\omega(\Gamma(M/N)) = \chi(\Gamma(M, N)) = |I| - |A| \).

Proof. Suppose that \(I \setminus A = \{1, \cdots, n\} \) so \(M_1, \cdots, M_n \notsubseteq N \). Let for \(1 \leq k \leq n-1 \)

\[
L^k = \{m \in M : m \text{ has } k \text{ nonzero components}\}
\]

and let for \(1 \leq s \leq n \)

\[
L^s = \{m \in L^1 : \text{the } s^{th} \text{ component of } m \text{ is nonzero}\}.
\]

If \(m \in L^1 \) and \(m' \in L^1 \) for some \(1 \leq s, t \leq n \) with \(s \neq t \), then \(m \) and \(m' \) are adjacent and so \(K^n \) is a subgraph of \(\Gamma(M, N) \). Thus \(\omega(\Gamma(M/N)) \geq n \).

If \(m, m' \in L^s \) for some \(1 \leq s \leq n \), then \(m, m' \) are not adjacent because \(\text{ann}(M_s) \not\subseteq I_{m}I_{m'} \) and so the elements of \(L^s \) have same color. On the other hand, if \(x \in L^t \) with \(t > 1 \), then there is not a complete subgraph \(K^b \) of \(\Gamma(M, N) \) containing \(x \), such that \(b \geq n \). Thus \(\omega(\Gamma(M, N)) = n \leq \chi(\Gamma(M, N)) \).

Also, if \(x \in L^t \) with \(t > 1 \), then there is an \(s \) with \(1 \leq s \leq n \) such that \(x \) is not
The Kuartowski’s Theorem states: A graph G is planar if and only if it contains no subgraph homeomorphic to K^5 or $K^{3,3}$.

Theorem 3.5. Let N be a nonzero proper submodule of M such that N is not prime. Then $\Gamma(M, N)$ is not planar.

Proof. Assume that $M = \bigoplus_{i \in I} M_i$, where M_i’s are non-isomorphic simple submodules of M and $N = \bigoplus_{i \in A} M_i$ for some $A \subseteq I$. Let $I \setminus A = \{i, j\}$. Then $\Gamma(M, N)$ is a complete bipartite graph $K^{n, m}$, where $n = (|M_i| - 1)(\prod_{k \in I \setminus \{i, j\}} |M_k|)$ and $m = (|M_j| - 1)(\prod_{k \in I \setminus \{i, j\}} |M_k|)$. By hypotheses N is a nonzero and M_i’s are non-isomorphic, so we have $n, m \geq 3$. Hence $\Gamma(M, N)$ has a subgraph homeomorphic to $K^{3,3}$. The cases $|I \setminus A| \geq 3$ are similar to that of the case $|I \setminus A| = 2$. □

Theorem 3.6. A nonzero submodule N of M is prime if and only if $Z^*(M, N) = \emptyset$.

Proof. Let $M = \bigoplus_{i \in I} M_i$, where M_i’s are non-isomorphic simple submodules of M and N is prime. Then $N = \bigoplus_{i \in \Gamma \setminus \{k\}} M_i$, for some $k \in I$. If $x \in Z^*(M, N)$, then there exists a $y \in M \setminus N$ such that $I_x I_y M \subseteq N$. If $x \neq y$, then $Rx \cap Ry \subseteq N$, by Theorem 3.1. Thus either $M_k \not\subseteq Rx$ or $M_k \not\subseteq Ry$. Hence, either $Rx \subseteq N$ or $Ry \subseteq N$, a contradiction. Now, suppose that $x = y$ so by $I_x^2 M \subseteq N$ and hypotheses $I_x M \subseteq N$. Thus $I_x I_{x+n} M \subseteq N$ for every $0 \neq n \in N$. By a similar argument, we have either $x \in N$ or $x + n \in N$, a contradiction. Hence, $Z^*(M, N) = \emptyset$.

Conversely, assume that $Z^*(M, N) = \emptyset$. Then $\text{ann}(M/N)$ is prime ideal of R by Proposition 2.3 and there exists a $k \in I$ such that $\text{ann}(M/N) = \text{ann}(M_k)$. Hence, $N = \bigoplus_{i \in \Gamma \setminus \{k\}} M_i$ is a prime submodule of M. □

A proper submodule N of M is called 2-absorbing if whenever $a, b \in R$, $m \in M$ and $am \in N$, then $am \in N$ or $bm \in N$ or $ab \in \text{ann}(M/N)$, see [10, 11]. In the following results, we study the behavior of $\Gamma(M, N)$ whenever N is a 2-absorbing submodule of M.

Theorem 3.7. A submodule N of M is 2-absorbing if and only if at most two components of M are zero in N.

Proof. Let $M = \bigoplus_{i \in I} M_i$, where M_i’s are non-isomorphic simple submodules of M. Suppose that N is a 2-absorbing submodule of M and $N = \bigoplus_{i \in A} M_i$, where $A = I \setminus \{s, t, k\}$. Since for all $i \in I$, $\text{ann}(M_i)$ is prime, there are $a \in \text{ann}(M_s) \setminus (\text{ann}(M_t) \cup \text{ann}(M_k))$, $b \in \text{ann}(M_t) \setminus (\text{ann}(M_s) \cup \text{ann}(M_k))$ and $c \in \bigcap_{i \in A \setminus \{s,t\}} \text{ann}(M_i) \setminus (\text{ann}(M_s) \cup \text{ann}(M_t))$. Now, $abc \in \text{ann}(M/N)$ but $ab \not\in \text{ann}(M/N)$, $ac \not\in \text{ann}(M/N)$ and $bc \not\in \text{ann}(M/N)$. This contradicts with
Theorem 2.3 in [10]. Thus \(|A| \geq |I| - 2\) and at most two components of \(M\) are zero in \(N\).

Conversely, if one component of \(M\) is zero in \(N\), then \(N\) is a prime submodule of \(M\). Suppose that \(N = \bigoplus_{A \in A} M_i\), where \(A = I \setminus \{i, j\}\). Thus \(M_i, M_j \not\subseteq N\).

Suppose that \(a, b \in R, (m_i)_{i \in I} = (m) \in M \setminus N\) and \(abm \in N\). Then either \(m_i \neq 0\) or \(m_j \neq 0\). If \(m_i \neq 0\) and \(m_j \neq 0\), then \(ab \in \text{ann}(M_i) \cap \text{ann}(M_j) = \text{ann}(M/N)\). If \(m_i \neq 0\) and \(m_j = 0\), then \(ab \in \text{ann}(M_i)\) and so either \(a \in \text{ann}(M_i)\) or \(b \in \text{ann}(M_i)\). Hence, \(am \in N\) or \(bm \in N\). The case \(m_i = 0\) and \(m_j \neq 0\), is similar to the previous case. Therefore, \(N\) is a 2-absorbing submodule of \(M\).

\[\square\]

Theorem 3.8. \(N\) is a 2-absorbing submodule of \(M\) if and only if \(Z^*(M, N) = \emptyset\) or \(\Gamma(M, N)\) is a complete bipartite graph.

Proof. Let \(N\) be a 2-absorbing submodule of \(M\). If \(N\) is prime, then \(Z^*(M, N) = \emptyset\), by Theorem 3.6. Now, assume that \(N = \bigoplus_{i \in I \setminus \{j, k\}} M_i\) for some \(j, k \in I\) and \((m_i)_{i \in I} = (m) \in M \setminus N\). Thus \(I_m = \bigcap_{\{i \in I : m_i = 0\}} \text{ann}(M_i)\). If \(m_j \neq 0\) and \(m_k \neq 0\), then \(m \not\in Z(M, N)\). Let \(V_1 = \{(m_i)_{i \in I} \in M \setminus N : m_j = 0\}\) and \(V_2 = \{(m_i)_{i \in I} \in M \setminus N : m_k = 0\}\). Thus \(m - m'\) is an edge of \(\Gamma(M, N)\) for every \(m \in V_1\) and \(m' \in V_2\). Also, every vertices in \(V_1\) and \(V_2\) are not adjacent. Hence, \(\Gamma(M, N)\) is a complete bipartite graph.

Now, suppose that \(\Gamma(M, N)\) is a complete bipartite graph and \(N\) is not 2-absorbing. By Theorem 3.7, there are at least three components \(M_s, M_t, M_k\) such that \(M_s, M_t, M_k \not\subseteq N\). For \(i = s, t, k\) let \(v_i = (m_i)_{i \in I}\), where \(m_i \neq 0\) and \(m_j = 0\) for all \(j \neq i\). Then \(v_s - v_t - v_k - v_s\) is a cycle in \(\Gamma(M, N)\). Thus \(\text{gr}(\Gamma(M, N)) = 3\) and so \(\Gamma(M, N)\) is not bipartite graph, by Theorem 1 of Sec. 1.2 in [5]. Hence, \(N\) is a 2-absorbing submodule of \(M\). \[\square\]

Example 3.9. Let \(M = \mathbb{Z}_2 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_7\). Then every nonzero submodule \(N\) of \(M\) is 2-absorbing. Thus either \(Z^*(M, N) = \emptyset\) or \(\Gamma(M, N)\) is a complete bipartite graph. In particular, if \(N = \mathbb{Z}_7\), then \(\Gamma(M, N) = K^7, 28\).

Acknowledgments

The author is thankful of referees for their valuable comments.

References

