A Submodule-Based Zero Divisor Graph for Modules

Sakineh Babaei\(^a\), Shiroyeh Payrovi\(^*\), Esra Sengelen Sevim\(^b\)

\(^a\)Department of Mathematics, Imam Khomeini International University, Postal Code: 34149-1-6818, Qazvin, Iran.
\(^b\)Department of Mathematics, Istanbul Bilgi University, Kazim Karabekir Cad. No: 2/13, 34060 Eyup-Istanbul, Turkey.

E-mail: sbabaei@edu.ikiu.ac.ir
E-mail: shpayrovi@sci.ikiu.ac.ir
E-mail: esra.sengelen@bilgi.edu.tr

Abstract. Let \(R \) be a commutative ring with identity and \(M \) be an \(R \)-module. The zero divisor graph of \(M \) is denoted by \(\Gamma(M) \). In this study, we are going to generalize the zero divisor graph \(\Gamma(M) \) to submodule-based zero divisor graph \(\Gamma(M, N) \) by replacing elements whose product is zero with elements whose product is in some submodule \(N \) of \(M \). The main objective of this paper is to study the interplay of the properties of submodule \(N \) and the properties of \(\Gamma(M, N) \).

Keywords: Zero divisor graph, Submodule-based zero divisor graph, Semisimple module.

1. Introduction

Let \(R \) be a commutative ring with identity. The zero divisor graph of \(R \), denoted \(\Gamma(R) \), is an undirected graph whose vertices are the nonzero zero divisor of \(R \) with two distinct vertices \(x \) and \(y \) are adjacent by an edge if and only if

\[xy = 0 \]
if $xy = 0$. The idea of a zero divisor graph of a commutative ring was introduced by Beck in [3] where he was mainly interested with colorings of rings. The definition above first is appeared in [2], which contains several fundamental results concerning $\Gamma(R)$. The zero-divisor graph of a commutative ring is further examined by Anderson, Levy and Shapiro, Mulay in [1, 9]. Also, the ideal-based zero divisor graph of R is defined by Redmond, in [12].

The zero divisor graph for modules over commutative rings has been defined by Behboodi in [4] as a generalization of zero divisor graph of rings. Let R be a commutative ring and M be an R-module, for $x \in M$, we denote the annihilator of the factor module M/Rx by I_x. An element $x \in M$ is called a zero divisor, if either $x = 0$ or $I_xI_yM = 0$ for some $y \neq 0$ with $I_y \subset R$. The set of zero divisors of M is denoted by $Z(M)$ and the associated graph to M with vertices in $Z^*(M) = Z(M) \setminus \{0\}$ is denoted by $\Gamma(M)$, such that two different vertices x and y are adjacent provided $I_xI_yM = 0$.

In this paper, we introduce the submodule-based zero divisor graph that is a generalization of zero divisor graph for modules. Let R be a commutative ring, M be an R-module and N be a proper submodule of M. An element $x \in M$ is called zero divisor with respect to N, if either $x \in N$ or $I_xI_yM \subseteq N$ for some $y \in M \setminus N$ with $I_y \subset R$. We denote $Z(M, N)$ for the set of zero divisors of M with respect to N. Also, we denote the associated graph to M with vertices $Z^*(M, N) = Z(M, N) \setminus N$ by $\Gamma(M, N)$, and two different vertices x and y are adjacent provided $I_xI_yM \subseteq N$.

In the second section, we define a submodule-based zero divisor graph for a module and we study basic properties of this graph. In the third section, if M is a finitely generated semisimple R-module such that its homogenous components are simple and N is a submodule of M, we determine some relations between $\Gamma(M, N)$ and $\Gamma(M/N)$, where M/N is the quotient module of M, we show that the clique number and chromatic number of $\Gamma(M, N)$ are equal. Also, we determine some submodule of M such that $\Gamma(M, N)$ is an empty or a complete bipartite graph.

Let Γ be a (undirected) graph. We say that Γ is \textit{connected} if there is a path between any two distinct vertices. For vertex x the number of graph edges which touch x is called the degree of x and is denoted by $\deg(x)$. For vertices x and y of Γ, we define $d(x, y)$ to be the length of a shortest path between x and y, if there is no path, then $d(x, y) = \infty$. The \textit{diameter} of Γ is $\text{diam}(\Gamma) = \sup\{d(x, y) | x$ and y are vertices of $\Gamma\}$. The \textit{girth} of Γ, denoted by $\text{gr}(\Gamma)$, is the length of a shortest cycle in Γ ($\text{gr}(\Gamma) = \infty$ if Γ contains no cycle).

A graph Γ is \textit{complete} if any two distinct vertices are adjacent. The complete graph with n vertices is denoted by K^n (we allow n to be an infinite cardinal). The \textit{clique number}, $\omega(\Gamma)$, is the greatest integer $n > 1$ such that $K^n \subseteq \Gamma$, and $\omega(\Gamma) = \infty$ if $K^n \subseteq \Gamma$ for all $n \geq 1$. A \textit{complete bipartite} graph is a graph Γ which may be partitioned into two disjoint nonempty vertex sets V_1 and V_2.
A submodule-based zero divisor graphs for modules 149

such that two distinct vertices are adjacent if and only if they are in different
vertex sets. If one of the vertex sets is a singleton, then we call that Γ is a star
graph. We denote the complete bipartite graph by $K^{m,n}$, where $|V_1| = m$ and
$|V_2| = n$ (again, we allow m and n to be infinite cardinals); so a star graph is
$K^{1,n}$, for some $n \in \mathbb{N}$.

The chromatic number, $\chi(\Gamma)$, of a graph Γ is the minimum number of colors
needed to color the vertices of Γ, so that no two adjacent vertices share the
same color. A graph Γ is called planar if it can be drawn in such a way that
no two edges intersect.

Throughout this study, R is a commutative ring with nonzero identity, M is
a unitary R-module and N is a proper submodule of M. Given any subset S
of M, the annihilator of S is denoted by $\text{ann}(S) = \{r \in R | rs = 0$ for all $s \in S\}$
and the cardinal number of S is denoted by $|S|$.

2. Submodule-based Zero Divisor Graph

Recall that R is a commutative ring, M is an R-module and N is a proper
submodule of M. For $x \in M$, we denote $\text{ann}(M/Rx)$ by I_x.

Definition 2.1. Let M be an R-module and N be a proper submodule of M.
An $x \in M$ is called a zero divisor with respect to N if $x \in N$ or $I_x \neq 0$
for some $y \in M \setminus N$ with $I_y \subset R$.

We denote the set of zero divisors of M with respect to N by $Z(M,N)$
and $Z^*(M, N) = Z(M,N) \setminus N$. The submodule-based zero divisor graph of M
with respect to N, $\Gamma(M,N)$, is an undirected graph with vertices $Z^*(M,N)$
such that distinct vertices x and y are adjacent if and only if $I_x I_y M \subseteq N$.

The following example shows that $Z(M/N)$ and $Z(M,N)$ are different from each other.

Example 2.2. Let $M = \mathbb{Z} \oplus \mathbb{Z}$ and $N = 2\mathbb{Z} \oplus 0$. Then $I_{(m,n)} = 0$, for all
$(m,n) \in \mathbb{Z} \oplus \mathbb{Z}$. But $I_{(m,n)+N} = 2n\mathbb{Z}$ whenever $m \in 2\mathbb{Z}$ and $I_{(m,n)+N} = 2\mathbb{Z}$
whenever $m \notin 2\mathbb{Z}$. Thus $(1,0), (1,1) \in Z^*(M,N)$ are adjacent in $\Gamma(M,N)$, but
$(1,0) + N, (1,1) + N \notin Z^*(M/N)$.

Proposition 2.3. If $Z^*(M,N) = \emptyset$, then $\text{ann}(M/N)$ is a prime ideal of R.

Proof. Suppose that $\text{ann}(M/N)$ is not prime. Then there are ideals I and J
of R such that $IJM \subset N$ but $IM \nsubseteq N$ and $JM \nsubseteq N$. Let $x \in IM \setminus N$
and $y \in JM \setminus N$. Then $I_x I_y M \subseteq IJM \subseteq N$ and $I_y \subset R$. Thus $x \in Z^*(M,N)$, a
contradiction. Hence, $\text{ann}(M/N)$ is a prime ideal of R. □

Lemma 2.4. Let $x, y \in Z^*(M,N)$. If $x - y$ is an edge in $\Gamma(M,N)$, then for
each $0 \neq r \in R$, either $ry \in N$ or $x - ry$ is also an edge in $\Gamma(M,N)$.

Proof. Let $x, y \in Z^*(M,N)$ and $r \in R$. Assume that $x - y$ is an edge in $\Gamma(M,N)$
and $ry \notin N$. Then $I_x I_y M \subseteq N$. It is clear that $I_{rx} \subseteq I_x$. So that
$I_x I_y M \subseteq I_x I_y M \subseteq N$ and therefore, $x - ry$ is an edge in $\Gamma(M,N)$. □
It is shown that the graphs are defined in [12] and [4], are connected with diameter less than or equal to three. Moreover, it shown that if those graphs contain a cycle, then they have the girth less than or equal to four. In the next theorems, we extend these results to a submodule-based zero divisor graph.

Theorem 2.5. \(\Gamma(M, N) \) is a connected graph and \(\text{diam}(\Gamma(M, N)) \leq 3 \).

Proof. Let \(x \) and \(y \) be distinct vertices of \(\Gamma(M, N) \). Then, there are \(a, b \in Z^+(M, N) \) with \(I_aI_xM \subseteq N \) and \(I_yI_bM \subseteq N \) (we allow \(a, b \in \{x, y\} \)). If \(I_aI_bM \subseteq N \), then \(x - a - b - y \) is a path, thus \(d(x, y) \leq 3 \). If \(I_aI_bM \nsubseteq N \), then \(Ra \cap Rb \nsubseteq N \), and for every \(d \in (Ra \cap Rb) \setminus N \), \(x - d - y \) is a path of length 2, \(d(x, y) \leq 2 \), by Lemma 2.4. Hence, we conclude that \(\text{diam}(\Gamma(M, N)) \leq 3 \). \(\square \)

Theorem 2.6. If \(\Gamma(M, N) \) contains a cycle, then \(\text{gr}(\Gamma(M, N)) \leq 4 \).

Proof. We have \(\text{gr}(\Gamma(M, N)) = 7 \), by Proposition 1.3.2 in [7] and Theorem 2.5. Assume that \(x_1 - x_2 - \cdots - x_7 - x_1 \) is a cycle in \(\Gamma(M, N) \). If \(x_1 = x_4 \) then it is clear that \(\text{gr}(\Gamma(M, N)) \leq 3 \). So, suppose that \(x_1 \neq x_4 \). Then we have the following two cases:

Case 1. If \(x_1 \) and \(x_4 \) are adjacent in \(\Gamma(M, N) \), then \(x_1 - x_2 - x_3 - x_4 - x_1 \) is a cycle and \(\text{gr}(\Gamma(M, N)) \leq 4 \).

Case 2. Suppose that \(x_1 \) and \(x_4 \) are not adjacent in \(\Gamma(M, N) \). Then \(I_{x_1}I_{x_4}M \nsubseteq N \) and so there is a \(z \in (Rx_1 \cap Rx_4) \setminus N \). If \(z = x_1 \), then \(z \neq x_4 \) and \(x_3 - x_4 - x_3 - z - x_3 \) is a cycle in \(\Gamma(M, N) \), by Lemma 2.4. If \(z \neq x_1 \), then by Lemma 2.4, \(x_1 - x_2 - z - x_7 - x_1 \) is a cycle and \(\text{gr}(\Gamma(M, N)) \leq 4 \).

For cycles with length 5 or 6, by using a similar argument as above, one can shows that \(\text{gr}(\Gamma(M, N)) \leq 4 \). \(\square \)

Example 2.7. Assume that \(M = \mathbb{Z} \) and \(p, q \) are two prime numbers. If \(N = p\mathbb{Z} \), then \(\Gamma(M, N) = \emptyset \). If \(N = pq\mathbb{Z} \), then \(\Gamma(M, N) \) is an infinite complete bipartite graph with vertex set \(V_1 \cup V_2 \), where \(V_1 = p\mathbb{Z} \setminus pq\mathbb{Z} \) and \(V_2 = q\mathbb{Z} \setminus pq\mathbb{Z} \) and so \(\text{gr}(\Gamma(M, N)) = 4 \).

Corollary 2.8. If \(N \) is a prime submodule of \(M \), then \(\text{diam}(\Gamma(M, N)) \leq 2 \) and \(\text{gr}(\Gamma(M, N)) = 3 \), whenever it contains a cycle.

Proof. Let \(x, y \) be two distinct vertices which are not adjacent in \(\Gamma(M, N) \). Thus there is an \(a \in M \setminus N \) such that \(I_aI_xM \subseteq N \). Since \(N \) is a prime submoduule, then \(I_aM \subseteq N \). Thus \(I_aI_yM \subseteq N \), and then \(x - a - y \) is a path in \(\Gamma(M, N) \). Then \(\text{diam}(\Gamma(M, N)) \leq 2 \). \(\square \)

Lemma 2.9. Let \(|\Gamma(M, N)| \geq 3 \), \(\text{gr}(\Gamma(M, N)) = \infty \) and \(x \in Z^+(M, N) \) with \(\text{deg}(x) > 1 \). Then \(Rx = \{0, x\} \) and \(\text{ann}(x) \) is a prime ideal of \(R \).

Proof. First we show that \(Rx = \{0, x\} \). Let \(u - x - v \) be a path in \(\Gamma(M, N) \). Then \(u - v \) is not an edge in \(\Gamma(M, N) \) since \(\text{gr}(\Gamma(M, N)) = \infty \). If \(x \neq rx \) for some \(r \in R \) and \(rx \notin N \), then by Lemma 2.4, \(rx - u - x - v - rx \) is a cycle in
If there is an $r \in R$ such that $rx \in N$, then we have either $(1+r)x \in N$ or $(1+r)x = x$. These imply that $x \in N$ or $rx = 0$. Therefore, we have shown that $Rx = \{0,x\}$.

Let $a, b \in R$ and $abx = 0$. Then $bx = 0$ or $bx = x$. Hence, $bx = 0$ or $ax = 0$.

So, $\text{ann}(x)$ is a prime ideal of R. □

Theorem 2.10. If N is a nonzero submodule of M and $\text{gr}(\Gamma(M, N)) = \infty$, then $\Gamma(M, N)$ is a star graph.

Proof. Suppose that $\Gamma(M, N)$ is not a star graph. Then there is a path in $\Gamma(M, N)$ such as $u - x - y - v$. By Lemma 2.9, we have $Ry = \{0, y\}$ and by assumption u and y are not adjacent, thus $I_yM \neq 0$. So that $I_yM = Ry$. Also, $x - y - v$ is a path, thus $I_xI_yM \subseteq N$ and $I_xI_yM \subseteq N$. Hence, $I_xRy \subseteq N$ and $I_xRy \subseteq N$. On the other hand, for every nonzero $n \in N$, we have

$$I_x I_y + M \subseteq I_x (R(y+n) \subseteq I_x (Ry + N) \subseteq N$$

and similarly $I_x I_y + M \subseteq N$. So that $x - y - v - (y + n) - x$ is a cycle in $\Gamma(M, N)$, a contradiction. Therefore, $\Gamma(M, N)$ is a star graph. □

Theorem 2.11. Let N be a nonzero submodule of M, $|\Gamma(M, N)| \geq 3$ and $\Gamma(M, N)$ is a star graph. Then the following statements are true:

(i) If x is the center vertex, then $I_x = \text{ann}(M)$.

(ii) $\Gamma(M, N)$ is a subgraph of $\Gamma(M)$.

Proof. (i) By Lemma 2.9, we have $Rx = \{0,x\}$. Thus either $I_xM = 0$ or $I_xM = Rx$. Assume that $I_xM = Rx$. If y is a vertex of $\Gamma(M, N)$ such that $y \neq x$, then $\text{deg}(y) = 1$ and $I_xI_yM \subseteq N$. Thus $I_xRx \subseteq N$. Since $I_xI_y + M \subseteq I_xR(x+n) \subseteq N$ for every nonzero element $n \in N$ it concludes that $y = x + n$. In this case, every other vertices of $\Gamma(M, N)$ are adjacent to y, a contradiction. Hence, $I_xM = 0$ and $I_x = \text{ann}(M)$.

(ii) It is obvious. □

Theorem 2.12. If $|N| \geq 3$ and $\Gamma(M, N)$ is a complete bipartite graph which is not a star graph, then $I_x^2M \not\subseteq N$, for every $x \in Z^2(M, N)$.

Proof. Let $Z^2(M, N) = V_1 \cup V_2$, where $V_1 \cap V_2 = \emptyset$. Suppose that $I_x^2M \subseteq N$ for some $x \in Z^2(M, N)$. Without loss of generality, we can assume that $x \in V_1$.

By a similar argument with Lemma 2.9, either $Rx = \{0,x\}$ or there is an $r \in R$ such that $x \neq rx$ and $rx \in N$. If $Rx = \{0,x\}$, then $I_xM = Rx$. Thus $I_xRx \subseteq N$. Now, for every $y \in V_2$ and $n \in N$ we get

$$I_y I_x + M \subseteq I_y R(x+n) \subseteq I_y (Rx + N) \subseteq N$$

and $I_x I_y + M \subseteq N$. Then, $x + n \in V_1 \cap V_2$, a contradiction. So, assume that $x \neq rx$ and $rx \in N$ for some $r \in R$. Since $I_{rx+x} \subseteq I_x$, then $I_y I_{rx+x}M \subseteq N$ and for all $y \in V_2$, $I_y I_{rx+x}M \subseteq N$. Thus $rx+x \in V_1 \cap V_2$, a contradiction. □
An R-module X is called a multiplication-like module if, for each nonzero submodule Y of X, $\text{ann}(X) \subset \text{ann}(X/Y)$. Multiplication-like module have been studied in [8, 13].

A vertex x of a connected graph G is a cut-point, if there are vertices u, v of G such that x is in every path from u to v and $x \neq u, x \neq v$. For a connected graph G, an edge E of G is defined to be a bridge if $G - \{E\}$ is disconnected, see [6].

Theorem 2.13. Let M be a multiplication-like module and N be a nonzero submodule of M. Then $\Gamma(M, N)$ has no cut-points.

Proof. Suppose that x is a cut-point of $\Gamma(M, N)$. Then there exist vertices $u, v \in M \setminus N$ such that x lies on every path from u to v. By Theorem 2.5, the shortest path from u to v has length 2 or 3.

Case 1. Suppose that $u - x - v$ is a path of shortest length from u to v. Since x is a cut point, u, v aren’t in a cycle. By a similar argument to that of Lemma 2.9, we have $Rx = \{0, x\}$. On the other hand, $I_x M \subseteq Rx$ and M is a multiplication-like module, so we have $I_x M = Rx$. Hence $I_u Rx \subseteq N$ and $I_v Rx \subseteq N$. Also, for every nonzero $n \in N$, we have $I_u I_{x+n} M \subseteq I_u (Rx + N) \subseteq N$ and $I_v I_{x+n} M \subseteq N$. Therefore, $u - (x + n) - v$ is a path from u to v, a contradiction.

Case 2. Suppose that $u - x - y - v$ is a path in $\Gamma(M, N)$. Then, we have $I_x M = Rx$ and for every nonzero $n \in N$, we have $I_y I_{x+n} M \subseteq N$ and $I_u I_{x+n} M \subseteq N$. Thus $u - (x + n) - y - v$ is a path from u to v, a contradiction. □

Theorem 2.14. Let M be a multiplication-like module and N be a nonzero submodule of M. Then $\Gamma(M, N)$ has a bridge if and only if $\Gamma(M, N)$ is a graph on two vertices.

Proof. If $|\Gamma(M, N)| = 3$, then $\Gamma(M, N) = K^3$, by Theorem 2.11, and it has no bridge. Assume that $|\Gamma(M, N)| \geq 4$ and $x - y$ is a bridge. Thus there is not a cycle containing $x - y$. Without loss of generality, we can assume that $\text{deg}(x) > 1$. Thus, there exists a vertex $z \neq y$ such that $z - x$ is an edge of $\Gamma(M, N)$. Then $Rx = \{0, x\}$ and $I_x M = Rx$. Hence, for every $n \in N$, $I_z I_{x+n} M \subseteq N$ and $I_y I_{x+n} M \subseteq N$, a contradiction. Therefore, $\Gamma(M, N)$ has not a bridge. The converse is clear. □

3. **Submodule-based Zero Divisor Graph of Semisimple Modules**

A nonzero R-module X is called simple if its only submodules are (0) and X. An R-module X is called semisimple if it is a direct sum of simple modules. Also, X is called homogenous semisimple if it is a direct sum of isomorphic simple modules.

In this section, R is a commutative ring and M is a finitely generated semisimple R-module such that its homogenous components are simple and
N is a submodule of M. The following theorem has a crucial role in this section.

Theorem 3.1. Let \(x, y \in M \setminus N \). Then \(x, y \) are adjacent in \(\Gamma(M, N) \) if and only if \(Rx \cap Ry \subseteq N \).

Proof. Let \(M = \bigoplus_{i \in I} M_i \), where \(M_i \)'s are non-isomorphic simple submodules of \(M \). By assumption \(N \) is a submodule of \(M \), so there exists a subset \(A \) of \(I \) such that \(M = N \oplus (\bigoplus_{i \in A} M_i) \) and so \(\text{ann}(M/N) = \bigoplus_{i \in A} \text{ann}(M_i) = \bigcap_{i \in A} \text{ann}(M_i) \). Assume that \(x, y \in M \setminus N \) are adjacent in \(\Gamma(M, N) \) and \(Rx \cap Ry \not\subseteq N \). Thus there exists \(\alpha \in I \) such that \(M_{\alpha} \subseteq (Rx \cap Ry) \setminus N \). Also, there exist subsets \(B \subset I \) and \(C \subset I \) such that \(M = Rx \oplus (\bigoplus_{i \in B} M_i) \) and \(M = Ry \oplus (\bigoplus_{i \in C} M_i) \). Therefore, \(I_x = \bigcap_{i \in B} \text{ann}(M_i) \) and \(I_y = \bigcap_{i \in C} \text{ann}(M_i) \). Since \(I_xI_yM \not\subseteq N \), we have \(I_xI_y \subseteq \text{ann}(M/N) \). For every \(i, j \in I \), \(\text{ann}(M_i) \) and \(\text{ann}(M_j) \) are coprime, then

\[
I_xI_y = \left[\bigcap_{i \in B} \text{ann}(M_i) \right] \left[\bigcap_{i \in C} \text{ann}(M_i) \right] = \prod_{i \in B \cup C} \text{ann}(M_i) \\
\subseteq \bigcap_{i \in A} \text{ann}(M_i) \subseteq \text{ann}(M_r),
\]

for all \(r \in A \). Thus for any \(r \in A \) there exists \(j_r \in B \cup C \) such that \(\text{ann}(M_{j_r}) \subseteq \text{ann}(M_r) \). So that \(\text{ann}(M_{j_r}) = \text{ann}(M_r) \) implies that \(M_{j_r} \cong M_r \) and by hypothesis \(M_{j_r} = M_r \). Hence,

\[
M_{\alpha} \subseteq \bigoplus_{i \in A} M_i \subseteq \bigoplus_{i \in B \cup C} M_j.
\]

Thus there exists \(\gamma \in B \cup C \) such that \(M_{\alpha} = M_{\gamma} \), also

\[
M_{\alpha} \subseteq Rx \cap Ry = (\bigoplus_{i \in I \setminus B} M_i) \cap (\bigoplus_{i \in I \setminus C} M_i).
\]

Therefore, \(\alpha \in I \setminus (B \cup C) \), a contradiction. The converse is obvious. \(\square \)

Corollary 3.2. Let \(x, y \in M \setminus N \) be such that \(x + N \neq y + N \). Then

(i) \(x \) and \(y \) are adjacent in \(\Gamma(M, N) \) if and only if \(x + N \) and \(y + N \) are adjacent in \(\Gamma(M/N) \).

(ii) if \(x \) and \(y \) are adjacent in \(\Gamma(M, N) \), then all distinct elements of \(x + N \) and \(y + N \) are adjacent in \(\Gamma(M, N) \).

Proof. (i) Let \(M = \bigoplus_{i \in I} M_i \), where \(M_i \)'s are non-isomorphic simple submodules of \(M \). Suppose that \(x \) and \(y \) are adjacent in \(\Gamma(M, N) \), \(Rx = \bigoplus_{i \in A} M_i \), \(Ry = \bigoplus_{i \in B} M_i \) and \(N = \bigoplus_{i \in C} M_i \). Then \(Rx + N = \bigoplus_{i \in A \cup C} M_i \) and \(Ry + N = \bigoplus_{i \in B \cup C} M_i \). Thus,

\[
(Rx + N) \cap (Ry + N) = \bigoplus_{i \in (A \cup C) \cap (B \cup C)} M_i = \bigoplus_{i \in (A \cap B) \cup C} M_i = (Rx \cap Ry) + N.
\]

By Theorem 3.1, we have \(Rx \cap Ry \not\subseteq N \) hence,

\[
I_x + N I_y + N M \subseteq (Rx + N) \cap (Ry + N) = (Rx \cap Ry) + N = N.
\]
Therefore, \(x + N \) and \(y + N \) are adjacent in \(\Gamma(M/N) \). The converse is obvious.

(ii) Let \(x, y \in Z^*(M, N) \) be adjacent in \(\Gamma(M, N) \). Then \(Rx \cap Ry \subseteq N \) by Theorem 3.1. So for every \(n, n' \in N \) we have

\[
I_{x+n}I_{y+n'}M \subseteq R(x+n) \cap R(y+n') \subseteq (Rx+N) \cap (Ry+N) = N.
\]

Hence, \(x + n \) and \(y + n' \) are adjacent in \(\Gamma(M, N) \). \(\square \)

In the following theorem, we prove that the clique number of graphs \(\Gamma(M, N) \) and \(\Gamma(M/N) \) are equal.

Theorem 3.3. If \(N \) is a nonzero submodule of \(M \), then \(\omega(\Gamma(M/N)) = \omega(\Gamma(M, N)) \).

Proof. First we show that \(I^2_{m+N}M \nsubseteq N \) for each \(0 \neq m + N \in M/N \).

Assume that \(N = \bigoplus_{i \in A} M_i \) and \(m = (m_i)_{i \in I} \in M \setminus N \). Then \(I_{m+N} = \bigcap_{i \in A, m_i = 0} \text{ann}(M_i) \). Hence, \(I_{m+N} = I^2_{m+N} \). Thus \(I^2_{m+N}M \nsubseteq N \) since there is at least one \(j \in I \setminus A \) such that \(m_j \neq 0 \).

Now, Corollary 3.2 implies that \(\omega(\Gamma(M/N)) \leq \omega(\Gamma(M, N)) \). Thus, it is enough to consider the case where \(\omega(\Gamma(M/N)) = d < \infty \). Assume that \(G \) is a complete subgraph of \(\Gamma(M, N) \) with vertices \(m_1, m_2, \cdots, m_{d+1} \), we provide a contradiction. Consider the subgraph \(G_* \) of \(\Gamma(M/N) \) with vertices \(m_1, m_2, \cdots, m_{d+1} + N \). By Corollary 3.2, \(G_* \) is a complete subgraph of \(\Gamma(M, N) \). Thus \(m_j + N = m_k + N \) for some \(1 \leq j, k \leq d + 1 \) with \(j \neq k \) since \(\omega(\Gamma(M/N)) = d \). We have \(I_{m_j} I_{m_k} M \subseteq N \). Therefore, \(Rm_j \cap Rm_k \subseteq N \) and so \(I_{m_j+N} I_{m_k+N} M \subseteq N \). Hence, \(I^2_{m_j+N}M \subseteq N \), that is a contradiction. \(\square \)

In the following theorem, we show that there is a relation between \(\omega(\Gamma(M, N)) \) and \(\chi(\Gamma(M/N)) \).

Theorem 3.4. Assume that \(M = \bigoplus_{i \in I} M_i \), where \(M_i \)'s are non-isomorphic simple submodules of \(M \) and \(N = \bigoplus_{i \in A} M_i \) is a submodule of \(M \) for some \(A \subset I \). Then \(\omega(\Gamma(M/N)) = \chi(\Gamma(M, N)) = |I| - |A| \).

Proof. Suppose that \(I \setminus A = \{1, \cdots, n\} \) so \(M_1, \cdots, M_n \nsubseteq N \). Let for \(1 \leq k \leq n - 1 \)

\[
L^k = \{ m \in M : m \text{ has } k \text{ nonzero components} \}
\]

and let for \(1 \leq s \leq n \)

\[
L^1_s = \{ m \in L^1 : \text{the } s^{th} \text{ component of } m \text{ is nonzero} \}.
\]

If \(m \in L^1_s \) and \(m' \in L^1_t \) for some \(1 \leq s, t \leq n \) with \(s \neq t \), then \(m \) and \(m' \) are adjacent and so \(K^n \) is a subgraph of \(\Gamma(M, N) \). Thus \(\omega(\Gamma(M/N)) \geq n \).

If \(m, m' \in L^1_s \) for some \(1 \leq s \leq n \), then \(m, m' \) are not adjacent because \(\text{ann}(M_s) \nsubseteq I_m I_{m'} \) and so the elements of \(L^1_s \) have same color. On the other hand, if \(x \in L^t \) with \(t > 1 \), then there is not a complete subgraph \(K^b \) of \(\Gamma(M, N) \) containing \(x \), such that \(b \geq n \). Thus \(\omega(\Gamma(M, N)) = n \leq \chi(\Gamma(M/N)) \).

Also, if \(x \in L^t \) with \(t > 1 \), then there is an \(s \) with \(1 \leq s \leq n \) such that \(x \) is not
adjacent to each element of L_1^s. Thus the color of x is same as the elements of L_1^s. Thus $\chi(\Gamma(M, N)) = n$. □

The Kwartowski’s Theorem states: A graph G is planar if and only if it contains no subgraph homeomorphic to K^5 or $K^{3,3}$.

Theorem 3.5. Let N be a nonzero proper submodule of M such that N is not prime. Then $\Gamma(M, N)$ is not planar.

Proof. Assume that $M = \bigoplus_{i \in I} M_i$, where M_i’s are non-isomorphic simple submodules of M and $N = \bigoplus_{i \in I} M_i$ for some $A \subseteq I$. Let $I \setminus A = \{i, j\}$. Then $\Gamma(M, N)$ is a complete bipartite graph $K^{n,m}$, where $n = (|\mathcal{I}| - 1)(\prod_{k \in I \setminus \{i, j\}} |M_k|)$ and $m = (|\mathcal{I}| - 1)(\prod_{k \in I \setminus \{i, j\}} |M_k|)$. By hypotheses N is a nonzero and M_i’s are non-isomorphic, so we have $n, m \geq 3$. Hence $\Gamma(M, N)$ has a subgraph homeomorphic to $K^{3,3}$. The cases $|I \setminus A| \geq 3$ are similar to that of the case $|I \setminus A| = 2$. □

Theorem 3.6. A nonzero submodule N of M is prime if and only if $Z^*(M, N) = \emptyset$.

Proof. Let $M = \bigoplus_{i \in I} M_i$, where M_i’s are non-isomorphic simple submodules of M and N is prime. Then $N = \bigoplus_{i \in I \setminus \{k\}} M_i$, for some $k \in I$. If $x \in Z^*(M, N)$, then there exists a $y \in M \setminus N$ such that $I_x I_y M \subseteq N$. If $x \neq y$, then $Rx \cap Ry \subseteq N$, by Theorem 3.1. Thus either $M_k \not\subseteq Rx$ or $M_k \not\subseteq Ry$. Hence, either $Rx \not\subseteq N$ or $Ry \not\subseteq N$, a contradiction. Now, suppose that $x = y$ so by $I_x^2 M \subseteq N$ and hypotheses $I_x M \subseteq N$. Thus $I_x I_y M \subseteq N$ for every $0 \neq n \in N$. By a similar argument, we have either $x \in N$ or $x + n \in N$, a contradiction. Hence, $Z^*(M, N) = \emptyset$.

Conversely, assume that $Z^*(M, N) = \emptyset$. Then $\text{ann}(M/N)$ is prime ideal of R by Proposition 2.3 and there exists a $k \in I$ such that $\text{ann}(M/N) = \text{ann}(M_k)$. Hence, $N = \bigoplus_{i \in I \setminus \{k\}} M_i$ is a prime submodule of M. □

A proper submodule N of M is called 2-absorbing if whenever $a, b \in R$, $m \in M$ and $am \in N$, then $am \in N$ or $bm \in N$, ab $\in \text{ann}(M/N)$, see [10, 11]. In the following results, we study the behavior of $\Gamma(M, N)$ whenever N is a 2-absorbing submodule of M.

Theorem 3.7. A submodule N of M is 2-absorbing if and only if at most two components of M are zero in N.

Proof. Let $M = \bigoplus_{i \in I} M_i$, where M_i’s are non-isomorphic simple submodules of M. Suppose that N is a 2-absorbing submodule of M and $N = \bigoplus_{i \in A} M_i$, where $A = I \setminus \{s, t, k\}$. Since for all $i \in I$, $\text{ann}(M_i)$ is prime, there are $a \in \text{ann}(M_k) \setminus (\text{ann}(M_l) \cup \text{ann}(M_k))$, $b \in \text{ann}(M_s) \setminus (\text{ann}(M_l) \cup \text{ann}(M_k))$ and $c \in \bigcap_{j \in I \setminus \{s, t, l\}} \text{ann}(M_j) \setminus (\text{ann}(M_i) \cup \text{ann}(M_k))$. Now, $abc \in \text{ann}(M/N)$ but $ab \not\in \text{ann}(M/N)$, $ac \not\in \text{ann}(M/N)$ and $bc \not\in \text{ann}(M/N)$. This contradict with
Theorem 2.3 in [10]. Thus \(|A| \geq |I| - 2 \) and at most two components of \(M \) are zero in \(N \).

Conversely, if one component of \(M \) is zero in \(N \), then \(N \) is a prime submodule of \(M \). Suppose that \(N = \bigoplus_{i \in A} M_i \), where \(A = I \setminus \{i, j\} \). Thus \(M_i, M_j \not\subseteq N \). Suppose that \(a, b \in R, (m_i)_{i \in I} = m \in M \setminus N \) and \(abm \in N \). Then either \(m_i \neq 0 \) or \(m_j \neq 0 \). If \(m_i \neq 0 \) and \(m_j \neq 0 \), then \(ab \in \text{ann}(M_i) \cap \text{ann}(M_j) = \text{ann}(M/N) \).

If \(m_i \neq 0 \) and \(m_j = 0 \), then \(ab \in \text{ann}(M_i) \) and so either \(a \in \text{ann}(M_i) \) or \(b \in \text{ann}(M_i) \). Hence, \(am \in N \) or \(bm \in N \). The case \(m_i = 0 \) and \(m_j \neq 0 \), is similar to the previous case. Therefore, \(N \) is a 2-absorbing submodule of \(M \).

\[\square \]

Theorem 3.8. \(N \) is a 2-absorbing submodule of \(M \) if and only if \(Z^*(M, N) = \emptyset \) or \(\Gamma(M, N) \) is a complete bipartite graph.

Proof. Let \(N \) be a 2-absorbing submodule of \(M \). If \(N \) is prime, then \(Z^*(M, N) = \emptyset \), by Theorem 3.6. Now, assume that \(N = \bigoplus_{i \in I \setminus \{j, k\}} M_i \) for some \(j, k \in I \) and \((m_i)_{i \in I} = m \in M \setminus N \). Thus \(I_m = \bigcap_{i \in I : m_i = 0} \text{ann}(M_i) \). If \(m_j \neq 0 \) and \(m_k \neq 0 \), then \(m \notin Z(M, N) \).

Let \(V_1 = \{(m_i)_{i \in I} \in M \setminus N : m_j = 0\} \) and \(V_2 = \{(m_i)_{i \in I} \in M \setminus N : m_k = 0\} \). Thus \(m - m' \) is an edge in \(\Gamma(M, N) \) for every \(m \in V_1 \) and \(m' \in V_2 \). Also, every vertices in \(V_1 \) and \(V_2 \) are not adjacent. Hence, \(\Gamma(M, N) \) is a complete bipartite graph.

Now, suppose that \(\Gamma(M, N) \) is a complete bipartite graph and \(N \) is not 2-absorbing. By Theorem 3.7, there are at least three components \(M_s, M_t, M_k \) such that \(M_s, M_t, M_k \not\subseteq N \). For \(i = s, t, k \) let \(v_i = (m_i)_{i \in I} \), where \(m_i \neq 0 \) and \(m_j = 0 \) for all \(j \neq i \). Then \(v_s - v_t - v_k - v_s \) is a cycle in \(\Gamma(M, N) \). Thus \(\text{gr}(\Gamma(M, N)) = 3 \) and so \(\Gamma(M, N) \) is not bipartite graph, by Theorem 1 of Sec. 1.2 in [5]. Hence, \(N \) is a 2-absorbing submodule of \(M \).

\[\square \]

Example 3.9. Let \(M = \mathbb{Z}_2 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_7 \). Then every nonzero submodule \(N \) of \(M \) is 2-absorbing. Thus either \(Z^*(M, N) = \emptyset \) or \(\Gamma(M, N) \) is a complete bipartite graph. In particular, if \(N = \mathbb{Z}_7 \), then \(\Gamma(M, N) = K^7_{28} \).

Acknowledgments

The author is thankful of referees for their valuable comments.

References

