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1. Introduction

Fractional differential equations (FDEs) are generalizations of ordinary dif-

ferential equations to an arbitrary order. A history of the development of

fractional differential operators can be found in [26].

In the last decades, many authors have demonstrated applications of fractional

calculus in the nonlinear oscillation of earthquakes [11], viscoelastic materials

[2], colored noise [22], solid mechanics [30], fluid-dynamic traffic [12], continuum

and statistical mechanics [21], economics [3], anomalous transport [25], bioengi-

neering [20] and dynamics of interfaces between nanoparticles and substrates

[5]. Owing to the increasing applications, a considerable attention has been

given to finding exact and numerical solutions of fractional differential equa-

tions. In general, most of the fractional differential equations do not have ex-

act solution. Therefore various methods for the approximate solutions of these

equations are extended. These methods include variational iteration method

[35], finite difference method [24], Adomian decomposition method [27], ho-

motopy analysis method [10], Legendre collocation method [31], second kind

Chebyshev wavelet method [37], CAS wavelet method [32], Bernoulli wavelet

method [28] and Fractional-order Bernoulli wavelets [29].

In this article, we consider the following equation

Dνy(x)−λ
∫ x

0

k(x, t)F (y(t))dt = f(x), 0 6 x 6 1, n− 1 < ν 6 n, (1.1)

y(i)(0) = δi, i = 0, 1, . . . , n− 1, n ∈ N, (1.2)

where y(i)(x) stands for the ith-order derivative of y(x); δi, i = 0, 1, ..., n − 1,

are real constants; f ∈ C([0, 1],R), k ∈ C([0, 1]2,R) are given functions; y(x)

is the unknown function; Dν(n− 1 < ν ≤ n) is the fractional derivative in the

Caputo sense and F (y(x)) is a polynomial of y(x) with constant coefficients.

The Bernoulli polynomials play an important role in various branches of math-

ematical analysis, namely the theory of modular forms [19], the theory of distri-

butions in p-adic analysis [17], the study of polynomial expansions of analytic

functions [4], etc. Recently, new applications of the Bernoulli polynomials

have also been found in mathematical physics, in connection with theory of

Korteweg-de Vries equation [8], Lame equation [9] and in the study of vertex

algebras [7].

In the pseudo-spectral methods ([1],[33]), there are basically two steps to ob-

tain a numerical approximation to a solution of differential equations. First,

an appropriate finite or discrete representation of the solution must be chosen.

The second step is to obtain a system of algebraic equations.

In the present paper, we use the Bernoulli pseudo-spectral method for solv-

ing the fractional integro-differential equation (1.1). For this purpose, we must

introduce an appropriate representation of the solution based on Bernoulli poly-

nomials. Then we can reduce fractional integro-differential equation to a system
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of algebraic equations which can be solved easily.

The structure of this paper is as follows. In section 2, we describe the basic

definitions of fractional calculated and Bernoulli polynomials. In section 3,

we investigate the existence and uniqueness of solution for the nonlinear frac-

tional integro-differential equation (1.1). Section 4, is devoted to the proposed

method for solving equation (1.1). In section 5, we introduce the error analysis

of the proposed method. In section 6, we report our numerical findings and

demonstrate the accuracy of the proposed method by considering six numerical

examples. The conclusion is given in section 7.

2. Basic Definitions

In this section, first we give necessary definitions of the fractional calculus.

Then, we state some properties of Bernoulli polynomials which are used fur-

ther in this paper. Finally, function approximation via these conceptions is

introduced.

2.1. The fractional integral and derivative.

Definition 2.1. The Riemann-Liouville fractional integral operator of order

ν ≥ 0 is defined as [16]

Iνf(x) =

{
1

Γ(ν)

∫ x
0

f(s)
(x−s)1−ν ds, ν > 0, x > 0,

f(x), ν = 0.
(2.1)

For the Riemann-Liouville fractional integral we have [16]

Iνxβ = Γ(β+1)
Γ(β+ν+1)x

ν+β , β > −1.

The Riemann-Liouville fractional integral is a linear operator, namely

Iν(λf(x) + µg(x)) = λIνf(x) + µIνg(x),

where λ and µ are real constants.

Definition 2.2. Caputo’s fractional derivative of order ν is defined as [16]

Dνf(x) =
1

Γ(n− ν)

∫ x

0

f (n)(s)

(x− s)ν+1−n ds, n− 1 < ν 6 n, n ∈ N, x > 0.

(2.2)

For the Caputo derivative we have the following two basic properties [16]

DνIνf(x) = f(x),

IνDνf(x) = f(x)−
∑n−1
i=0 f

(i)(0)x
i

i! .
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2.2. Bernoulli polynomials.

Definition 2.3. Bernoulli polynomials of order m can be defined with the

following formula [23]

Bm(x) =

m∑
i=0

(
m

i

)
Bm−ix

i, x ∈ [0, 1], (2.3)

where Bi := Bi(0), i = 0, 1, ...,m, are Bernoulli numbers. The first few

Bernoulli polynomials are

B0(x) = 1,

B1(x) = x− 1
2 ,

B2(x) = x2 − x+ 1
6 ,

B3(x) = x3 − 3
2x

2 + 1
2x.

These polynomials satisfy the following formula [23]∫ 1

0

Bn(x)Bm(x)dx = (−1)n−1 m!n!

(m+ n)!
Bm+n, m, n > 1. (2.4)

According to [18], Bernoulli polynomials are form a complete basis on the

interval [0, 1].

2.3. Function approximation. Let H = L2[0, 1] and {B0, B1, ..., Bm−1} be

the set of Bernoulli polynomials and

Y = span{B0, B1, ..., Bm−1}.
Let g be an arbitrary element in H. Since Y is a finite dimensional and closed

subspace, g has a unique best approximation out of Y such as g0 ∈ Y, that is

∀y ∈ Y, ‖g − g0‖ ≤ ‖g − y‖,
this implies that

∀y ∈ Y, < g − g0, y >= 0, (2.5)

where <,> denotes inner product. Since g0 ∈ Y, there exist unique coefficients

c0, c1, ..., cm−1, such that

g(x) ' g0(x) =

m−1∑
i=0

ciBi(x) = CTB(x), (2.6)

where C and B(x) are m vectors given by

C = [c0, c1, ..., cm−1]T , B(x) = [B0(x), B1(x), ..., Bm−1(x)]T . (2.7)

Using Eq. (2.5) we get

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
si

.ir
 o

n 
20

24
-0

3-
13

 ]
 

                             4 / 22

http://ijmsi.ir/article-1-868-en.html


A numerical scheme for solving nonlinear fractional volterra ... 115

〈g − CTB,Bi〉 = 0, i = 0, 1, ...,m− 1.

For simplicity, we write

CT 〈B,B〉 = 〈g,B〉, (2.8)

where < B,B > is an m×m matrix. Let

D = 〈B,B〉 =

∫ 1

0

B(x)BT (x)dx. (2.9)

The matrix D in Eq. (2.9) can be calculated by using Eq. (2.4). Therefore,

from relations (2.8) and (2.9), we obtain

CT = 〈g,B〉D−1. (2.10)

The main approximate formula for y(x) is given in the following theorem.

Theorem 2.4. Let Dνy(x) be approximated by the Bernoulli polynomials (Dνy(x) '∑m−1
k=0 ckBk(x)), and also suppose n− 1 < ν 6 n. Then

y(x) '
m−1∑
k=0

k∑
r=0

ckb
(ν)
k,rx

r+ν +

n−1∑
i=0

δi
xi

i!
, (2.11)

where b
(ν)
k,r =

(
k

r

)
Γ(r+1)

Γ(r+1+ν)Bk−r.

Proof. Applying operator Iν , on both sides of Dνy(x) '
∑m−1
k=0 ckBk(x), we

have

y(x)−
n−1∑
i=0

y(i)(0)
xi

i!
' Iν(

m−1∑
k=0

ckBk(x)) = Iν(

m−1∑
k=0

ck

k∑
r=0

(
k

r

)
Bk−rx

r)

=

m−1∑
k=0

k∑
r=0

ck

(
k

r

)
Bk−rI

ν(xr)

=

m−1∑
k=0

k∑
r=0

ck

(
k

r

)
Bk−r

Γ(r + 1)

Γ(r + 1 + ν)
xr+ν

=

m−1∑
k=0

k∑
r=0

ckb
(ν)
k,rx

r+ν .

Then, we obtain

y(x) '
m−1∑
k=0

k∑
r=0

ckb
(ν)
k,rx

r+ν +

n−1∑
i=0

δi
xi

i!
, (2.12)

where b
(ν)
k,r =

(
k

r

)
Γ(r+1)

Γ(r+1+ν)Bk−r. �
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3. Existence and Uniqueness of Solution

In this section, we will investigate the existence and uniqueness of solution

for the nonlinear fractional integro-differential equation (1.1). Since any two

norms in R are equivalent, to be more concert, we will use the sup norm ‖.‖∞,
which for any Y = [y1, y2, . . . , yn]T is given as

‖Y ‖∞ = max1≤j≤n|yj |.

Definition 3.1. Let f ∈ C([0, 1],R) and H ∈ C([0, 1]2×R,R). These functions

satisfy the Lipschitz conditions if there exist real constants ξ, η > 0, such that

[14]

|f(x)− f(t)| ≤ ξ|x− t|, ‖H(x, t, y)−H(x, t, z)‖ ≤ η‖y − z‖, (3.1)

where x, t ∈ [0, 1] and y, z ∈ R.

Let y ∈ C([0, 1],R), be the solution of nonlinear fractional integro-differential

equation (1.1). We can write Eqs. (1.1) and (1.2) in the following form

Dνy(x) = f(x) +
∫ x

0
H(x, t, y(t))dt, 0 6 x 6 1, n− 1 < ν 6 n,

y(i)(0) = δi, i = 0, 1, ..., n− 1, n ∈ N.
(3.2)

Applying operator Iν on both sides of (3.2) and by using relation (9) in [13]

for β = 0, we obtain an operator A : C([0, 1]× R)→ C([0, 1]× R) such that

Ay(x) =
∑n−1
i=0 δi

xi

i! + 1
Γ(ν)

∫ x
0

(x−t)ν−1f(t)dt+ 1
Γ(ν+1)

∫ x
0

(x−t)νH(x, t, y(t))dt.

The fact that the problem (1.1), (1.2) has a unique solution, is equivalent to

finding a fixed point y of the operator A, i.e. Ay = y.

In the similar manner, for ∆ = [0, 1] and any g ∈ C(∆,R) we consider the

norm

‖g‖ = maxτ∈∆‖g(τ)‖.

It is an obvious fact that the space C(∆,R) with this norm is a Banach space.

It is also clear that for g ∈ C([0, 1],R) and x ∈ [0, 1] we have

‖
∫ x

0
g(t)dt‖ ≤ ‖

∫ x
0
|g(t)|dt‖.

Theorem 3.2. Let f ∈ C([0, 1],R) and H ∈ C([0, 1]2 × R,R), satisfy the

Lipschitz conditions (3.1). If η
Γ(ν+2) ≤

1
2 , then the problem (1.1) has a unique

solution.

Proof. Choose µ ≥ 2(
∑n−1
i=0

|δi|
i! + ξ+M1

Γ(ν+1) + M2

Γ(ν+2) ) and let |f(0)| = M1 and

‖H(x, t, 0)‖ = M2. Then we can show that AZµ ⊂ Zµ where Zµ = {y ∈
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C([0, 1],R) : |y| ≤ µ}. So let y ∈ Zµ. Then we get

‖Ay(x)‖ ≤
n−1∑
i=0

|δi|
i!

+
1

Γ(ν)
‖
∫ x

0

(x− t)ν−1|f(t)|dt‖

+
1

Γ(ν + 1)
‖
∫ x

0

(x− t)ν |H(x, t, y(t))|dt‖

≤
n−1∑
i=0

|δi|
i!

+
1

Γ(ν)
‖
∫ x

0

(x− t)ν−1(|f(t)− f(0)|+ |f(0)|)dt‖

+
1

Γ(ν + 1)
‖
∫ x

0

(x− t)ν(|H(x, t, y(t))−H(x, t, 0)|+ |H(x, t, 0)|)dt‖

≤
n−1∑
i=0

|δi|
i!

+
1

Γ(ν)
‖(ξ +M1)

∫ x

0

(x− t)ν−1dt‖

+
1

Γ(ν + 1)
‖(µη +M2)

∫ x

0

(x− t)νdt‖

≤
n−1∑
i=0

|δi|
i!

+
ξ +M1

Γ(ν + 1)
+
µη +M2

Γ(ν + 2)

≤
n−1∑
i=0

|δi|
i!

+
ξ +M1

Γ(ν + 1)
+

M2

Γ(ν + 2)
+ µ

η

Γ(ν + 2)

≤ µ

2
+
µ

2
= µ.

Now, let y1, y2 ∈ C([0, 1],R) and x ∈ [0, 1]. Then we obtain

‖Ay1(x)−Ay2(x)‖ ≤ 1

Γ(ν + 1)
‖
∫ x

0

(x− t)ν |H(x, t, y1(t))−H(x, t, y2(t))|dt‖

≤ ‖ xν+1

Γ(ν + 2)
η‖y1 − y2‖‖ ≤

η

Γ(ν + 2)
‖y1 − y2‖

≤ 1

2
‖y1 − y2‖ = Ωη,ν‖y1 − y2‖.

Therefore, since Ωη,ν < 1, the result follows by the contraction mapping theo-

rem. �

4. The Proposed Method

Consider the nonlinear fractional-order Volterra integro-differential equation

(1.1) and (1.2). We approximate Dνy(x) as

Dνy(x) '
m−1∑
k=0

ckBk(x). (4.1)

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
si

.ir
 o

n 
20

24
-0

3-
13

 ]
 

                             7 / 22

http://ijmsi.ir/article-1-868-en.html


118 P. Rahimkhani, Y. Ordokhani, E. Babolian

From Eqs. (1.1), (1.2), (4.1) and Theorem 2.4, we have

m−1∑
k=0

ckBk(x)− λ
∫ x

0

k(x, t)F (

m−1∑
k=0

k∑
r=0

ckb
(ν)
k,rt

r+ν +

n−1∑
i=0

δi
ti

i!
)dt = f(x). (4.2)

Now, we collocate (4.2) at the zeros xp, p = 0, 1, ...,m− 1, of shifted Legendre

polynomial Lm(x)

m−1∑
k=0

ckBk(xp)− λ
∫ xp

0

k(xp, t)F (

m−1∑
k=0

k∑
r=0

ckb
(ν)
k,rt

r+ν +

n−1∑
i=0

δi
ti

i!
)dt = f(xp).

(4.3)

Then, we transfer the t−interval [0, xp] into τ −interval [−1, 1] by change of

variable τ = 2
xp
t− 1,

m−1∑
k=0

ckBk(xp)− λ
xp
2

∫ 1

−1

k(xp,
xp
2

(τ + 1)) (4.4)

F (

m−1∑
k=0

k∑
r=0

ckb
(ν)
k,r(

xp
2

(τ + 1))r+ν +

n−1∑
i=0

δi
(
xp
2 (τ + 1))i

i!
)dτ = f(xp).

By using the Gauss −Legendre integration formula [34], for p = 0, 1, ...,m− 1,

we have:
m−1∑
k=0

ckBk(xp)− λ
xp
2

m∑
q=1

ωqk(xp,
xp
2

(τq + 1))

F (

m−1∑
k=0

k∑
r=0

ckb
(ν)
k,r(

xp
2

(τq + 1))r+ν +

n−1∑
i=0

δi
(
xp
2 (τq + 1))i

i!
) = f(xp),(4.5)

where τq, q = 1, 2, ...,m, are zeros of Legendre polynomial Pm(x) and ωq =
−2

(m+1)P ′m(τq)Pm+1(τq)
, q = 1, 2, ...,m. Eq. (4.5), gives a system of m nonlinear

algebraic equations which can be solved, for the unknowns ck, k = 0, 1, ...,m−
1, using Newton’s iterative method. Finally, y(x) can be approximated by

(2.11).

5. Error Analysis

In this section, to check the accuracy of the proposed method, some error

analysis of the method will be presented for the fractional Volterra integro-

differential equations.

Theorem 5.1. Assume that y ∈ L2[0, 1] be an arbitrary function approxi-

mated by the truncated Bernoulli serie
∑m−1
k=0 ckBk(x), then the coefficients

ck, k = 0, 1, ...,m− 1, can be calculated from the following relation [36]

ck = 1
k!

∫ 1

0
y(k)(x)dx.

Also, we have

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
si

.ir
 o

n 
20

24
-0

3-
13

 ]
 

                             8 / 22

http://ijmsi.ir/article-1-868-en.html


A numerical scheme for solving nonlinear fractional volterra ... 119

|ck| ≤ Yk
k! ,

where Yk is the maximum of |y(k)| in the interval [0, 1].

Theorem 5.1, implies that Bernoulli coefficients decay rapidly with increas-

ing of k.

Since, in real problems, we have to solve equations with unknown exact solu-

tions, therefore, when we obtain an approximate solution we can not say that

this solution is good or bad unless we are able to calculate the error function

Em(x) = ym(x)− y(x). We introduce a method similar to [13], let ym(x) be an

approximate solution of (1.1).

We can write Eqs. (1.1) and (1.2) in the following form

Dνy(x) = f(x) +
∫ x

0
H(x, t, y(t))dt, 0 6 x 6 1, n− 1 < ν 6 n,

y(i)(0) = δi, i = 0, 1, ..., n− 1, n ∈ N.
(5.1)

Applying operator Iν on both sides of (5.1), yields

y(x) =
∑n−1
i=0 δi

xi

i! + 1
Γ(ν)

∫ x
0

(x− t)ν−1f(t)dt+ 1
Γ(ν+1)

∫ x
0

(x− t)νH(x, t, y(t))dt.

Thus ym(x) satisfies the following equation

ym(x) =

n−1∑
i=0

δi
xi

i!
+

1

Γ(ν)

∫ x

0

(x− t)ν−1f(t)dt

+
1

Γ(ν + 1)

∫ x

0

(x− t)νH(x, t, ym(t))dt

+ Rm(x).

Where Rm(x) is the residual function that depends only on ym(x) and can be

obtained from the following relation

Rm(x) = ym(x)−
n−1∑
i=0

δi
xi

i!
− 1

Γ(ν)

∫ x

0

(x− t)ν−1f(t)dt

− 1

Γ(ν + 1)

∫ x

0

(x− t)νH(x, t, ym(t))dt. (5.2)

Now, we define the error function

Em(x) = ym(x)− y(x),

where

Em(x) =
1

Γ(ν + 1)

∫ x

0

(x− t)ν(H(x, t, ym(t))−H(x, t, y(t)))dt+Rm(x). (5.3)

By using Taylor’s Theorem [13], we can write
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H(x, t, ym(t))−H(x, t, y(t)) = H(x, t, ym(t))−H(x, t, ym(t)− Em(t))

' ∂

∂ym
H(x, t, ym(t))Em(t)

− 1

2

∂2

∂y2
m

H(x, t, ym(t))E2
m(t).

Therefore, from the above equation and (5.3), we get

Em(x) =
1

Γ(ν + 1)

∫ x

0

(x− t)ν(
∂

∂ym
H(x, t, ym(t))Em(t)

− 1

2

∂2

∂y2
m

H(x, t, ym(t))E2
m(t))dt+Rm(x).

Thus, we obtain a nonlinear Volterra integro-differential equation in which

the error function Em(x) is unknown. Obviously, we can apply the proposed

method for this equation to find an approximation of the error function Em(x).

6. Numerical Results

In this section, we present six numerical examples to illustrative our method

and to demonstrate its efficiency. We have performed all numerical computa-

tions using a computer program written in Mathematica.

Example 6.1. Consider the following equation [32]

Dνy(x)−
∫ x

0

e−t[y(t)]2dt = 1, 0 6 x 6 1, 3 < ν 6 4, (6.1)

subject to the initial conditions y(0) = y′(0) = y′′(0) = y′′′(0) = 1. The exact

solution of this problem, when ν = 4, is y(x) = ex.

First, we investigate the conditions of existence and uniqueness of solution for

this problem. We have

f(x) = 1, H(x, t, y(t)) = e−ty2(t).

It’s clear that

f ∈ C([0, 1], R), H ∈ C([0, 1]2 ×R,R).

We have
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‖H(x, t, y1(t))−H(x, t, y2(t))‖ = ‖e−ty2
1(t)− e−ty2

2(t)‖
≤ (‖y1(t)‖+ ‖y2(t)‖)‖y1(t)− y2(t)‖
≤ 5.80‖y1(t)− y2(t)‖,

using ‖y1(t)‖ ≤ 2.90 and ‖y2(t)‖ ≤ 2.90. Therefore, f(x) (constant function)

and H(x, t, y(t)) satisfy the Lipschitz conditions (3.1).

Also, we have
η

Γ(ν+2) ≤
5.80

Γ(3+2) = 5.80
24 < 1

2 .

This means that Theorem 3.2, can be applied to this example with η = 5.80.

Therefore, this problem has a unique solution. We have solved this equation

with proposed method of section 4. Fig. 1 displays the absolute error between

the exact and approximate solutions for m = 4, 6, 8. From these results we can

conclude that our numerical results are in perfect agreement with the exact

solution for ν = 4. From the Comparison between the CAS wavelet method

[32] and the presented method, we find that our method has higher degree of

accuracy. Also, the numerical results for ν = 3.25, 3.50, 3.75, 4 and the exact

solution are given in Fig. 2. From this figure we see as ν approaches 4, the

corresponding solutions of the fractional order integro-differential equation ap-

proaches to the exact solution of integer order integro-differential equation.

Figure 1. The absolute error between the exact and approx-

imate solutions for ν = 4 : (a) m = 4, (b) m = 6, (c) m = 8

for Example 6.1.

Example 6.2. Consider the following equation [37]

Dνy(x)−
∫ x

0

[y(t)]2dt = −1, 0 6 x 6 1, 0 < ν 6 1, (6.2)

subject to the initial condition y(0) = 0.

Table 1 shows the numerical solutions for ν = 0.9, 1 and m = 8 by using

the present method and the second kind Chebyshev wavelet method [37] for
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Figure 2. Comparison of y(x) for m = 3, with ν =

3.25, 3.50, 3.75, 4 and the exact solution for Example 6.1.

k = 6,M = 2. From Table 1, we can see that the numerical results obtained by

our method are in high agreement with the exact solution for ν = 1. Therefore,

we state that the solutions for ν = 0.9 are also credible. The numerical results

for ν = 0.7, 0.8, 0.9, 1 are displayed in Fig. 3. This figure shows that as ν → 1,

the corresponding solutions of fractional order differential equation approach

to the solutions of integer order differential equation.

We know that the exact solutions for the values ν 6= 1 are not known. There-

fore, to show efficiency of our method, we use estimated error of section 5. Let

Hm(x, t, ym(t)) = y2
m(t), ∂

∂ym
Hm(x, t, ym(t)) = 2ym(t),

∂2

∂y2m
Hm(x, t, ym(t)) = 2.

From Eqs. (5.2) and (5.3) we obtain

Rm(x) = ym(x) +
1

Γ(ν)

∫ x

0

(x− t)ν−1dt− 1

Γ(ν + 1)

∫ x

0

(x− t)νy2
m(t)dt, (6.3)

and

Em(x) =
1

Γ(ν + 1)

∫ x

0

(x− t)ν((2ym(t)Em(t))− (E2
m(t)))dt+Rm(x). (6.4)

Also, we approximate Em(x) as

Em(x) '
m−1∑
k=0

akBk(x), (6.5)
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where the coefficients ak, k = 0, 1, . . . ,m− 1 are unknown.

By substituting Eq. (6.5) in Eq. (6.4), we get

m−1∑
k=0

akBk(x) − 1

Γ(ν + 1)

∫ x

0

(x− t)ν((2ym(t)

m−1∑
k=0

akBk(t))

− (

m−1∑
k=0

akBk(t))2)dt−Rm(x) = 0. (6.6)

Now, we collocate (6.6) at the zeros xp, p = 0, 1, ...,m − 1 of shifted Legendre

polynomial Lm(x)

m−1∑
k=0

akBk(xp) − 1

Γ(ν + 1)

∫ xp

0

(xp − t)ν((2ym(t)

m−1∑
k=0

akBk(t))

− (

m−1∑
k=0

akBk(t))2)dt−Rm(xp) = 0.

Then, we transfer the t−interval [0, xp] into τ −interval [−1, 1] by change of

variable τ = 2
xp
t− 1

m−1∑
k=0

akBk(xp)−
xp

2Γ(ν + 1)

∫ 1

−1

((xp −
xp
2

(τ + 1))ν((2ym(
xp
2

(τ + 1))

m−1∑
k=0

akBk(
xp
2

(τ + 1)))− (

m−1∑
k=0

akBk(
xp
2

(τ + 1)))2))−Rm(xp) = 0.

By using the Gauss −Legendre integration formula [34], for p = 0, 1, ...,m− 1,

we have:

m−1∑
k=0

akBk(xp)−
xp

2Γ(ν + 1)

m∑
q=1

ωq((xp −
xp
2

(τq + 1))ν((2ym(
xp
2

(τq + 1))

m−1∑
k=0

akBk(
xp
2

(τq + 1)))− (

m−1∑
k=0

akBk(
xp
2

(τq + 1)))2))−Rm(xp) = 0,

where τq, q = 1, 2, ...,m are zeros of Legendre polynomial Pm(x) and ωq =
−2

(m+1)P ′m(τq)Pm+1(τq)
, q = 1, 2, ...,m. This relation gives a system ofm nonlinear

algebraic equations which can be solved for the unknowns ak, k = 0, 1, ...,m−1

using Newton’s iterative method. Finally, Em(x) given in (6.5) can be calcu-

lated. Table 2 displays the estimated error for various values of ν with m = 10.

Example 6.3. Consider the following equation [37, 32]

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
si

.ir
 o

n 
20

24
-0

3-
13

 ]
 

                            13 / 22

http://ijmsi.ir/article-1-868-en.html


124 P. Rahimkhani, Y. Ordokhani, E. Babolian

Table 1. Comparison of the numerical solutions with the Ref.

[37] for m = 8 and various values of ν for Example 6.2.

x Exact solution Present method Ref. [37]

ν = 1 ν = 1 ν = 0.9 ν = 1 ν = 0.9

0 0 0 0 0 − 0.00017

0.0625 −0.06250 −0.06250 − 0.08576 −0.06250 − 0.08588

0.1250 −0.12498 −0.12498 − 0.15997 −0.12498 − 0.16003

0.1875 −0.18740 −0.18740 − 0.23025 −0.18740 − 0.23029

0.2500 −0.24968 −0.24968 − 0.29791 −0.24968 − 0.29794

0.3125 −0.31171 −0.31171 − 0.36344 −0.31171 − 0.36345

0.3750 −0.37336 −0.37336 − 0.42702 −0.37336 − 0.42702

0.4375 −0.43446 −0.43446 − 0.48866 −0.43447 − 0.48865

0.5000 −0.49482 −0.49482 − 0.54829 −0.49483 − 0.54828

0.5625 −0.55423 −0.55423 − 0.60576 −0.55424 − 0.60575

0.6250 −0.61243 −0.61243 − 0.66089 −0.61245 − 0.66090

0.6875 −0.66917 −0.66917 − 0.71347 −0.66918 − 0.71349

0.7500 −0.72415 −0.72415 − 0.76327 −0.72418 − 0.76332

0.8125 −0.77710 −0.77709 − 0.81007 −0.77712 − 0.81012

0.8750 −0.82767 −0.82767 − 0.85360 −0.82770 − 0.85365

0.9375 −0.87557 −0.87557 − 0.89363 −0.87561 − 0.89366

Dνy(x)+

∫ x

0

[y(t)]2dt = sinh(x)+
1

2
cosh(x) sinh(x)−x

2
, 0 6 x 6 1, 1 < ν 6 2,

(6.7)

subject to the initial conditions y(0) = 0, y′(0) = 1. The exact solution of this

problem, when ν = 2 is y(x) = sinh(x).

Fig. 4 shows the absolute error between the exact and approximate solutions

for various values of m. From the comparison between our results and results

in Refs. [37] and [32], we find that Bernoulli pseudo-spectral method can reach

higher degree of accuracy when solving this problem. Also, the numerical re-

sults for ν = 1.25, 1.50, 1.75, 2 and the exact solution with m = 4 are presented
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Figure 3. Comparison of y(x) for m = 6, with ν =

0.7, 0.8, 0.9, 1 for Example 6.2.

Table 2. The estimated errors for m = 10 and various values

of ν for Example 6.2.

x ν = 0.6 ν = 0.7 ν = 0.8 ν = 0.9

0 1.14× 10−6 7.14× 10−7 2.76× 10−7 6.61× 10−8

0.1 1.15× 10−8 2.85× 10−9 5.29× 10−9 2.36× 10−9

0.2 7.75× 10−8 5.25× 10−8 2.08× 10−8 4.94× 10−9

0.3 1.26× 10−7 7.85× 10−8 3.16× 10−8 8.06× 10−9

0.4 1.10× 10−8 1.74× 10−8 1.43× 10−8 4.98× 10−9

0.5 8.31× 10−8 2.29× 10−8 7.06× 10−10 1.28× 10−9

0.6 2.88× 10−7 1.51× 10−7 5.12× 10−8 1.12× 10−8

0.7 2.96× 10−7 1.36× 10−7 3.68× 10−8 5.70× 10−9

0.8 4.32× 10−7 2.13× 10−7 6.36× 10−8 1.15× 10−8

0.9 6.89× 10−7 3.77× 10−7 1.29× 10−7 2.74× 10−8

1 1.11× 10−6 6.52× 10−7 2.39× 10−7 5.50× 10−8

in Fig. 5. This figure shows that as ν → 2, the approximate solutions tend to

the exact solution.

Example 6.4. Consider the following equation [32]
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Figure 4. The absolute errors between the exact and approx-

imate solutions for ν = 2 : (a) m = 5, (b) m = 6, (c) m = 7

for Example 6.3.

Figure 5. Comparison of y(x) for m = 4, with ν =

1.25, 1.50, 1.75, 2 and the exact solution for Example 6.3.

D
6
5 y(x)−

∫ x

0

(x− t)2[y(t)]3dt =
5

2Γ( 4
5 )
x

4
5 − 1

252
x9, 0 6 x 6 1, (6.8)

subject to the initial conditions y(0) = y′(0) = 0. The exact solution of this

problem is y(x) = x2.

The absolute errors for some values of m are shown in Fig. 6. Also, the

comparisons between the exact and approximate solutions for various choices

of m are given in Fig. 7. From Figs. 6 and 7, we can see that the obtained

results using our method are in good agreement with the exact solution and

with the approximate solutions for ν = 6
5 in [32].

Example 6.5. Consider the following equation [37]

Dνy(x)−
∫ x

0

[y(t)]3dt = ex − 1

3
e3x +

1

3
, 0 6 x 6 1, 0 < ν 6 1, (6.9)
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Figure 6. The absolute errors between the exact and approx-

imate solutions for ν = 6
5 with : (a) m = 8, (b) m = 10, (c)

m = 12 for Example 6.4.

Figure 7. The comparison between the exact and approxi-

mate solutions for : (a) m = 4, (b) m = 6, (c) m = 8 for

Example 6.4.

subject to the initial condition y(0) = 1. The exact solution of this problem,

when ν = 1, is y(x) = ex.

Table 3 denotes the approximate solutions obtained for different values of x

by using the present method for m = 4, 6, 8 and the second kind Chebyshev

wavelet method [37] for k = 5,M = 2 with ν = 1, together with the exact

solution. From Table 3, we can conclude that our numerical solutions are in

a good agreement with the exact solution when ν = 1. Also, the numerical

results for y(x) with m = 12 and ν = 0.7, 0.8, 0.9, 1 and the exact solution are

plotted in Fig. 8. From the graphical results, it is clear that the approximate

solutions converge to the exact solution.

Example 6.6. Consider the following equation [15]

Dνy(x)+

∫ x

0

x3 cos tey(t)dt = x3(−1+esin x)−sinx, 0 6 x 6 1, 1 < ν ≤ 2,

(6.10)

subject to the initial conditions y(0) = 0, y′(0) = 1. The exact solution of this

problem, when ν = 2 is y(x) = sinx.

Table 4 shows the numerical solutions for ν = 1.75, 2 by using the present
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Table 3. Comparison of the numerical solutions with the Ref.

[37] for ν = 1 for Example 6.5.

x Exact solution Present method Ref. [37]

ν = 1 m = 4 m = 6 m = 8 k = 5,M = 2

0 1 1 1 1 1.000122

0.1 1.105171 1.104782 1.105174 1.105171 1.105345

0.2 1.221403 1.220677 1.221408 1.221403 1.221645

0.3 1.349859 1.348907 1.349864 1.349859 1.350196

0.4 1.491825 1.490795 1.491828 1.491825 1.492295

0.5 1.648721 1.647767 1.648722 1.648721 1.649382

0.6 1.822119 1.821352 1.822117 1.822119 1.823061

0.7 2.013753 2.013182 2.013751 2.013753 2.015118

0.8 2.225541 2.224992 2.225543 2.225541 2.227565

0.9 2.459603 2.458620 2.459611 2.459603 2.462682

Figure 8. Comparison of y(x) for m = 12, with ν =

0.7, 0.8, 0.9, 1 and the exact solution for Example 6.5.

method, when m = 7, the Tau method [15] and the exact solution. From

Table 4, we can see that the numerical results obtained by our method are in

high agreement with the exact solution for ν = 2. Therefore, we state that

the solutions for ν = 1.75 are also credible. Also, the numerical results for

m = 3 with ν = 1.25, 1.50, 1.75, 2 and the exact solution are displayed in Fig.
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9. This figure shows that as ν → 2, the approximate solutions tend to the exact

solution.

Table 4. Comparison of our numerical solutions with the Ref.

[15] for various values of ν for Example 6.6.

x Exact solution Present method Ref. [15]

ν = 2 ν = 1.75 ν = 2 ν = 1.75 ν = 2

0 0.000000 0.000000 0.000000 0.000000 0.000000

0.1 0.099833 0.099598 0.099833 0.099419 0.099833

0.2 0.198669 0.197301 0.198669 0.196812 0.198669

0.3 0.295520 0.291793 0.295520 0.290975 0.295520

0.4 0.389418 0.381968 0.389418 0.380815 0.347526

0.5 0.479425 .466862 0.479425 0.465333 0.479427

0.6 0.564642 0.545634 0.564642 0.543605 0.564648

0.7 0.644218 0.617561 0.644218 0.614770 0.644233

0.8 0.717356 0.682046 0.717356 0.678009 0.717397

0.9 0.783327 0.738628 0.783327 0.732528 0.783420

1 0.841471 0.787000 0.841471 0.777544 0.841666

Figure 9. Comparison of y(x) for m = 3, with ν =

1.25, 1.50, 1.75, 2 and the exact solution for Example 6.6.
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7. Conclusion

In this paper, the Bernoulli spectral method is implemented for solving

nonlinear fractional Volterra integro-differential equations. The properties of

Bernoulli polynomials together with the Gaussian integration method are uti-

lized to reduce the proposed problem to the solution a system of algebraic

equations which is solved by using Newton’s iteration method. Special atten-

tion is given to the study of existence and uniqueness of solution for problem

(1.1) and the error analysis for presented method. From the obtained numer-

ical results we can see that the obtained solutions using the suggested scheme

are in excellent agreement with the exact solution when ν is integer and with

more accuracy compared with CAS wavelet method, second kind Chebyshev

wavelet method and Tau method. Moreover, only a small number of Bernoulli

polynomials are needed to obtain a satisfactory result.
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