On I-Statistical Convergence

Shyamal Debnatha,*, Debjani Rakshitb

aDepartment of Mathematics, Tripura University, Agartala-799022, India.
bDepartment of FST, ICFAI University, Tripura, Kamalghat, West Tripura-799210, India.

E-mail: shyamalnitamath@gmail.com
E-mail: debjanirakshit88@gmail.com

Abstract. In this paper we investigate the notion of I-statistical convergence and introduce I-st limit points and I-st cluster points of real number sequence and also studied some of its basic properties.

Keywords: I-limit point, I-cluster point, I-statistically Convergent.

1. Introduction

In 1951 Fast [6] and Steinhaus [18] introduced the concept of statistical convergence independently and established a relation with summability. Later on it was further investigated from sequence space point of view by Fridy [8], Salat [19] and many others. Some applications of statistical convergence in number theory and mathematical analysis can be found in [1, 2, 13, 14, 21].

The notion of I-convergence is a generalization of the statistical convergence which was introduced by Kostyrko et al. [12]. They used the notion of an ideal I of subsets of the set N to define such a concept. For an extensive view of this article we refer [4, 11, 20].

The idea of I-convergence was further extended to I-statistical convergence by Savas and Das [16]. Later on more investigation in this direction was done

*Corresponding Author

Received 04 February 2016; Accepted 27 September 2017
©2018 Academic Center for Education, Culture and Research TMU
by Savas and Das [17], Debnath and Debnath [3], Mursaleen et al [15], Et et al. [5] and many others [9, 10, 22, 23]. In [16], Savas and Das introduced the I-statistical convergence and I-λ-statistical convergence and the relation between them. Also they studied these concept in the notion of [V, λ]- summability method.

In the present paper we return to the view of I-statistical convergence as a sequential limit concept and we extend this concept in a natural way to define a I-statistical analogue of the set of limit points and cluster points of a real number sequence.

2. Definitions and Preliminaries

Definition 2.1. [8] If \(K \) is a subset of the positive integers \(N \), then \(K_n \) denotes the set \(\{ k \in K : k \leq n \} \). The natural density of \(K \) is given by \(D(K) = \lim_{n \to \infty} \frac{|K_n|}{n} \).

Definition 2.2. [8] A sequence \((x_n) \) is said to be statistically convergent to \(x_0 \) if for each \(\varepsilon > 0 \), the set \(A(\varepsilon) = \{ k \in N : d(x_k, x_0) \geq \varepsilon \} \) has natural density zero. \(x_0 \) is called the statistical limit of the sequence \((x_n) \) and we write \(\text{st-lim}_{n \to \infty} x_n = x_0 \).

Definition 2.3. [7] If \((x_{k(j)}) \) be a subsequence of a sequence \(x = (x_n) \) and density of \(K = \{ k(j) : j \in N \} \) is zero then \((x_{k(j)}) \) is called a thin subsequence. Otherwise \((x_{k(j)}) \) is called a non-thin subsequence of \(x \).

\(x_0 \) is said to be a statistical limit point of a sequence \((x_n) \), if there exist a non-thin subsequence of \((x_n) \) which converges to \(x_0 \).

Let \(A_x \) denotes the set of all statistical limit points of the sequence \((x_n) \).

Definition 2.4. [7] \(x_0 \) is said to be a statistical cluster point of a sequence \(x = (x_n) \), provided that for each \(\varepsilon > 0 \) the density of the set \(\{ k \in N : d(x_k, x_0) < \varepsilon \} \) is not equal to 0.

Let \(\Gamma_x \) denotes the set of all statistical cluster points of the sequence \((x_n) \).

Definition 2.5. [12] Let \(X \) is a non-empty set. A family of subsets \(I \subset P(X) \) is called an ideal on \(X \) if and only if

(i) \(\emptyset \in I \);
(ii) for each \(A, B \in I \) implies \(A \cup B \in I \);
(iii) for each \(A \in I \) and \(B \supset A \) implies \(B \in I \).

Definition 2.6. [12] Let \(X \) is a non-empty set. A family of subsets \(F \subset P(X) \) is called a filter on \(X \) if and only if

(i) \(\emptyset \notin F \);
(ii) for each \(A, B \in F \) implies \(A \cap B \in F \);
(iii) for each \(A \in F \) and \(B \supset A \) implies \(B \in F \).
On I-statistical convergence

An ideal I is called non-trivial if $I \neq \emptyset$ and $X \notin I$. The filter $\mathcal{F} = \mathcal{F}(I) = \{X - A : A \in I\}$ is called the filter associated with the ideal I. A non-trivial ideal $I \subset P(X)$ is called an admissible ideal in X if and only if $I \supset \{\{x\} : x \in X\}$

Definition 2.7. [12] Let $I \subset P(N)$ be a non-trivial ideal on N. A sequence (x_n) is said to be I-convergent to x_0 if for each $\varepsilon > 0$, the set $A(\varepsilon) = \{k \in N : d(x_k, x_0) \geq \varepsilon\}$ belongs to I. x_0 is called the I-limit of the sequence (x_n) and we write $I\text{-lim}_{n \to \infty} x_n = x_0$.

Definition 2.8. [12] x_0 is said to be I-limit point of a sequence $x = (x_n)$ provided that there is a subset $K = \{k_1 < k_2 < ...\} \subset N$ such that $K \notin I$ and $\text{lim}_{k \to \infty} x_{k_i} = x_0$.

Let $I(A_x)$ denotes the set of all I-limit points of the sequence x.

Definition 2.9. [12] x_0 is said to be I-cluster point of a sequence $x = (x_n)$ provided that for each $\varepsilon > 0$ the set $\{k \in N : d(x_k, x_0) < \varepsilon\} \notin I$.

Let $I(I_x)$ denotes the set of all I-cluster points of the sequence x.

Definition 2.10. [16] A sequence $x = (x_n)$ is said to be I-statistically convergent to x_0 if for every $\varepsilon > 0$ and every $\delta > 0$,

$$\{n \in N : \frac{1}{n} \sum_{k \leq n} |\{k \leq n : d(x_k, x_0) \geq \varepsilon\}| < \delta\} \in I.$$

x_0 is called I-statistical limit of the sequence (x_n) and we write, $I\text{-stlim} x_n = x_0$.

Throughout the paper we consider I as an admissible ideal.

3. Main Results

Theorem 3.1. If (x_n) be a sequence such that $I\text{-stlim} x_n = x_0$, then x_0 determined uniquely.

Proof. If possible let the sequence (x_n) be I-statistically convergent to two different numbers x_0 and y_0

i.e, for any $\varepsilon > 0$, $\delta > 0$ we have,

$$A_1 = \{n \in N : \frac{1}{n} \sum_{k \leq n} |\{k \leq n : d(x_k, x_0) \geq \varepsilon\}| < \delta\} \in \mathcal{F}(I)$$

and $A_2 = \{n \in N : \frac{1}{n} \sum_{k \leq n} |\{k \leq n : d(x_k, y_0) \geq \varepsilon\}| < \delta\} \in \mathcal{F}(I)$

Therefore, $A_1 \cap A_2 \neq \emptyset$, since $A_1 \cap A_2 \in \mathcal{F}(I)$.

Let $m \in A_1 \cap A_2$ and take $\varepsilon = \frac{d(x_0, y_0)}{3} > 0$ so, $\frac{1}{m} \sum_{k \leq m} |\{k \leq m : d(x_k, x_0) \geq \varepsilon\}| < \delta$

and $\frac{1}{m} \sum_{k \leq m} |\{k \leq m : d(x_k, y_0) \geq \varepsilon\}| < \delta$

i.e, for maximum $k \leq m$ will satisfy $d(x_k, x_0) < \varepsilon$ and $d(x_k, y_0) < \varepsilon$ for a very small $\delta > 0$.

Thus, we must have

$$\{k \leq m : d(x_k, x_0) < \varepsilon\} \cap \{k \leq m : d(x_k, y_0) < \varepsilon\} \neq \emptyset$$

a contradiction, as the neighbourhood of x_0 and y_0 are disjoint.

Hence the theorem is proved. □
Theorem 3.2. For any sequence \((x_n)\), \(st-lim x_n = x_0\) implies \(I-stlim x_n = x_0\).

Proof. Let \(st-lim x_n = x_0\).

Then for each \(\varepsilon > 0\), the set \(A(\varepsilon) = \{k \leq n : d(x_k, x_0) \geq \varepsilon\}\) has natural density zero.

i.e., \(\lim_{n \to \infty} \frac{1}{n} \sum_{k \leq n} \delta_{d(x_k, x_0) \geq \varepsilon} = 0\)

So for every \(\varepsilon > 0\) and \(\delta > 0\),

\[\{n \in N : \frac{1}{n} \sum_{k \leq n} \delta_{d(x_k, x_0) \geq \varepsilon} \geq \delta\}\]

is a finite set and therefore belongs to \(I\), as \(I\) is an admissible ideal.

Hence \(I-stlim x_n = x_0\). □

But the converse is not true.

Example 3.3. Let \(I = \zeta\) be the class of \(A \subseteq N\) that intersect a finite number of \(\Delta_j\)'s where \(N = \bigcup_{j=1}^{\infty} \Delta_j\) and \(\Delta_i \cap \Delta_j = \emptyset\) for \(i \neq j\).

Let \(x_n = \frac{1}{n}\) and so \(\lim_{n \to \infty} d(x_n, 0) = 0\). Put \(\varepsilon_n = d(x_n, 0)\) for \(n \in N\).

Now define a sequence \((y_n)\) by \(y_n = x_j\) if \(n \in \Delta_j\)

Let \(\eta > 0\). Choose \(\nu \in N\) such that \(\varepsilon_\nu < \eta\). Then

\[A(\eta) = \{n \in N : d(y_n, 0) \geq \eta\} \subseteq \Delta_1 \cup \cdots \cup \Delta_\nu \in \zeta\]

Now, \(\{k \leq n : d(y_k, 0) \geq \eta\} \subseteq \{n \in N : d(y_n, 0) \geq \eta\}\)

i.e., \(\frac{1}{n} \sum_{k \leq n} \delta_{d(y_k, 0) \geq \eta} \leq \{n \in N : d(y_n, 0) \geq \eta\}\)

so for any \(\delta > 0\),

\[\{n \in N : \frac{1}{n} \sum_{k \leq n} \delta_{d(y_k, 0) \geq \eta} \geq \delta\} \subseteq \{n \in N : d(y_n, 0) \geq \eta\} \in \zeta\]

Therefore \((y_n)\) is \(\zeta\)-statistically convergent to \(0\).

But \((y_n)\) is not a statistically convergent.

Theorem 3.4. For any sequence \((x_n)\), \(I-lim x_n = x_0\) implies \(I-stlim x_n = x_0\).

Proof. The proof is obvious. But the converse is not true. □

Example 3.5. If we take \(I = I_f\) the sequence \((x_n)\),

where \(x_n = \begin{cases} 0, & n = k^2, k \in N \\ 1, & otherwise \end{cases}\)

is \(I\)-statistically convergent to \(1\). But \((x_n)\) is not \(I\)-convergent.

Theorem 3.6. If each subsequence of \((x_n)\) is \(I\)-statistically convergent to \(\xi\) then \((x_n)\) is also \(I\)-statistically convergent to \(\xi\).

Proof. Suppose \((x_n)\) is not \(I\)-statistically convergent to \(\xi\), then there exists \(\varepsilon > 0\) and \(\delta > 0\) such that

\[A = \{n \in N : \frac{1}{n} \sum_{k \leq n} \delta_{d(x_k, \xi) \geq \varepsilon} \geq \delta\} \notin I\].

Since \(I\) is admissible ideal so \(A\) must be an infinite set.

Let \(A = \{n_1 < n_2 < \ldots < n_m < \ldots\} \subseteq N\) and \(y_m = x_{n_m}\) for \(m \in N\). Then \((y_m)\), as a subsequence of \((x_n)\) which is not \(I\)-statistically convergent to \(\xi\),

But the converse is not true. We can easily show this from example 3.5.
Theorem 3.7. Let \((x_n)\) and \((y_n)\) be two sequences then

(i) \(I^\text{-st} \lim x_n = x_0\) and \(c \in \mathbb{R}\) implies \(I^\text{-st} \lim cx_n = cx_0\).

(ii) \(I^\text{-st} \lim x_n = x_0\) and \(I^\text{-st} \lim y_n = y_0\) implies \(I^\text{-st} \lim (x_n + y_n) = x_0 + y_0\).

Proof. (i) If \(c = 0\), we have nothing to prove.

So we assume that \(c \neq 0\).

Now, \(\frac{1}{n}|\{k \leq n : d(cx_k, cx_0) \geq \varepsilon\}| = \frac{1}{n}|\{k \leq n : |c|d(x_k, x_0) \geq \varepsilon\}| \leq \frac{1}{n}|\{k \leq n : d(x_k, x_0) \geq \frac{\varepsilon}{|c|}\}| < \delta\).

Therefore, \(\{n \in N : \frac{1}{n}|\{k \leq n : d(cx_k, cx_0) \geq \varepsilon\}| < \delta\} \in \mathcal{F}(I)\).

i.e, \(I^\text{-st} \lim cx_n = cx_0\).

(ii) We have \(A_1 = \{n \in N : \frac{1}{n}|\{k \leq n : d(x_k, x_0) \geq \frac{\varepsilon}{2}\}| < \frac{\delta}{2}\} \in \mathcal{F}(I)\)

and \(A_2 = \{n \in N : \frac{1}{n}|\{k \leq n : d(y_k, y_0) \geq \frac{\varepsilon}{2}\}| < \frac{\delta}{2}\} \in \mathcal{F}(I)\).

Since \(A_1 \cap A_2 \neq \emptyset\), therefore for all \(n \in A_1 \cap A_2\) we have,

\(\frac{1}{n}|\{k \leq n : d(x_k + y_k, x_0 + y_0) \geq \varepsilon\}| \leq \frac{1}{n}|\{k \leq n : d(x_k, x_0) \geq \frac{\varepsilon}{2}\}| + \frac{1}{n}|\{k \leq n : d(y_k, y_0) \geq \frac{\varepsilon}{2}\}| < \delta\).

i.e, \(\{n \in N : \frac{1}{n}|\{k \leq n : d(x_k + y_k, x_0 + y_0) \geq \varepsilon\}| < \delta\} \in \mathcal{F}(I)\).

Hence \(I^\text{-st} \lim (x_n + y_n) = (x_0 + y_0)\). \(\square\)

Definition 3.8. A sequence \(x = (x_n)_{n \in N}\) of elements of \(X\) is said to be \(I^\text{-statistical} \lim\) convergent to \(\xi \in X\) if and only if there exists a set \(M = \{m_1 < m_2 < \ldots < m_k < \ldots\} \in \mathcal{F}(I)\), such that \(st\lim d(x_{m_k}, \xi) = 0\).

Theorem 3.9. If \(I^*\text{-st} \lim_{n \to \infty} x_n = \xi\) then \(I^\text{-st} \lim_{n \to \infty} x_n = \xi\).

Proof. Let \(I^*\text{-st} \lim_{n \to \infty} x_n = \xi\). By assumption there exist a set \(H \in I\) such that for \(M = N \setminus H = \{m_1 < m_2 < \ldots < m_k < \ldots\}\) we have \(st\text{-lim} x_{m_k} = \xi\).

i.e, \(\lim_{n \to \infty} \frac{1}{n}|\{m_k \leq n : d(x_{m_k}, \xi) \geq \varepsilon\}| = 0\).

so for any \(\delta > 0\), \(\{n \in N : \frac{1}{n}|\{m_k \leq n : d(x_{m_k}, \xi) \geq \varepsilon\}| \geq \delta\} \in I\) since \(I\) is an admissible ideal.

Now, \(A(\varepsilon, \delta) = \{n \in N : \frac{1}{n}|\{k \leq n : d(x_k, \xi) \geq \varepsilon\}| \geq \delta\}\)

\(\subset H \cup \{n \in N : \frac{1}{n}|\{m_k \leq n : d(x_{m_k}, \xi) \geq \varepsilon\}| \geq \delta\} \in I\)

i.e, \(I^\text{-st} \lim_{n \to \infty} x_n = \xi\). \(\square\)

But the converse may not be true.

From example 3.3, we have \(\xi^*\text{-st} \lim_{n \to \infty} y_n = 0\).

Suppose that \(\zeta^*\text{-st} \lim_{n \to \infty} y_n = 0\). Then there exist a set \(H \in \zeta\) such that for \(M = N \setminus H = \{m_1 < m_2 < \ldots < m_k < \ldots\}\) we have \(st\text{-lim} y_{m_k} = 0\). By definition of \(\zeta\) there exist a \(p \in N\) such that \(H \subset \Delta_1 \cup \ldots \cup \Delta_p\). But then \(\Delta_{p+1} \subset M\), so for infinitely many \(m_k \in \Delta_{p+1}\),

\(D\{m_k \in \Delta_{p+1} : d(y_{m_k}, 0) \geq \eta\} = 2^{-(p+1)} > 0\) for \(0 < \eta < \frac{1}{p+1}\)

i.e, \(D\{m_k \in \Delta_{p+1} : d(y_{m_k}, 0) \geq \eta\} \neq 0\), which is a contradicts \(st\text{-lim} y_{m_k} = 0\).

Hence \(\zeta^*\text{-st} \lim_{n \to \infty} y_n \neq 0\).
Definition 3.10. An element x_0 is said to be an I-statistical limit point of a sequence $x = (x_n)$ provided that for each $\varepsilon > 0$ there is a set $M = \{m_1 < m_2 < \ldots \} \subset N$ such that $M \notin I$ and $\stlim x_{m_k} = x_0$.

$I-S(A_x)$ denotes the set of all I-statistical limit points of the sequence (x_n).

Theorem 3.11. If (x_n) be a sequence such that $\stlim x_n = x_0$ then $I-S(A_x) = \{x_0\}$.

Proof. Since (x_n) is I-statistically convergent to x_0, so for each $\varepsilon > 0$ and $\delta > 0$ the set,

$$A = \{n \in N: \frac{1}{n} \sum_{k=1}^{n} \{k \leq n : d(x_k, x_0) \geq \varepsilon\} \geq \delta\} \in I,$$

where I is an admisible ideal.

Suppose $I-S(A_x)$ contains y_0 different from x_0, i.e., $y_0 \notin I-S(A_x)$.

So there exist a $M \subset N$ such that $M \notin I$ and $\stlim x_{m_k} = y_0$.

Let $B = \{n \in M: \frac{1}{n} \sum_{k=1}^{n} \{k \leq n : d(x_k, y_0) \geq \varepsilon\} \geq \delta\}$. So B is a finite set and therefore $B \in I$ and so $B^c = \{n \in M: \frac{1}{n} \sum_{k=1}^{n} \{k \leq n : d(x_k, y_0) < \varepsilon\} < \delta\} \in F(I)$.

Again let $A_1 = \{n \in M: \frac{1}{n} \sum_{k=1}^{n} \{k \leq n : d(x_k, x_0) \geq \varepsilon\} \geq \delta\}$. So $A_1 \subseteq A \in I$.

i.e., $A_1 \in F(I)$. Therefore $A_1^c \cap B^c \neq \emptyset$, since $A_1^c \cap B^c \in F(I)$.

Let $\frac{1}{n} \sum_{k=1}^{n} \{k \leq n : d(x_k, y_0) < \varepsilon\} < \delta$

and $\frac{1}{n} \sum_{k=1}^{n} \{k \leq n : d(x_k, x_0) \leq \varepsilon\} \geq \delta$

i.e, for maximum $k \leq n$ will satisfy $d(x_k, x_0) < \varepsilon$ and $d(x_k, y_0) < \varepsilon$ for a very small $\delta > 0$.

Thus we must have,

$$\{k \leq p : d(x_k, x_0) < \varepsilon\} \cap \{k \leq p : d(x_k, y_0) < \varepsilon\} \neq \emptyset$$

a contradiction, as the neighbourhood of x_0 and y_0 are disjoint.

Hence $I-S(A_x) = \{x_0\}$. \square

Definition 3.12. [15] An element x_0 is said to be an I-statistical cluster point of a sequence $x = (x_n)$ if for each $\varepsilon > 0$ and $\delta > 0$

$$\{n \in N: \frac{1}{n} \sum_{k=1}^{n} \{k \leq n : d(x_k, x_0) \geq \varepsilon\} \geq \delta\} \notin I.$$

$I-S(I_x)$ denotes the set of all I-statistical cluster points of the sequence (x_n).

Theorem 3.13. For any sequence $x = (x_n)$, $I-S(I_x)$ is closed.

Proof. Let y_0 be a limit point of the set $I-S(I_x)$ then for any $\varepsilon > 0$, $I-S(I_x) \cap B(y_0, \varepsilon) \neq \emptyset$, where $B(y_0, \varepsilon) = \{z \in X : d(z, y_0) < \varepsilon\}$.

Let $z_0 \in I-S(I_x) \cap B(y_0, \varepsilon)$ and choose $\varepsilon_1 > 0$ such that $B(z_0, \varepsilon_1) \subseteq B(y_0, \varepsilon)$.

Then we have $\{k \leq n : d(x_k, z_0) \geq \varepsilon_1\} \supseteq \{k \leq n : d(x_k, y_0) \geq \varepsilon_1\}$

$\Rightarrow \frac{1}{n} \sum_{k=1}^{n} \{k \leq n : d(x_k, z_0) \geq \varepsilon_1\} \geq \frac{1}{n} \sum_{k=1}^{n} \{k \leq n : d(x_k, y_0) \geq \varepsilon_1\}$

Now for any $\delta > 0$,

$$\{n \in N: \frac{1}{n} \sum_{k=1}^{n} \{k \leq n : d(x_k, z_0) \geq \varepsilon_1\} < \delta\}$$
For any sequence \(x = (x_n), I-S(A_x) \subseteq I-S(\Gamma_x) \).

Proof. Let \(x_0 \in I-S(A_x) \). Then there exist a set \(M = \{m_1 < m_2 < \cdots \} \notin I \) such that, \(st\text{-}lim x_{m_k} = x_0 \Rightarrow \lim_{k \to \infty} \frac{1}{k} \{m_i \leq k : d(x_{m_i}, x_0) \geq \varepsilon\} = 0 \).

Take \(\delta > 0 \), so there exist \(k_0 \in N \) such that for \(n > k_0 \) we have, \(\frac{1}{n} \{m_i \leq n : d(x_{m_i}, x_0) \geq \varepsilon\} < \delta \).

Let \(A = \{n \in N : \frac{1}{n} \{m_i \leq n : d(x_{m_i}, x_0) \geq \varepsilon\} < \delta\} \).

Also, \(A \supseteq M/\{m_1 < m_2 < \cdots < m_{k_0}\} \). Since \(I \) is an admissible ideal and \(M \notin I \), therefore \(A \notin I \). So by definition of \(I \)-statistical cluster point \(x_0 \in I-S(\Gamma_x) \).

Hence the theorem is proved. \(\square \)

Theorem 3.15. If \(x = (x_n) \) and \(y = (y_n) \) be two sequences such that \(\{n \in N : x_n \neq y_n\} \notin I \), then

(i) \(I-S(A_x) = I-S(A_y) \) and (ii) \(I-S(\Gamma_x) = I-S(\Gamma_y) \).

Proof. (i) Let \(x_0 \in I-S(A_x) \). So by definition there exist a set \(K = \{k_1 < k_2 < k_3 < \cdots \} \) of \(N \) such that \(K \notin I \) and \(st\text{-}lim x_{k_n} = x_0 \).

Since \(\{n \in K : x_n \neq y_n\} \subseteq \{n \in N : x_n \neq y_n\} \notin I \),

therefore \(K' = \{n \in K : x_n = y_n\} \notin I \) and \(K' \subseteq K \).

So we have \(st\text{-}lim y_{k_n} = x_0 \).

This shows that \(x_0 \in I-S(A_y) \) and therefore \(I-S(A_x) \subseteq I-S(A_y) \).

By symmetry \(I-S(A_y) \subseteq I-S(A_x) \).

Hence \(I-S(A_y) = I-S(A_x) \).

(ii) Let \(x_0 \in I-S(\Gamma_x) \). So by definition for each \(\varepsilon > 0 \) the set, \(A = \{n \in N : \frac{1}{n} \{k \leq n : d(x_k, x_0) \geq \varepsilon\} < \delta\} \notin I \).

Let \(B = \{n \in N : \frac{1}{n} \{k \leq n : d(y_k, x_0) \geq \varepsilon\} < \delta\} \). We have to prove that \(B \notin I \).

Suppose \(B \in I \). So, \(B^c = \{n \in N : \frac{1}{n} \{k \leq n : d(y_k, x_0) \geq \varepsilon\} \geq \delta\} \in \mathcal{F}(I) \).

By hypothesis the set \(C = \{n \in N : x_n = y_n\} \in \mathcal{F}(I) \).

Therefore \(B^c \cap C \in \mathcal{F}(I) \). Also it is clear that \(B^c \cap C \subseteq A^c \in \mathcal{F}(I) \),

i.e., \(A \in I \), which is a contradiction.

Hence \(B \notin I \) and thus the result is proved. \(\square \)

Theorem 3.16. If \(g \) is a continuous function on \(X \) then it preserves \(I \)-statistical convergence in \(X \).

Proof. Let \(I\text{-}st\lim_{n \to \infty} x_n = \xi \).

Since \(g \) is continuous, then for each \(\varepsilon_1 > 0 \), there exist \(\varepsilon_2 > 0 \) such that if \(x \in B(\xi, \varepsilon_1) \) then \(g(x) \in B(g(\xi), \varepsilon_2) \).
Also we have,
\[C(\varepsilon_1, \delta) = \{ n \in N : \frac{1}{n} \{ k \leq n : d(x_k, \xi) \geq \varepsilon_1 \} < \delta \} \in \mathcal{F}(I) \]

Now, \(\{ k \leq n : d(x_k, \xi) \geq \varepsilon_1 \} \supseteq \{ k \leq n : d(g(x_k), g(\xi)) \geq \varepsilon_2 \} \)
so, \(\frac{1}{n} \{ k \leq n : d(x_k, \xi) \geq \varepsilon_1 \} \geq \frac{1}{n} \{ k \leq n : d(g(x_k), g(\xi)) \geq \varepsilon_2 \} \)

for \(\delta > 0, \) \(\{ n \in N : \frac{1}{n} \{ k \leq n : d(x_k, \xi) \geq \varepsilon_1 \} \| < \delta \} \)
\(\subseteq \{ n \in N : \frac{1}{n} \{ k \leq n : d(g(x_k), g(\xi)) \geq \varepsilon_2 \} \| < \delta \} \in \mathcal{F}(I) \)

since \(C(\varepsilon_1, \delta) \in \mathcal{F}(I) \).
Hence the theorem is proved. \(\square \)

ACKNOWLEDGMENTS

The authors are grateful to CSIR for their financial support to carry out this research work through the Project No. 25(0236)/14/EMR-II.

REFERENCES

5. M. Et, A. Alotaibi, S. A. Mohiuddine, On \((\Delta^m, I) \)-statistical convergence of order \(\alpha \), *The Scientific world journal*, vol 2014.