On I-Statistical Convergence

Shyamal Debnath*a, Debjani Rakshitb

aDepartment of Mathematics, Tripura University, Agartala-799022, India.
bDepartment of FST, ICFAI University, Tripura, Kamalghat, West Tripura-799210, India.

E-mail: shyamalnitamath@gmail.com
E-mail: debjanirakshit88@gmail.com

Abstract. In this paper we investigate the notion of I-statistical convergence and introduce I-st limit points and I-st cluster points of real number sequence and also studied some of its basic properties.

Keywords: I-limit point, I-cluster point, I-statistically Convergent.

1. Introduction

In 1951 Fast [6] and Steinhaus [18] introduced the concept of statistical convergence independently and established a relation with summability. Later on it was further investigated from sequence space point of view by Fridy [8], Salat [19] and many others. Some applications of statistical convergence in number theory and mathematical analysis can be found in [1, 2, 13, 14, 21].

The notion of I-convergence is a generalization of the statistical convergence which was introduced by Kostyrko et al. [12]. They used the notion of an ideal I of subsets of the set N to define such a concept. For an extensive view of this article we refer [4, 11, 20].

The idea of I-convergence was further extended to I-statistical convergence by Savas and Das [16]. Later on more investigation in this direction was done.

*Corresponding Author

Received 04 February 2016; Accepted 27 September 2017
©2018 Academic Center for Education, Culture and Research TMU
by Savas and Das [17], Debnath and Debnath [3], Mursaleen et.al [15], Et et al. [5] and many others [9, 10, 22, 23]. In [16], Savas and Das introduced the I-statistical convergence and I-λ-statistical convergence and the relation between them. Also they studied these concepts in the notion of $[V, \lambda]$-summability method.

In the present paper we return to the view of I-statistical convergence as a sequential limit concept and we extend this concept in a natural way to define a I-statistical analogue of the set of limit points and cluster points of a real number sequence.

2. DEFINITIONS AND PRELIMINARIES

Definition 2.1. [8] If K is a subset of the positive integers N, then K_n denotes the set \{ $k \in K : k \leq n$ \}. The natural density of K is given by $D(K) = \lim_{n \to \infty} \frac{|K_n|}{n}$.

Definition 2.2. [8] A sequence (x_n) is said to be statistically convergent to x_0 if for each $\varepsilon > 0$, the set $A(\varepsilon) = \{ k \in N : d(x_k, x_0) \geq \varepsilon \}$ has natural density zero. x_0 is called the statistical limit of the sequence (x_n) and we write $st\lim_{n \to \infty} x_n = x_0$.

Definition 2.3. [7] If $(x_{k(j)})$ be a subsequence of a sequence $x = (x_n)$ and density of $K = \{ k(j) : j \in N \}$ is zero then $(x_{k(j)})$ is called a thin subsequence. Otherwise $(x_{k(j)})$ is called a non-thin subsequence of x.

x_0 is said to be a statistical limit point of a sequence (x_n), if there exist a non-thin subsequence of (x_n) which converges to x_0.

Let A_x denotes the set of all statistical limit points of the sequence (x_n).

Definition 2.4. [7] x_0 is said to be a statistical cluster point of a sequence $x = (x_n)$, provided that for each $\varepsilon > 0$ the density of the set \{ $k \in N : d(x_k, x_0) < \varepsilon$ \} is not equal to 0.

Let I_x denotes the set of all statistical cluster points of the sequence (x_n).

Definition 2.5. [12] Let X is a non-empty set. A family of subsets $I \subset P(X)$ is called an ideal on X if and only if

(i) $\emptyset \in I$;
(ii) for each $A, B \in I$ implies $A \cup B \in I$;
(iii) for each $A \in I$ and $B \subset A$ implies $B \in I$.

Definition 2.6. [12] Let X is a non-empty set. A family of subsets $F \subset P(X)$ is called a filter on X if and only if

(i) $\emptyset \notin F$;
(ii) for each $A, B \in F$ implies $A \cap B \in F$;
(iii) for each $A \in F$ and $B \supset A$ implies $B \in F$.

An ideal I is called non-trivial if $I \neq \emptyset$ and $X \notin I$. The filter $\mathcal{F} = \mathcal{F}(I) = \{X - A : A \in I\}$ is called the filter associated with the ideal I. A non-trivial ideal $I \subset P(X)$ is called an admissible ideal in X if and only if $I \supset \{\{x\} : x \in X\}$.

Definition 2.7. [12] Let $I \subset P(N)$ be a non-trivial ideal on N. A sequence (x_n) is said to be I-convergent to x_0 if for each $\varepsilon > 0$, the set $A(\varepsilon) = \{k \in N : d(x_k, x_0) \geq \varepsilon\}$ belongs to I. x_0 is called the I-limit of the sequence (x_n) and we write $I\lim_{n \to \infty} x_n = x_0$.

Definition 2.8. [12] x_0 is said to be I-limit point of a sequence $x = (x_n)$ provided that there is a subset $K = \{k_1 < k_2 < \ldots\} \subset N$ such that $K \notin I$ and $\lim x_{k_i} = x_0$.

Let $I(A_x)$ denotes the set of all I-limit points of the sequence x.

Definition 2.9. [12] x_0 is said to be I-cluster point of a sequence $x = (x_n)$ provided that for each $\varepsilon > 0$ the set $\{k \in N : d(x_k, x_0) < \varepsilon\} \notin I$.

Let $I(\Gamma_x)$ denotes the set of all I-cluster points of the sequence x.

Definition 2.10. [16] A sequence $x = (x_n)$ is said to be I-statistically convergent to x_0 if for every $\varepsilon > 0$ and every $\delta > 0$, \[\{n \in N : \frac{1}{n} \sum_{k=1}^{n} [k \leq n : d(x_k, x_0) \geq \varepsilon] \geq \delta\} \in I. \]

x_0 is called I-statistical limit of the sequence (x_n) and we write, $I-st\lim x_n = x_0$.

Throughout the paper we consider I as an admissible ideal.

3. Main Results

Theorem 3.1. If (x_n) be a sequence such that $I-st\lim x_n = x_0$, then x_0 determined uniquely.

Proof. If possible let the sequence (x_n) be I-statistically convergent to two different numbers x_0 and y_0

i.e, for any $\varepsilon > 0$, $\delta > 0$ we have,

$A_1 = \{n \in N : \frac{1}{n} \sum_{k=1}^{n} |k \leq n : d(x_k, x_0) \geq \varepsilon| < \delta\} \in \mathcal{F}(I)$

and $A_2 = \{n \in N : \frac{1}{n} \sum_{k=1}^{n} |k \leq n : d(x_k, y_0) \geq \varepsilon| < \delta\} \in \mathcal{F}(I)$

Therefore, $A_1 \cap A_2 \neq \emptyset$, since $A_1 \cap A_2 \in \mathcal{F}(I)$.

Let $m \in A_1 \cap A_2$ and take $\varepsilon = \frac{d(x_0, y_0)}{3} > 0$

so, \[\frac{1}{m} \sum_{k=1}^{m} |k \leq m : d(x_k, x_0) \geq \varepsilon| < \delta \]

and \[\frac{1}{m} \sum_{k=1}^{m} |k \leq m : d(x_k, y_0) \geq \varepsilon| < \delta \]

i.e, for maximum $k \leq m$ will satisfy $d(x_k, x_0) < \varepsilon$ and $d(x_k, y_0) < \varepsilon$ for a very small $\delta > 0$.

Thus, we must have

$\{k \leq m : d(x_k, x_0) < \varepsilon\} \cap \{k \leq m : d(x_k, y_0) < \varepsilon\} \neq \emptyset$ a contradiction, as the neighbourhood of x_0 and y_0 are disjoint.

Hence the theorem is proved. \[\Box \]
Theorem 3.2. For any sequence \((x_n)\), \(\text{st-lim} x_n = x_0\) implies \(I\text{-st lim} x_n = x_0\).

Proof. Let \(\text{st-lim} x_n = x_0\).

Then for each \(\varepsilon > 0\), the set \(A(\varepsilon) = \{k \leq n : d(x_k, x_0) \geq \varepsilon\}\) has natural density zero.

i.e., \(\lim_{n \to \infty} \frac{1}{n} \{k \leq n : d(x_k, x_0) \geq \varepsilon\} = 0\)

So for every \(\varepsilon > 0\) and \(\delta > 0\),

\(\{n \in N : \frac{1}{n} \{k \leq n : d(x_k, x_0) \geq \varepsilon\} \geq \delta\}\) is a finite set and therefore belongs to \(I\), as \(I\) is an admissible ideal.

Hence \(I\text{-st lim} x_n = x_0\). □

But the converse is not true. We can easily show this from example 3.5.

Example 3.3. Let \(I = \zeta\) be the class of \(A \subset N\) that intersect a finite number of \(\triangle_j\)'s where \(N = \bigcup_{j=1}^\infty \triangle_j\) and \(\triangle_i \cap \triangle_j = \emptyset\) for \(i \neq j\).

Let \(x_n = \frac{1}{n}\) and so \(\lim_{n \to \infty} d(x_n, 0) = 0\). Put \(\epsilon_n = d(x_n, 0)\) for \(n \in N\).

Now define a sequence \((y_n)\) by \(y_n = x_j\) if \(n \in \triangle_j\)

Let \(\eta > 0\). Choose \(\nu \in N\) such that \(\epsilon_\nu < \eta\). Then

\(A(\eta) = \{n : d(y_n, 0) \geq \eta\} \subset \triangle_1 \cup \ldots \cup \triangle_\nu \subset \zeta\).

Now, \(\{k \leq n : d(y_k, 0) \geq \eta\} \subset \{n \in N : d(y_n, 0) \geq \eta\}\)

i.e., \(\frac{1}{n} \{k \leq n : d(y_k, 0) \geq \eta\} \leq \{n \in N : d(y_n, 0) \geq \eta\}\)

so for any \(\delta > 0\),

\(\{n \in N : \frac{1}{n} \{k \leq n : d(y_k, 0) \geq \eta\} \geq \delta\} \subset \{n \in N : d(y_n, 0) \geq \eta\} \subset \zeta\).

Therefore \((y_n)\) is \(\zeta\)-statistically convergent to 0.

But \((y_n)\) is not a statistically convergent.

Theorem 3.4. For any sequence \((x_n)\), \(I\text{-lim} x_n = x_0\) implies \(I\text{-st lim} x_n = x_0\).

Proof. The proof is obvious. But the converse is not true. □

Example 3.5. If we take \(I = I_f\) the sequence \((x_n)\),

where \(x_n = \begin{cases} 0, & n = k^2, k \in N \\ 1, & \text{otherwise} \end{cases}\)

is \(I\)-statistically convergent to 1. But \((x_n)\) is not \(I\)-convergent.

Theorem 3.6. If each subsequence of \((x_n)\) is \(I\)-statistically convergent to \(\xi\) then \((x_n)\) is also \(I\)-statistically convergent to \(\xi\).

Proof. Suppose \((x_n)\) is not \(I\)-statistically convergent to \(\xi\), then there exists \(\varepsilon > 0\) and \(\delta > 0\) such that

\(A = \{n \in N : \frac{1}{n} \{k \leq n : d(x_k, \xi) \geq \varepsilon\} \geq \delta\} \notin I\). Since \(I\) is admissible ideal so \(A\) must be an infinite set.

Let \(A = \{n_1 < n_2 < \ldots < n_m < \ldots\}\). Let \(y_m = x_{n_m}\) for \(m \in N\). Then \((y_m)_{m \in N}\) is a subsequence of \((x_n)\) which is not \(I\)-statistically convergent to \(\xi\), a contradiction. Hence the theorem is proved. □

But the converse is not true. We can easily show this from example 3.5.
Theorem 3.7. Let \((x_n)\) and \((y_n)\) be two sequences then
\(\text{(i) } \text{I-stlim } x_n = x_0 \text{ and } c \in \mathbb{R} \text{ implies I-stlim } cx_n = cx_0.\)
\(\text{(ii) } \text{I-stlim } x_n = x_0 \text{ and I-stlim } y_n = y_0 \text{ implies I-stlim } (x_n + y_n) = x_0 + y_0.\)

Proof. (i) If \(c = 0\), we have nothing to prove.

So we assume that \(c \neq 0\).

Now, \(\frac{1}{n} | \{ k \leq n : d(cx_k, cx_0) \geq \varepsilon \} | = \frac{1}{n} | \{ k \leq n : |c|d(x_k, x_0) \geq \varepsilon \} |
\leq \frac{1}{n} | \{ k \leq n : d(x_k, x_0) \geq \frac{\varepsilon}{|c|} \} | < \delta \)

Therefore, \(\{ n \in N : \frac{1}{n} | \{ k \leq n : d(cx_k, cx_0) \geq \varepsilon \} | < \delta \} \in \mathcal{F}(I) \).

i.e, \(\text{I-stlim } cx_n = cx_0.\)

(ii) We have \(A_1 = \{ n \in N : \frac{1}{n} | \{ k \leq n : d(x_k, x_0) \geq \frac{\varepsilon}{2} \} | < \frac{\delta}{2} \} \in \mathcal{F}(I)\)
and \(A_2 = \{ n \in N : \frac{1}{n} | \{ k \leq n : d(y_k, y_0) \geq \frac{\varepsilon}{2} \} | < \frac{\delta}{2} \} \in \mathcal{F}(I)\).

Since \(A_1 \cap A_2 = \emptyset\), therefore for all \(n \in A_1 \cap A_2\) we have,
\(\frac{1}{n} | \{ k \leq n : d(x_k + y_k, x_0 + y_0) \geq \varepsilon \} | < \delta.
\)
i.e, \(\{ n \in N : \frac{1}{n} | \{ k \leq n : d(x_k + y_k, x_0 + y_0) \geq \varepsilon \} | < \delta \} \in \mathcal{F}(I)\).

Hence \(\text{I-stlim } (x_n + y_n) = (x_0 + y_0).\)

Definition 3.8. A sequence \(x = (x_n)_{n \in N}\) of elements of \(X\) is said to be I*-statistical convergent to \(\xi \in X\) if and only if there exists a set \(M = \{ m_1 < m_2 < \ldots < m_k < \ldots \} \in \mathcal{F}(I)\), such that \(\text{st-lim } d(x_{m_k}, \xi) = 0.\)

Theorem 3.9. If \(I^* - \text{stlim}_{n \to \infty} x_n = \xi\) then \(I^* - \text{stlim}_{n \to \infty} x_n = \xi.\)

Proof. Let \(I^* - \text{stlim}_{n \to \infty} x_n = \xi.\) By assumption there exist a set \(H \in I\) such that for \(M = N \setminus H = \{ m_1 < m_2 < \ldots < m_k < \ldots \}\) we have \(\text{st-lim } x_{m_k} = \xi,\)
i.e, \(\text{lim}_{n \to \infty} \frac{1}{n} | \{ m_k \leq n : d(x_{m_k}, \xi) \geq \varepsilon \} | = 0.\)

so for any \(\delta > 0\), \(\{ n \in N : \frac{1}{n} | \{ m_k \leq n : d(x_{m_k}, \xi) \geq \varepsilon \} | \geq \delta \} \in I\) since \(I\) is an admisible ideal.

Now, \(A(\varepsilon, \delta) = \{ n \in N : \frac{1}{n} | \{ k \leq n : d(x_k, \xi) \geq \varepsilon \} | \geq \delta \}
\subset H \cup \{ n \in N : \frac{1}{n} | \{ m_k \leq n : d(x_{m_k}, \xi) \geq \varepsilon \} | \geq \delta \} \in I\)
i.e, \(I^* - \text{stlim}_{n \to \infty} x_n = \xi.\)

But the converse may not be true.

From example 3.3, we have \(\zeta^* - \text{stlim}_{n \to \infty} y_n = 0.\)

Suppose that \(\zeta^* - \text{stlim}_{n \to \infty} y_n = 0.\) Then there exist a set \(H \in \zeta\) such that for \(M = N \setminus H = \{ m_1 < m_2 < \ldots < m_k < \ldots \}\) we have \(\text{st-lim } y_{m_k} = 0.\) By definition of \(\zeta\) there exist a \(p \in N\) such that \(H \subset \Delta_1 \cup \ldots \cup \Delta_p.\) But then \(\Delta_{p+1} \subset M,\) so for infinitely many \(m_k \in \Delta_{p+1},\)
\(D \{ m_k \in \Delta_{p+1} : d(y_{m_k}, 0) \geq \eta \} = 2^{-(p+1)} > 0 \text{ for } 0 < \eta < \frac{1}{p+1};\)
i.e, \(D \{ m_k \in \Delta_{p+1} : d(y_{m_k}, 0) \geq \eta \} \neq 0,\) which is a contradicts \(\text{st-lim } y_{m_k} = 0.\)

Hence \(\zeta^* - \text{stlim}_{n \to \infty} y_n \neq 0.\)
Definition 3.10. An element \(x_0 \) is said to be an \(I \)-statistical limit point of a sequence \(x = (x_n) \) provided that for each \(\varepsilon > 0 \) there is a set \(M = \{m_1 < m_2 < \ldots \} \subset N \) such that \(M \notin I \) and st-lim \(x_{m_k} = x_0 \).

\(I - S (A_x) \) denotes the set of all \(I \)-statistical limit points of the sequence \((x_n)\).

Theorem 3.11. If \((x_n)\) be a sequence such that \(I - \lim x_n = x_0 \) then \(I - S (A_x) = \{x_0\} \).

Proof. Since \((x_n)\) is \(I \)-statistically convergent to \(x_0 \), so for each \(\varepsilon > 0 \) and \(\delta > 0 \) the set,

\[A = \{n \in N : \frac{1}{n} \{k \leq n : d(x_k,x_0) \geq \varepsilon\} \geq \delta\} \in I, \text{ where } I \text{ is an admisible ideal.} \]

Suppose \(I - S (A_x) \) contains \(y_0 \) different from \(x_0 \), i.e, \(y_0 \in I - S (A_x) \).

So there exist a \(M \subset N \) such that \(M \notin I \) and st-lim \(X_{m_k} = y_0 \).

Let \(B = \{n \in M : \frac{1}{n} \{k \leq n : d(x_k,y_0) \geq \varepsilon\} \geq \delta\} \). So \(B \) is a finite set and therefore \(B \in I \) and so \(B^c = \{n \in M : \frac{1}{n} \{k \leq n : d(x_k,y_0) \geq \varepsilon\} < \delta\} \in \mathcal{F} (I) \).

Again let \(A_1 = \{n \in M : \frac{1}{n} \{k \leq n : d(x_k,x_0) \geq \varepsilon\} \geq \delta\} \). So \(A_1 \subset A \in I \).

i.e, \(A_1 \in \mathcal{F} (I) \). Therefore \(A_1 \cap B^c \neq \emptyset \), since \(A_1 \cap B^c \in \mathcal{F} (I) \)

Let \(p \in A_1 \cap B^c \) and take \(\varepsilon = \frac{d(x_k,y_0)}{p} > 0 \)

so \(\frac{1}{n} \{k \leq p : d(x_k,x_0) \geq \varepsilon\} \leq \delta \)

and \(\frac{1}{n} \{k \leq p : d(x_k,y_0) \geq \varepsilon\} \leq \delta \),

i.e, for maximum \(k \leq p \) will satisfy \(d(x_k,x_0) < \varepsilon \) and \(d(x_k,y_0) < \varepsilon \) for a very small \(\delta > 0 \).

Thus we must have,

\[\{k \leq p : d(x_k,x_0) < \varepsilon\} \cap \{k \leq p : d(x_k,y_0) < \varepsilon\} \neq \emptyset \]

a contradiction, as the neighbourhood of \(x_0 \) and \(y_0 \) are disjoint.

Hence \(I - S (A_x) = \{x_0\} \).

Definition 3.12. [15] An element \(x_0 \) is said to be an \(I \)-statistical cluster point of a sequence \(x = (x_n) \) if for each \(\varepsilon > 0 \) and \(\delta > 0 \)

\[\{n \in N : \frac{1}{n} \{k \leq n : d(x_k,x_0) \geq \varepsilon\} \leq \delta\} \notin I. \]

\(I - S (\Gamma_x) \) denotes the set of all \(I \)-statistical cluster points of the sequence \((x_n)\).

Theorem 3.13. For any sequence \(x = (x_n) \), \(I - S (\Gamma_x) \) is closed.

Proof. Let \(y_0 \) be a limit point of the set \(I - S (\Gamma_x) \) then for any \(\varepsilon > 0 \), \(I - S (\Gamma_x) \cap B (y_0, \varepsilon) \neq \emptyset \), where \(B (y_0, \varepsilon) = \{z \in R : d(z,y_0) < \varepsilon\} \)

Let \(z_0 \in I - S (\Gamma_x) \cap B (y_0, \varepsilon) \) and choose \(\varepsilon_1 > 0 \) such that \(B (z_0, \varepsilon_1) \subseteq B (y_0, \varepsilon) \).

Then we have \(\{k \leq n : d(x_k,z_0) \geq \varepsilon_1\} \supseteq \{k \leq n : d(x_k,y_0) \geq \varepsilon\} \)

\[\Rightarrow \frac{1}{n} \{k \leq n : d(x_k,z_0) \geq \varepsilon_1\} \geq \frac{1}{n} \{k \leq n : d(x_k,y_0) \geq \varepsilon\} \]

Now for any \(\delta > 0 \),

\[\{n \in N : \frac{1}{n} \{k \leq n : d(x_k,z_0) \geq \varepsilon_1\} < \delta\} \]
\[\subseteq \{ n \in N : \frac{1}{n} \{ k \leq n : d(x_k, y_0) \geq \varepsilon \} < \delta \} \]

Since \(z_0 \in I-S(\Gamma_x) \) therefore, \(\{ n \in N : \frac{1}{n} \{ k \leq n : d(x_k, y_0) \geq \varepsilon \} < \delta \} \notin I \).

i.e, \(y_0 \in I-S(\Gamma_x) \). Hence the theorem is proved. \(\square \)

Theorem 3.14. For any sequence \(x = (x_n) \), \(I-S(A_x) \subseteq I-S(\Gamma_x) \).

Proof. Let \(x_0 \in I-S(A_x) \). Then there exist a set \(M = \{ m_1 < m_2 < ... \} \notin I \) such that, st-lim \(x_m = x_0 \Rightarrow \lim_{k \to +\infty} \frac{1}{n} \{ m_i \leq n : d(x_{m_i}, x_0) \geq \varepsilon \} = 0 \).

Take \(\delta > 0 \), so there exist \(k_0 \in N \) such that for \(n > k_0 \) we have,

\[\frac{1}{n} \{ m_i \leq n : d(x_{m_i}, x_0) \geq \varepsilon \} < \delta. \]

Let \(A = \{ n \in N : \frac{1}{n} \{ m_i \leq n : d(x_{m_i}, x_0) \geq \varepsilon \} < \delta \}. \)

Also, \(A \supseteq M/ \{ m_1 < m_2 < ... < m_{k_0} \} \). Since \(I \) is an admissible ideal and \(M \notin I \), therefore \(A \notin I \). So by definition of \(I \)-statistical cluster point \(x_0 \in I-S(\Gamma_x) \).

Hence the theorem is proved. \(\square \)

Theorem 3.15. If \(x = (x_n) \) and \(y = (y_n) \) be two sequences such that \(\{ n \in N : x_n \neq y_n \} \notin I \), then

(i) \(I-S(A_x) = I-S(A_y) \) and (ii) \(I-S(\Gamma_x) = I-S(\Gamma_y) \).

Proof. (i) Let \(x_0 \in I-S(A_x) \). So by definition there exist a set \(K = \{ k_1 < k_2 < k_3 < ... \} \) of \(N \) such that \(K \notin I \) and \(\text{st-lim } x_{k_n} = x_0 \).

Since \(\{ n \in K : x_n \neq y_n \} \subset \{ n \in N : x_n \neq y_n \} \notin I \), therefore \(K' = \{ n \in K : x_n = y_n \} \notin I \) and \(K' \subseteq K \).

So we have \(\text{st-lim } y_{k_n} = x_0 \).

This shows that \(x_0 \in I-S(A_y) \) and therefore \(I-S(A_x) \subseteq I-S(A_y) \).

By symmetry \(I-S(A_y) \subseteq I-S(A_x) \).

Hence \(I-S(A_y) = I-S(A_x) \).

(ii) Let \(x_0 \in I-S(\Gamma_x) \). So by definition for each \(\varepsilon > 0 \) the set,

\[A = \{ n \in N : \frac{1}{n} \{ k \leq n : d(x_k, x_0) \geq \varepsilon \} < \delta \} \notin I. \]

Let \(B = \{ n \in N : \frac{1}{n} \{ k \leq n : d(y_k, x_0) \geq \varepsilon \} < \delta \} \). We have to prove that \(B \notin I \).

Suppose \(B \in I \). So, \(B^c = \{ n \in N : \frac{1}{n} \{ k \leq n : d(y_k, x_0) \geq \varepsilon \} \geq \delta \} \in F(I) \).

By hypothesis the set \(C = \{ n \in N : x_n = y_n \} \in F(I) \).

Therefore \(B^c \cap C \in F(I) \). Also it is clear that \(B^c \cap C \subseteq A^c \in F(I) \), i.e, \(A \in I \), which is a contradiction.

Hence \(B \notin I \) and thus the result is proved. \(\square \)

Theorem 3.16. If \(g \) is a continuous function on \(X \) then it preserves \(I \)-statistical convergence in \(X \).

Proof. Let \(I \text{-st lim}_{n \to +\infty} x_n = \xi \).

Since \(g \) is continuous, then for each \(\varepsilon_1 > 0 \), there exist \(\varepsilon_2 > 0 \) such that if \(x \in B(\xi, \varepsilon_1) \) then \(g(x) \in B(g(\xi), \varepsilon_2) \).
Also we have,
\[C(\varepsilon_1, \delta) = \left\{ n \in N : \frac{1}{n} \left| \left\{ k \leq n : d(x_k, \xi) \geq \varepsilon_1 \right\} \right| < \delta \right\} \in F(I) \]
Now, \(\left\{ k \leq n : d(x_k, \xi) \geq \varepsilon_1 \right\} \supseteq \left\{ k \leq n : d(g(x_k), g(\xi)) \geq \varepsilon_2 \right\} \)
so, \(\frac{1}{n} \left| \left\{ k \leq n : d(x_k, \xi) \geq \varepsilon_1 \right\} \right| > \frac{1}{n} \left| \left\{ k \leq n : d(g(x_k), g(\xi)) \geq \varepsilon_2 \right\} \right| \)
for \(\delta > 0, \left\{ n \in N : \frac{1}{n} \left| \left\{ k \leq n : d(x_k, \xi) \geq \varepsilon_1 \right\} \right| < \delta \right\} \)
since \(C(\varepsilon_1, \delta) \in F(I) \).
Hence the theorem is proved. \(\square \)

ACKNOWLEDGMENTS

The authors are grateful to CSIR for their financial support to carry out this research work through the Project No. 25(0236)/14/EMR-II.

REFERENCES

5. M. Et, A. Alotaibi, S. A. Mohiuddine, On \((\Delta^m, I) \)-statistical convergence of order \(\alpha \), *The Scientific world journal*, vol 2014.