Domination and Signed Domination Number of Cayley Graphs

Ebrahim Vatandoost, Fatemeh Ramezani*
Department of Basic Science, Imam Khomeini International University, Qazvin, Iran.
E-mail: vatandoost@sci.ikiu.ac.ir
E-mail: ramezani@ikiu.ac.ir

Abstract. In this paper, we investigate domination number as well as signed domination numbers of \(\text{Cay}(G : S) \) for all cyclic group \(G \) of order \(n \), where \(n \in \{p^m, pq\} \) and \(S = \{k < n : \gcd(k, n) = 1\} \). We also introduce some families of connected regular graphs \(\Gamma \) such that \(\gamma_s(\Gamma) \in \{2, 3, 4, 5\} \).

Keywords: Cayley graph, Cyclic group, Domination number, Signed domination number.

2000 Mathematics subject classification: 05C69, 05C25

1. Introduction

By a graph \(\Gamma \) we mean a simple graph with vertex set \(V(\Gamma) \) and edge set \(E(\Gamma) \). A graph is said to be connected if each pair of vertices are joined by a walk. The number of edges of the shortest walk joining \(v_i \) and \(v_j \) is called the distance between \(v_i \) and \(v_j \) and denoted by \(d(v_i, v_j) \). A graph \(\Gamma \) is said to be regular of degree \(k \) or, \(k \)-regular if every vertex has degree \(k \). A subset \(P \) of vertices of \(\Gamma \) is a \(k \)-packing if \(d(x, y) > k \) for all pairs of distinct vertices \(x \) and \(y \) of \(P \) [9].
Let \(G \) be a non-trivial group, \(S \) be an inverse closed subset of \(G \) which does not contain the identity element of \(G \), i.e. \(S = S^{-1} = \{ s^{-1} : s \in S \} \). The Cayley graph of \(G \) denoted by \(\text{Cay}(G : S) \), is a graph with vertex set \(G \) and two vertices \(a \) and \(b \) are adjacent if and only if \(ab^{-1} \in S \). The Cayley graph \(\text{Cay}(G : S) \) is connected if and only if \(S \) generates \(G \).

A set \(D \subseteq V \) of vertices in a graph \(\Gamma \) is a dominating set if every vertex \(v \in V \) is an element of \(D \) or adjacent to an element of \(D \). The domination number \(\gamma(\Gamma) \) of a graph \(\Gamma \) is the minimum cardinality of a dominating set of \(\Gamma \).

For a vertex \(v \in V(\Gamma) \), the closed neighborhood \(N[v] \) of \(v \) is the set consisting \(v \) and all of its neighbors. For a function \(f : V(\Gamma) \to \{-1, 1\} \) and a subset \(W \) of \(V \) we define \(f(W) = \sum_{u \in W} f(u) \). A signed dominating function of \(\Gamma \) is a function \(f : V(\Gamma) \to \{-1, 1\} \) such that \(f(N[v]) > 0 \) for all \(v \in V(\Gamma) \). The weight of a function \(f \) is \(\omega(f) = \sum_{v \in V} f(v) \). The signed domination number \(\gamma_S(\Gamma) \) is the minimum weight of a signed dominating function of \(\Gamma \). A signed dominating function of weight \(\gamma_S(\Gamma) \) is called a \(\gamma_S(\Gamma) \)-function. We denote \(f(N[v]) \) by \(f[v] \). Also for \(A \subseteq V(\Gamma) \) and signed dominating function \(f \), set \(\{ v \in A : f(v) = -1 \} \) is denoted by \(A^- \).

Finding some kinds of domination numbers of graphs is certainly one of the most important properties in any graph. (See for instance [2, 3, 5, 6, 11, 13])

These motivated us to consider on domination and signed domination number of Cayley graphs of cyclic group of orders \(p^n, pq \), where \(p \) and \(q \) are prime numbers.

2. Cayley Graphs of Order \(p^n \)

In this section \(p \) is a prime number and \(B(1, n) = \{ k < n : \gcd(k, n) = 1 \} \).

Lemma 2.1. Let \(G \) be a group and \(H \) be a proper subgroup of \(G \) such that \(|G : H| = t \). If \(S = G \setminus H \), then \(\text{Cay}(G : S) \) is a complete \(t \)-partite graph.

Proof. One can see \(G = \langle S \rangle \) and \(e \notin S = S^{-1} \). Let \(a \in G \). If \(x, y \in Ha \), then \(x = h_1a, y = h_2a \). Since \(xy^{-1} \in H, xy \notin E(\text{Cay}(G : S)) \). So induced subgraph on every coset of \(H \) is empty. Let \(Ha \) and \(Hb \) two disjoint cosets of \(H \) and \(x \in Ha, y \in Hb \). Hence, \(xy^{-1} \in S \). So \(xy \in E(\text{Cay}(G : S)) \). Therefore, \(\text{Cay}(G : S) = K_{|H|, |H|, \ldots, |H|} \). \(\square \)

Lemma 2.2. Let \(G \) be a group of order \(n \) and \(G = \langle S \rangle \), where \(S = S^{-1} \) and \(0 \notin S \). Then \(\gamma(\text{Cay}(G : S)) = 1 \) if and only if \(S = G \setminus \{ 0 \} \).

Proof. The proof is straightforward. \(\square \)
Theorem 2.3. [13] Let \(K_{a,b} \) be a complete bipartite graph with \(b \leq a \). Then
\[
\gamma_s(K_{a,b}) = \begin{cases}
 a + 1 & \text{if } b = 1, \\
 b & \text{if } 2 \leq b \leq 3 \text{ and } a \text{ is even}, \\
 b + 1 & \text{if } 2 \leq b \leq 3 \text{ and } a \text{ is odd}, \\
 4 & \text{if } b \geq 4 \text{ and } a, b \text{ are both even}, \\
 6 & \text{if } b \geq 4 \text{ and } a, b \text{ are both odd}, \\
 5 & \text{if } b \geq 4 \text{ and } a, b \text{ have different parity}.
\end{cases}
\]

Theorem 2.4. Let \(\mathbb{Z}_{2n} = \langle S \rangle \) and \(S = B(1, 2^n) \). Then
i. \(\text{Cay}(\mathbb{Z}_{2n} : S) = K_{2^{n-1}, 2^{n-1}} \)
ii. \(\gamma(\text{Cay}(\mathbb{Z}_{2n} : S)) = 2 \).
iii. \(\gamma_s(\text{Cay}(\mathbb{Z}_{2n} : S)) = \begin{cases}
 2 & \text{if } n = 1, 2, \\
 4 & \text{if } n \geq 3.
\end{cases} \)

Proof. i. Let \(H = \mathbb{Z}_{2n} \setminus S \). Then \(H = \{ i : 2 \mid i \} \). It is not hard to see that \(H \) is a subgroup of \(\mathbb{Z}_{2n} \) and \([\mathbb{Z}_{2n} : H] = 2 \). Hence, by Lemma 2.1, \(\text{Cay}(\mathbb{Z}_{2n} : S) = K_{2^{n-1}, 2^{n-1}} \).
ii. By part i. \(\text{Cay}(\mathbb{Z}_{2n} : S) \) is a complete bipartite graph. So \(\gamma(\text{Cay}(\mathbb{Z}_{2n} : S)) = 2 \).
iii. The proof is straightforward by Theorem 2.3.

□

Corollary 2.5. For any integer \(n > 2 \), there is a \(2^{n-1} \)-regular graph \(\Gamma \) with \(2^n \) vertices such that \(\gamma_s(\Gamma) = 4 \).

Theorem 2.6. Let \(\mathbb{Z}_{p^n} = \langle S \rangle \) (\(p \) odd prime) and \(S = B(1, p^n) \). Then following statements hold:
\[\text{i. } \text{Cay}(\mathbb{Z}_{p^n} : S) \text{ is a complete } p \text{-partite graph.} \]
\[\text{ii. } \gamma(\text{Cay}(\mathbb{Z}_{p^n} : S)) = 2. \]
\[\text{iii. } \gamma_s(\text{Cay}(\mathbb{Z}_{p^n} : S)) = 3. \]

Proof. i. Let \(H = \mathbb{Z}_{p^n} \setminus S \). Then \(H = \{ i : p \mid i \} \). \(H \) is a subgroup of \(\mathbb{Z}_{p^n} \) and \(|H| = p^n - \Phi(p^n) = p^{n-1} \). So \([\mathbb{Z}_{p^n} : H] = p \). Hence, by Lemma 2.1, \(\text{Cay}(\mathbb{Z}_{p^n} : S) \) is a complete \(p \)-partite graph of size \(p^n-1 \).
ii. Since \(\text{Cay}(\mathbb{Z}_{p^n} : S) \) is a complete \(p \)-partite graph, \(D = \{ a, b \} \) is a minimal dominating set where \(a, b \) are not in the same partition.
iii. Let \(\Gamma = \text{Cay}(\mathbb{Z}_{p^n} : S) \). Let \(V(\Gamma) = \bigcup_{i=1}^{p} A_i \), where \(A_i = \{ v_{ij} : 1 \leq j \leq p^{n-1} \} \). Define \(f : V(\Gamma) \to \{-1, 1\} \)
\[
f(v_{ij}) = \begin{cases}
 -1 & \text{if } 1 \leq i \leq \frac{p}{2} - 1 \text{ and } 1 \leq j \leq \frac{p^{n-1}}{2}, \\
 -1 & \text{if } \frac{p}{2} \leq i \leq p \text{ and } 1 \leq j \leq \frac{p^{n-1}}{2}, \\
 1 & \text{otherwise}.
\end{cases}
\]
Let $v \in \bigcup_{i=1}^{\lfloor \frac{p}{2} \rfloor - 1} A_i$. So $|N(v) \cap V^-| = \frac{1}{2}(p^n - p^{n-1} - 4)$. So $f[v] = f(v) + 4 \geq 3$. If $v \in \bigcup_{i=1}^{p} A_i$, then $|N(v) \cap V^-| = \frac{1}{2}(p^n - p^{n-1} - 2)$. So $f[v] = f(v) + 2 \geq 1$. Hence, f is a signed dominating function. Since $|V^-_f| = \frac{1}{2}(p^n - 3)$, $\omega(f) = 3$. So $\gamma_s(\Gamma) \leq 3$. On the contrary, suppose $\gamma_s(\Gamma) < 3$. So there is a γ_s-function g such that $\omega(g) < 3$. So $|V^-_g| > \frac{1}{2}(p^n - 3)$. Let $|V^-_g| = \frac{1}{2}(p^n - 1)$. If $A_i \cap V^-_g = \emptyset$ for some $1 \leq i \leq p$, then $g[v] = 1 - p^{n-1}$ for every $v \in A_i$. Hence, $A_i \cap V^-_g \neq \emptyset$ for every $1 \leq i \leq p$. If $|A_i \cap V^-_g| = \lceil \frac{p^n-1}{2} \rceil$ for every $1 \leq i \leq p$, then $|V^-_g| \geq \frac{1}{2}(p^n + p)$. This is impossible. So there is $j \in \{1, 2, \ldots, p\}$ such that $|A_j \cap V^-_g| \leq \lfloor \frac{p^n-1}{2} \rfloor$. Let $u \in A_j \cap V^-_g$. So $g[u] = \deg(u) + 1 - 2|N(u) \cap V^-_g| < 0$. This is contradiction. Therefore $\gamma_s(\Gamma) = 3$.

\[\square\]

Corollary 2.7. For every integer n, there is a $(p^n - p^{n-1})$-regular graph Γ with p^n vertices such that $\gamma_s(\Gamma) = 3$.

3. Cayley Graphs of Order pq

In this section p and q are distinct prime numbers where $p < q$. Let $B(1, pq)$ be a generator of \mathbb{Z}_{pq}. For $1 \leq i \leq p$ and $1 \leq j \leq q$, set

$$A_i = \{i + kp : 0 \leq k \leq q - 1\}$$

and

$$B_j = \{j + k'q : 0 \leq k' \leq p - 1\}.$$

With these notations in mind we will prove the following results.

Lemma 3.1. Let $\mathbb{Z}_{pq} = \langle S \rangle$ and $S = B(1, pq)$. Then following statements hold.

i. $V(Cay(\mathbb{Z}_{pq} : S)) = \bigcup_{i=1}^{p} A_i$ and $Cay(\mathbb{Z}_{pq} : S)$ is a p-partite graph.

ii. $V(Cay(\mathbb{Z}_{pq} : S)) = \bigcup_{j=1}^{q} B_j$ and $Cay(\mathbb{Z}_{pq} : S)$ is a q-partite graph.

iii. Let $1 \leq i \leq p$. For any $x \in A_i$ there is some $1 \leq j \leq q$ such that $x \in B_j$.

iv. $|A_i \cap B_j| = 1$ for every i, j.

Proof.

i. Let $s \in V(Cay(\mathbb{Z}_{pq} : S))$. If $p \mid s$, then $s \in A_p$. Otherwise, $s \in A_i$ where $s = kp + i$ for some $1 \leq k \leq (p - 1)$. Thus $V(Cay(\mathbb{Z}_{pq} : S)) = \bigcup_{i=1}^{p} A_i$. Since $1 \leq i \neq j \leq p$, $A_i \cap A_j = \emptyset$. We show that the
induced subgraph on \(A_i \) is empty. Let \(l + t \in E(\text{Cay}(\mathbb{Z}_{pq} : S)) \). If \(l, t \in A_i \) for some \(1 \leq s \leq p \), then \(l = s + kp, t = s + k'p \). So \(p \mid (l - t) \).

This is impossible.

ii. The proof is likewise part i.

iii. Let \(1 \leq i \leq p \) and let \(x \in A_i \). If \(x \leq q \), then \(x \in B_z \). If not, \(x = i + kp > q \) such that \(1 \leq k \leq q - 1 \). Hence, \(x \equiv t \) (mod \(q \)) where \(1 \leq t \leq q \), and so \(x \in B_t \).

iv. By Case iii and since \(|A_i| = q \) and also for every \(j \neq j' \), \(B_j \cap B_{j'} = \emptyset \), the result reaches.

\[\square \]

Theorem 3.2. [6] For any graph \(\Gamma \), \(\left\lceil \frac{n}{1 + \Delta(\Gamma)} \right\rceil \leq \gamma(\Gamma) \leq n - \Delta(\Gamma) \) where \(\Delta(\Gamma) \) is the maximum degree of \(\Gamma \).

Theorem 3.3. Let \(\mathbb{Z}_{pq} = \langle S \rangle \) and \(S = B(1, pq) \). Then the following is hold.

\[
\gamma(\text{Cay}(\mathbb{Z}_{pq} : S)) = \begin{cases} 2 & p = 2; \\ 3 & p > 2. \end{cases}
\]

Proof. Let \(p = 2 \). By Lemma 3.1, \(D = \{i, i + q\} \) is a dominating set. Since \(\text{Cay}(\mathbb{Z}_{pq} : S) \) is a (\(q - 1 \))-regular graph, by Theorem 3.2, \(\gamma(\text{Cay}(\mathbb{Z}_{pq} : S)) \geq 2 \). Thus \(\gamma(\text{Cay}(\mathbb{Z}_{pq} : S)) = 2 \).

Let \(p > 2 \). We define \(D = \{1, 2, s\} \) where \(s \in A_1 \setminus N(2) \). Since 1,2 are adjacent, \(N(1) \cup N(2) = \text{V}(\text{Cay}(\mathbb{Z}_{pq} : S)) \setminus D \). Thus \(D \) is a dominating set. As a consequence, \(\gamma(\text{Cay}(\mathbb{Z}_{pq} : S)) \leq 2 \). It is enough to show that \(\gamma(\text{Cay}(\mathbb{Z}_{pq} : S)) \neq 2 \). Let \(D' = \{x, y\} \). We show that \(D' \) is not a dominating set. If \(x, y \in A_i \) for some \(1 \leq i \leq p \), then for every \(z \in A_i \setminus D', z \notin N(D') \). If not, \(x, y \in A_i \), \(y \in A_j \) for some \(1 \leq i \neq j \leq p \). If \(x, y \) are adjacent, then there is \(x' \in A_i \setminus \{x\} \) such that \(x' \notin N(y) \). Thus \(D' \) is not dominating set. If \(x \) and \(y \) are not adjacent, then there is \(z \in A_i, l \neq i, j \), such that the induced subgraph on \(\{x, y, z\} \) is empty. Hence, \(D' \) is not a dominating set and the proof is completed.

\[\square \]

Theorem 3.4. Let \(\mathbb{Z}_{pq} = \langle S \rangle \) where \(p \in \{2, 3, 5\} \) and \(S = B(1, pq) \). Then

\[
\gamma_s(\text{Cay}(\mathbb{Z}_{pq} : S)) = p.
\]

Proof. Let \(A = \{1, 1 + p, \ldots, 1 + (\left\lfloor \frac{q}{2} \right\rfloor - 1)p\} \) and \(B = \{i + tq : i \in A \text{ and } 1 \leq t \leq p - 1\} \). We define \(f : \text{V}(\text{Cay}(\mathbb{Z}_{pq} : S)) \to \{-1, 1\} \) such that

\[
f(x) = \begin{cases} -1 & x \in A \cup B, \\ 1 & \text{otherwise}. \end{cases}
\]

Let \(v \in \text{V}(\text{Cay}(\mathbb{Z}_{pq} : S)) \). If \(f(v) = -1 \), then

\[
f[v] = -1 + (p - 1)(q - 1) - 2 \left(\left(\left\lfloor \frac{q}{2} \right\rfloor - 1 \right)(p - 1) \right) = 2p - 3.
\]
Otherwise,
\[f[v] = 1 + (p - 1)(q - 1) - 2 \left\lfloor \frac{q}{2} \right\rfloor (p - 1) = 1. \]

Hence, \(f \) is a dominating function. Also
\[\omega(f) = pq - 2(|A| + |B|) = pq - 2 \left(\left\lfloor \frac{q}{2} \right\rfloor + (p - 1)\left\lfloor \frac{q}{2} \right\rfloor \right) = p. \]

It is enough to show that \(f \) has the minimal wait. Let, to the contrary, \(g \) be a dominating function and \(\omega(g) < \omega(f) \). So \(|V_g^-| > |V_f^-| \). Without lose of generality, suppose that \(|V_g^-| = p\left\lfloor \frac{q}{2} \right\rfloor + 1 \). Let \(A_i^- = A_i \cap V_g^- \), \(A_i^+ = A_i \setminus A_i^- \) and \(B_i^- = B_i \cap V_g^- \). We will reach the contradiction by three steps.

Step 1. For every \(1 \leq i \leq p \), \(A_i^- \neq \emptyset \).
On the contrary, let \(A_i^- = \emptyset \) for some \(1 \leq i \leq s \). Let \(u \in A_i \). Then by Lemma 3.1, \(u \in A_i \cap B_i \) for some \(1 \leq t \leq q \). So
\[g[u] = (p - 1)(q - 1) + 1 - 2(|V_g^-| - |B_i^-|) \geq 1. \]
Thus \(|B_i^-| \geq \left\lfloor \frac{q}{2} \right\rfloor \). Hence, \(|V_g^-| \geq |A_s|\left\lfloor \frac{q}{2} \right\rfloor \). This implies \(q + (q - p)\left\lfloor \frac{q}{2} \right\rfloor < 1 \). This is a contradiction. Hence, \(A_i^- \neq \emptyset \).

Similar argument applies for \(B_j \). Therefore, \(B_j^- \neq \emptyset \) for every \(1 \leq j \leq q \).

Step 2. For every \(1 \leq i \leq p \), \(|A_i^-| \geq \left\lfloor \frac{q}{2} \right\rfloor \).
On the contrary, Let \(|A_i^-| < \left\lfloor \frac{q}{2} \right\rfloor \) for some \(1 \leq l \leq p \). Without lose of generality suppose that \(|A_i^-| = \left\lfloor \frac{q}{2} \right\rfloor - 1 \). Let \(v \in A_i \). By Lemma 3.1, \(v \in A_i \cap B_k \) for some \(1 \leq k \leq q \). If \(g(v) = -1 \), then \(g[v] = (p - 1)(q - 1) - 1 - 2(|V_g^-| - |A_i^-| - |B_k^-| + 2) \geq 1 \). Then \(|B_k^- \setminus \{v\}| \geq 4 \).
If \(g(v) = 1 \), then \(|B_k^- \setminus \{v\}| \geq 2 \). Hence, \(|V_g^-| \geq 4|A_i^-| + |A_i^-| + 2|A_i^-| \).
As a consequence \(p > 8 \). This is impossible.

Therefore, for every \(1 \leq i \leq p \), \(|A_i^-| \geq \left\lfloor \frac{q}{2} \right\rfloor \) and since \(|V_g^-| = p\left\lfloor \frac{q}{2} \right\rfloor + 1 \), we may suppose that \(|A_i^-| = \left\lfloor \frac{q}{2} \right\rfloor \) and \(|A_i^-| = \left\lfloor \frac{q}{2} \right\rfloor \) for \(2 \leq i \leq p \).

Step 3. For every \(1 \leq j \leq q \), \(|B_j^-| \geq \left\lfloor \frac{q}{2} \right\rfloor \).
On the contrary, let \(|B_h^-| < \left\lfloor \frac{q}{2} \right\rfloor \) for some \(1 \leq h \leq q \). Suppose that \(|B_h^-| = \left\lfloor \frac{q}{2} \right\rfloor \). By Lemma 3.1, \(B_h \cap A_i \neq \emptyset \) for any \(1 \leq i \leq p \). Let \(z \in B_h \setminus A_i \). Thus
\[
g[z] = -1 + (p - 1)(q - 1) - 2(|V_g^-| - |A_i^-| - |B_h^-| + 2)
\leq -1 + (p - 1)(q - 1) - 2\left(p\left\lfloor \frac{q}{2} \right\rfloor + 1 - \left\lfloor \frac{q}{2} \right\rfloor - \left\lfloor \frac{p}{2} \right\rfloor + 2 \right)
\leq -6.\]

Since \(p \in \{2, 3, 5\} \), \(g[z] \leq -1 \). This is a contradiction.

By Step 3, \(|V_g^-| \geq q\left\lfloor \frac{p}{2} \right\rfloor \). Hence, \(p\left\lfloor \frac{p}{2} \right\rfloor + 1 \geq q\left\lfloor \frac{p}{2} \right\rfloor \). So \(p + q \leq 2 \). This is impossible. Therefore \(\gamma_s(Cay(G : S)) = \omega(f) = p. \]

Theorem 3.5. Let \(\mathbb{Z}_{pq} = \langle S \rangle \) where \(p \geq 7 \) and \(S = B(1, pq) \). Then \(\gamma_s(Cay(\mathbb{Z}_{pq} : S)) = 5. \)
Proof. We define \(f : V(Cay(Z_{pq} : S)) \rightarrow \{-1, 1\} \) such that \(f(i) = -1 \) if and only if \(i \in \{1, 2, \ldots, p-1\} \). It is easily seen that \(\frac{q}{2} \leq |A_i^-| \leq \frac{q}{2} \) for every \(1 \leq i \leq p \). Also \(\frac{q}{2} \leq |B_j^-| \leq \frac{q}{2} \) for any \(1 \leq j \leq q \). Let \(v \in A_1 \cap B_s \) such that \(1 \leq t \leq p \) and \(1 \leq s \leq q \). In the worst situation, \(|A_i^-| = \frac{q}{2} \) and \(|B_j^-| = \frac{q}{2} \). In this case \(1 \leq f[v] \leq 5 \). Hence, \(f \) is a signed dominating function. Also \(\omega(f) = pq - 2|V_f^-| = 5 \). Thus \(\gamma_s(Cay(Z_{pq} : S)) \leq 5 \). What is left is to show that if \(g \) is a \(\gamma_s \)-function, then \(\omega(g) \geq 5 \). On the contrary, suppose that \(g \) be a \(\gamma_s \)-function and \(\omega(g) < \omega(f) \). Hence, \(|V_g^-| < |V_f^-| \). There is no loss of generality in assuming \(|V_g^-| = \frac{pq - 3}{2} \). Let \(A_i^- = A_i \cap V_g^- \) and \(B_j^- = B_j \cap V_g^- \). In order to reach the contradiction we use two following steps:

Step 1. \(A_i^- \neq \emptyset \) for every \(1 \leq i \leq p \).

On the contrary, suppose that for some \(1 \leq m \leq p \), \(A_m^- = \emptyset \). Let \(w \in A_m \). So there is \(1 \leq \ell \leq q \) such that \(w \in A_m \cap B_{\ell} \). Hence, \(g[w] = (p-1)(q-1) + 1 - 2(|V_g^-| - |B_j^-|) \geq 1 \). Thus \(|B_j^-| \geq \frac{pq - 3}{2} \). So \(|V_g^-| \geq \frac{q}{2} \). Hence, \(pq - 3 \geq q(pq - 4) \). This makes a contradiction.

By similar argument we have \(B_j^- \neq \emptyset \) for every \(1 \leq j \leq q \).

Step 2. For every \(1 \leq i \leq p \), \(|A_i^-| \geq \frac{q}{2} \).

On the contrary, let \(|A_i^-| = \frac{q}{2} - 1 \). Let \(v \in A_i \). There is \(1 \leq \ell \leq q \) such that \(v \in A_i \cap B_{\ell} \). If \(g(v) = -1 \), then \(g[v] = (p-1)(q-1) + 1 - 2(|V_g^-| - |A_i^-| - |B_{\ell}^-| + 2) \geq 1 \). Hence, \(|B_{\ell}^-| \geq \frac{q}{2} \). If \(g(v) = 1 \), then \(|B_{\ell}^-| \geq \frac{q}{2} \). Therefore, \(|V_g^-| \geq |A_i^-|(|\frac{q}{2}| + 1) + |A_i^-|(|\frac{q}{2}|) \). This implies that \(q \leq 3 \). This is a contradiction.

Likewise Step 2, \(|B_j^-| \geq \frac{q}{2} \) for every \(1 \leq j \leq q \). Since \(|V_g^-| = \frac{pq - 3}{2} \), there is \(1 \leq k \leq p \) such that \(|A_k^-| = \frac{q}{2} \). On the other hand, suppose that for \(1 \leq t \leq q \), \(|B_t^-| = \frac{q}{2} \). Let \(u \in A_k \cap B_t \). If \(s \in \{l_1, \ldots, l_t\} \), then

\[
g[u] = -1 + (p-1)(q-1) - 2(|V_g^-| - |A_k^-| - |B_t^-| + 2) = -1 + (p-1)(q-1) - 2\left(\frac{pq - 3}{2} - \frac{q}{2} \right) = -3.\]

This is a contradiction by \(g \) is a signed dominating function. Hence, \(s \) is not in \(\{l_1, \ldots, l_t\} \). Since \(|A_k^-| = \frac{q}{2} \), \(q - t \geq \frac{q}{2} \) and so \(t \leq \frac{q}{2} \). As a consequence,

\[
|V_g^-| \geq t\left(\frac{p}{2}\right) + (q - t)\left(\frac{p}{2}\right) \geq \frac{q}{2}\left(\frac{p}{2}\right) + \frac{q}{2}\left(\frac{q}{2}\right).\]

Since \(|V_g^-| = \frac{pq - 3}{2} \), this makes a contradiction. Therefore,

\[
\gamma_s(Cay(Z_{pq} : S)) = 5.\]

\[\square\]

Corollary 3.6. For any \(k \)-regular graph \(\Gamma \) on \(n \) vertices \(\gamma_s(\Gamma) \geq \frac{n}{k+1} \). Hence, \(\gamma_s(\Gamma) \geq 1 \). It is easy to check that \(\gamma_s(\Gamma) = 1 \) if and only if \(\Gamma \) is a complete graph.

\[\square\]
graph and n is odd. Furthermore, for any prime numbers $p < q$, there is a $(p - 1)(q - 1)$-regular graph Γ with pq vertices such that $\gamma_S(\Gamma) \in \{2, 3, 5\}$.

Acknowledgments

The author is thankful of referees for their valuable comments.

References