On the 2-Adjointable Operators and Superstability of them between 2-Pre Hilbert C^*-Module Spaces

Maryam Ramezani*,a, Hamid Baghanib

aDepartment of Mathematics, University of Bojnord, Bojnord, Iran.
bDepartment of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran.

E-mail: m.ramezani@ub.ac.ir
E-mail: h.baghani@gmail.com

ABSTRACT. In this paper, first, we introduce the new concept of 2-inner product on Banach modules over a C^*-algebra. Next, we present the concept of 2-linear operators over a C^*-algebra. Our result improve the main result of the paper [Z. Lewandowska, On 2-normed sets, Glasnik Mat., 38(58) (2003), 99-110]. In the end of this paper, we define the notions 2-adjointable mappings between 2-pre Hilbert C^*-modules and prove superstability of them in the spirit of Hyers-Ulam-Rassias.

Keywords: C^*-Algebra, 2-Adjointable mapping, Superstability.

2000 Mathematics subject classification: 46L08, 46L09.

1. Introduction

The concept of 2-inner product has been intensively studied by many authors in the last three decades. The basic definitions and elementary properties of 2-inner product spaces can be found in [1] and [2].

Recently, M.Frank and e.t. defined the notion ϕ-perturbation of an adjointable mapping and proved the superstability of an adjointable mapping on Hilbert C^*-modules(see [3]).

*Corresponding Author

Received 13 August 2016; Accepted 24 September 2017
©2019 Academic Center for Education, Culture and Research TMU
In this paper, first, we introduce the definition 2-pre Hilbert C^*-module spaces and give several important properties. Next, we present the concept of 2-linear operators over a C^*-algebra which coincides with Lewandowska's definition (see [4, 5]). Also, we define 2-adjointable mappings between 2-pre Hilbert C^*-modules and prove an analogue of ϕ-perturbation of adjoitable mappings in paper([3]).

We refer the interested reader to monographs [6, 7, 8, 9] and references therein for more information.

2. 2-Pre Hilbert Modules

Let X be a left module over a C^*-algebra A. An action of $a \in A$ on X is denoted by $a.x \in X$, $x \in X$.

Definition 2.1. A 2-pre Hilbert A-module is a left A-module X equipped with A-valued function defined on $X \times X \times X$ satisfying the following conditions:

1. $(x, x|z)$ is a positive element in A for any $x, z \in X$ and $(x, x|z) = 0$ if and only if x and z are linearly dependent;
2. $(x, x|z) = (z, z|x)$ for any $x, z \in X$;
3. $(y, x|z) = (x, y|z)^*$ for any $x, y, z \in X$;
4. $(xy + x', y|z) = \alpha(x, y|z) + (x', y|z)$ for any $\alpha \in \mathbb{C}$ and $x, x', y, z \in X$;
5. $(ax, y|z) = a(x, y|z)$ for any $x, y, z \in X$ and any $a \in A$.

The map $(., .|.)$ is called A-valued 2-inner product and $(X, (., .|.)$) is called 2-pre Hilbert C^*-module space.

Example 2.2. Every 2-inner product space is a 2-pre Hilbert C-module.

Example 2.3. Let A be a C^*-algebra and $J \subseteq A$ be a left ideal. Then J can be equipped with the structure of 2-pre Hilbert A-module with A-valued inner product $(x, y|z) := xy^*zz^* - xz^*zy^*$ for any $x, y, z \in A$.

Definition 2.4. Let X be a 2-pre Hilbert A-module, we can define a function $\|\cdot, .|\|_X$ on $X \times X$ by $\|x|z\|_X = \|(x, x|z)\|^{1/2}$ for all $x, z \in X$.

Lemma 2.5. $\|\cdot, .|\|_X$ satisfies the following conditions:

1. $\|\alpha x|z\|_X \leq ||\alpha|| \|x|z\|_X$ for any $x, z \in X$ and $\alpha \in A$;
2. $(x, y|z) (y, x|z) \leq \|y|z\|_X^2 (x, x|z)$ for any $x, y, z \in X$;
3. $||(x, y|z)||^2 \leq \|(x, x|z)|| \|(y, y|z)||$

Proof. $N1$ is obvious; $N3$ follows from $N2$, so let us prove $N2$.

Let ϕ be a positive linear functional on A. Then $\phi((., .|.)$) is usual 2-inner product on X. Applying the Schwartz inequality for 2-inner product (see [2],
On the 2-adjointable operators and superstability of \ldots

page 3) we obtain for all \(x, y, z \in X \),
\[
\phi((x, y|z) (y, z|x)) = \phi((x, y|z)y, x|z))
\]
\[
\leq \phi((x, x|z))^\frac{1}{2} \phi(((x, y|z)y, (x, y|z)y|z))^\frac{1}{2}
\]
\[
\leq \phi((x, x|z))^\frac{1}{2} \phi((x, y|z) (y, y|z) (x, y|z)^*)^\frac{1}{2}
\]
\[
\leq \phi((x, x|z))^\frac{1}{2} \|(y, y|z)\|^\frac{1}{2} \phi((x, y|z) (y, x|z))^\frac{1}{2}.
\]
Thus, for any positive linear functional \(\phi \), we have
\[
\phi((x, y|z) (y, z|x)) \leq \|(y, y|z)\|^\frac{1}{2} \phi((x, x|z))
\]
hence
\[
(x, y|z) (y, z|x) \leq \|(y, y|z)\|^\frac{1}{2} (x, x|z).
\]

\[\square\]

Theorem 2.6. The function \(\|\cdot, \cdot\|_X \) is a 2-norm on \(X \).

Proof. Now, we verify that \(\|\cdot, \cdot\|_X \) satisfies the following properties of 2-norms:

1) \(I_3 \) and \(I_4 \) show that \(\|\alpha x|y\|_X = \|(\alpha x, \alpha x|y)\|_X = \|\alpha\| \|x|y\|_X \) for all \(x, y \in X \) and \(\alpha \in \mathbb{C} \).

2) \(I_1 \) follows that \(|x|y|_X = 0 \) if and only if \(x \) and \(y \) are linearly dependent for all \(x, y \in X \).

3) it follows from \(I_2 \) that \(\|x|y|_X = \|(x, x|y)\|_X = \|y|x|_X \) for all \(x, y \in X \).

4) By proposition 2.5 (\(N3 \)), we have
\[
\|(x + x'|y|_X^2 = \|(x + x', x + x'|y)\| = \|(x, y) + (x', x|y) + (x', x'|y)\| \leq \|(x, x|y)\| + 2\|(x, x'|y)\| + \|(x', x'|y)\|
\]
\[
\leq (\|(x, x|y)\| + 2\|(x, x'|y)\| + 1\|(x', x'|y)\|)^2 = (\|(x|y|_X + \|x'|y|_X)^2
\]
for all \(x, x', y \in X \). This show that \((X, \|\cdot, \cdot\|_X) \) is a 2-normed space. \(\square \)

3. 2-ADJOINTABLE MAPPINGS

In continue, we let \(A \) be a \(C^* \)-algebra. Now, we start with following definition.

Definition 3.1. Let \(X \) and \(Y \) be two 2-pre Hilbert \(A \)-modules. An operator \(f : X \times X \to Y \) is said to be \(A \)-2 linear if it satisfies the following conditions:

1) \(f(x + + z + w) = f(x, z) + f(x, w) + f(y, z) + f(y, w) \) for all \(x, y, z, w \in X \);

2) \(f(\alpha x, \beta y) = \alpha \beta f(x, y) \) for all \(\alpha, \beta \in \mathbb{C} \) and \(x, y \in X \);

3) \(f(ax, by) = a \cdot b^* f(x, y) \) for all \(x, y \in X \) and \(a, b \in A \).

Example 3.2. Let \(X \) be a 2-pre Hilbert \(A \)-module and \(z \in X \). Define \(f : X \times X \to A \) by \(f(x, y) = (x, y|z) \). Then \(f \) is a \(A \)-2 linear operator.
Definition 3.3. Let X and Y be two 2-pre Hilbert A-modules. A mapping $f : X \times X \to Y$ is called 2-adjointable if there exists a mapping $g : Y \times Y \to X$ such that
\[
(f(x, y), s \mid t) = (x, y \mid g(s, t))
\]
for all $x, y \in X$ and $s, t \in Y$. The mapping g is denoted by f^* and is called the 2-adjoint of f.

Lemma 3.4. Let X be a 2-pre Hilbert A-module and $\dim(X) > 1$. If $(x, y \mid z) = 0$ for all $y, z \in X$, then $x = 0$.

Proof. Suppose $x \neq 0$. Let x and y be linearly independent. Then by hypothesis $(x, x, \mid y) = 0$ and this is contradiction. \hfill \square

Lemma 3.5. Every 2-adjointable mapping is A-2 linear.

Proof. Let $f : X \times X \to Y$ be a 2-adjointable mapping. Then there exists a mapping $g : Y \times Y \to X$ such that (3.1) holds. For every $x, y, z, w \in X$, every $s, t \in Y$, every $a, b \in A$, we have
\[
(f(a\alpha x + y, \beta b z + w), s \mid t) = (a\alpha x + y, \beta b z + w \mid g(s, t))
\]
\[
= a\alpha \beta b^* (x, z \mid g(s, t)) + a\alpha (x, w \mid g(s, t)) + \beta b^* (y, z \mid g(s, t)) + (y, w \mid g(s, t))
\]
\[
= a\alpha \beta b^* (f(x, z), s \mid t) + a\alpha (f(x, w), s \mid t) + \beta b^* (f(y, z), s \mid t) + (f(y, w), s \mid t)
\]
\[
= (a\alpha \beta b^* f(x, z) + a\alpha f(x, w) + \beta b^* f(y, z) + f(y, w), s \mid t).
\]
It follows from lemma 3.4 that f is A-2 linear. \hfill \square

4. Superstability of 2-adjointable mappings

In this section, X and Y denote 2-pre Hilbert A-modules and $\dim(X) > 1$, $\dim(Y) > 1$ and $\phi : X^2 \times Y^2 \to [0, \infty)$ is a function. We start our work with following definition.

Definition 4.1. A (not necessarily A-2 linear) mapping $f : X \times X \to Y$ is called ϕ-perturbation of an 2-adjointable mapping if there exists a mapping (not necessarily A-2 linear) $g : Y \times Y \to X$ such that
\[
\| (f(x, y), s \mid t) - (x, y \mid g(s, t)) \| \leq \phi(x, y, s, t)
\]
for all $x, y \in X$ and $s, t \in Y$.

Theorem 4.2. Let $f : X \times X \to Y$ be a ϕ-perturbation of a 2-adjointable mapping with corresponding mapping $g : Y \times Y \to X$. Suppose for some sequence c_n of non-zero complex numbers the following conditions hold:
\[
\lim_{n \to \infty} |c_n|^{-1} \phi(c_n x, y, s, t) = 0 \quad (x, y \in X, s, t \in Y)
\]
\[
\lim_{n \to \infty} |c_n|^{-1} \phi(x, y, c_n s, t) = 0 \quad (x, y \in X, s, t \in Y)
\] (4.3)

Then \(f \) is 2-adjointable and hence \(f \) is \(A \)-2 linear.

Proof. Let \(\lambda \in \mathbb{C} \) be an arbitrary number. Putting \(\lambda x \) instead \(x \) in (4.1), we get

\[
\|f(\lambda x, y, s | t) - (\lambda x, y | g(s, t))\| \leq \phi(\lambda x, y, s, t)
\]

and hence, as \(n \to \infty \), applying (4.3) we obtain

\[
\|f(\lambda f(x, y), s | t) - \lambda f(x, y | g(s, t))\| \leq |\lambda| \phi(x, y, s, t)
\]

Thus,

\[
\|f(\lambda x, y, s | t) - (\lambda f(x, y), s | t)\| \leq \phi(\lambda x, y, s, t) + |\lambda| \phi(x, y, s, t) \quad (4.4)
\]

Replacing \(c_n s \) by \(s \) in (4.4), we get

\[
\|f(\lambda x, y, s | t) - (\lambda f(x, y), s | t)\| \leq |c_n|^{-1} \phi(\lambda x, y, c_n s, t) + |\lambda| |c_n|^{-1} \phi(x, y, c_n s, t)
\]

Replacing \(c_n s \) by \(s \) in (4.4), we get

\[
\|f(\lambda (x, y), s | t) - (\lambda f(x, y), s | t)\| = 0 \quad (\lambda \in \mathbb{C}, x, y \in X, s, t \in Y).
\]

It follows from proposition 3.4 that

\[
f(\lambda x, y) = \lambda f(x, y) \quad (\lambda \in \mathbb{C}, x, y \in X)
\] (4.5)

Now, we take \(c_n x \) instead \(x \) in (4.1) to get

\[
\|f(c_n x, y, s | t) - (c_n x, y | g(s, t))\| \leq \phi(c_n x, y, s, t).
\]

It follows from (4.5) that

\[
\|f(x, y, s | t) - (x, y | g(s, t))\| \leq |c_n|^{-1} \phi(c_n x, y, s, t)
\]

hence, as \(n \to \infty \), applying (4.2) we get

\[
f(x, y, s | t) = (x, y | g(s, t)) \quad (x, y \in X, s, t \in Y).
\]

Therefore \(f \) is 2-adjointable and by Lemma 3.5, \(f \) is \(A \)-2 linear. \(\square \)

In the following, we let \(c_n = a^n \) that \(a > 1 \). We get the following results.

Corollary 4.3. If \(f : X \times X \to Y \) is a \(\phi \)-perturbation of a 2-adjointable mapping, where

\[
\phi(x, y, s, t) = \epsilon \|x\|_X^p \|y\|_Y^q \|s\|_Y^r \|t\|_Y^s \quad (\epsilon \geq 0, 0 < p < 1, 0 < q < 1),
\]

then \(f \) is 2-adjointable and hence \(f \) is \(A \)-2-linear.

Corollary 4.4. If \(f : X \times X \to Y \) is a \(\phi \)-perturbation of a 2-adjointable mapping, where

\[
\phi(x, y, s, t) = \epsilon_1 \|x\|_X^p \|y\|_Y^q + \epsilon_2 \|s\|_Y^r \|t\|_Y^s \quad (\epsilon_1 \geq 0, \epsilon_2 \geq 0, 0 < p < 1, 0 < q < 1).
\]

Then \(f \) is 2-adjointable and hence \(f \) is \(A \)-2 linear.

Acknowledgments

We would like to thank the referee for his/her careful reading of the paper.
References