Fractal Dimension of Graphs of Typical Continuous Functions on Manifolds

Reza Mirzaie

Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.
E-mail: r.mirzaei@sci.ikiu.ac.ir

Abstract. If M is a compact Riemannian manifold and $C(M, R)$ is the set of all real valued continuous functions defined on M, then we show that for a typical element $f \in C(M, R)$, $\dim_B(\text{graph}(f))$ is as big as possible and for a typical $f \in C(M, R)$, $\dim_B(\text{graph}(f))$ is as small as possible.

Keywords: Manifold, Fractal, Box dimension.

1. Introduction

A subset A of a topological space X is called to be comeagre, if there is a countable collection $\{W_i\}$ of open and dense subsets of X such that $\bigcap_i W_i \subset A$. Complement of a comeagre subset is called a meagre subset. A meagre subset can be considered as subset of a countable union of nowhere dense subsets and they are negligible in some sense. So, we say that some property holds for typical elements of X, if it holds on a comeagre subset. Study of properties of typical elements in X is a classic and interesting problem. One can find many papers dealing with typical elements when X is supposed to be the space $C(W, R)$ of all continuous functions defined on a compact topological space W, endowed with the metric topology defined by the metric $d(f, g) = \sup_{x \in W} |f(x) - g(x)|$. A well known theorem due to Banach [1], states that typical elements of $C([0, 1], R)$ are nowhere differentiable, so the image or graph of a typical f in $C([0, 1], R)$ is a
fractal set. Calculating fractal dimensions (including box dimension, Hausdorff dimension, packing dimension, etc) of the image of \(f \) or \(\text{graph}(f) \) is a well known problem and one can find many results in the literature. It is proved in [6] that for a typical \(g \in C([0,1], R) \), \(\text{dim}_H(\text{graph}(g)) = 1 \). It is proved in [3] that if \(W \subset R \) is bounded with only finitely many isolated points and \(X = \{ f \in C(W, R) : f \text{ is uniformly continuous} \} \), then for a typical \(f \in X \), \(\text{dim}_B(\text{graph}(f)) \) is as big as possible and \(\text{dim}_B(\text{graph}(f)) \) is as small as possible. In the previous paper [7] we generalized Banach’s theorem to the set \(C(M, R) \), where \(M \) is a compact Riemannian manifold. Now, we show in the present paper that the main results of [3] about upper and lower box dimensions are also true when \(W \) is replaced by a compact Riemannian manifold \(M \).

2. Preliminaries

In what follows, \(M \) is a compact Riemannian manifold with the Riemannian metric \(d \), and \(C(M, R) \) will denote the collection of all continuous functions defined on \(M \) endowed with the metric \(d \) defined by \(d(f, g) = \max_{x \in M} |f(x) - g(x)| \).

If \((X, d_1) \) and \((Y, d_2) \) are metric spaces then we will consider the usual product metric \(d \) on \(X \times Y \) defined by \(d((x_1, y_1), (x_2, y_2)) = \sqrt{d_1^2(x_1, x_2) + d_2^2(y_1, y_2)} \).

If \(E \) is a bounded subset of \(M \) then the upper box dimension of \(E \) is defined by

\[
\text{dim}_B(E) = \limsup_{\delta \to 0} \frac{N_\delta(E)}{-\log \delta}.
\]

Where, \(N_\delta(E) \) is the minimum number of balls of radius \(\delta \) (or minimum number of sets of diameter at most \(\delta \)) covering \(E \) (The lower box dimension \(\text{dim}_B(E) \) is defined in similar way). Another definition for dimension, which is widely used in fractal geometry is Hausdorff dimension (see [4]).

Now, we mention some facts which we need in the proofs of theorems.

Remark 2.1. If \(E \) is a bounded subset of \(R^m \) then \(\text{dim}_B(E \times I^n) = \text{dim}_B(E) + n \). The similar result is true if we replace \(\text{dim}_B \) by \(\text{dim}_B \) or \(\text{dim}_H \).

Proof. We give the proof for \(\text{dim}_B(E \times I) = \text{dim}_B(E) + 1 \). The general case comes by induction. If \(\delta > 0 \) then the smallest number of intervals of length \(\delta \) covering \(I \) is equal to \(\lfloor \frac{1}{\delta} \rfloor \) or \(\lceil \frac{1}{\delta} \rceil + 1 \). If \(U_\delta(I_\delta) \) is a bounded subset of \(R^m \) (\(I \)) with diameter \(\delta \), then the diameter of \(U_\delta \times I_\delta \) is equal to \(\sqrt{2} \delta \). So,

\[
N_{\sqrt{2}\delta}(E \times I) \leq (\lfloor \frac{1}{\delta} \rfloor + 1)N_\delta(E)
\]
Then we have
\[
\overline{\dim}_B(E \times I) = \limsup_{\delta \to 0} \frac{\log(N_{\sqrt{\delta}}(E \times I))}{-\log(\sqrt{2\delta})} \\
\leq \limsup_{\delta \to 0} \frac{\log(\frac{1}{2} \cdot 1 + 1)N_{\delta}(E)}{-\log(\sqrt{2\delta})} \\
= 1 + \limsup_{\delta \to 0} \frac{N_{\delta}(E)}{-\log\delta} = 1 + \overline{\dim}_B(E)
\]
Also we know that \(\overline{\dim}_B(E \times I^n) \geq \overline{\dim}_B(E) + n \) (see [4]). So we get the equality. \(\square\)

Remark 2.2. If \(M \) is a compact metric space and \(f : M \to R \) is a locally lipschitz function, then \(f \) is globally lipschitz.

Proof. Since \(f \) is locally lischitz and \(M \) is compact, then there is a finite collection of open cover of balls \(B_i, 1 \leq i \leq m \), and constants \(L_i \) such that
\[
d(f(x), f(y)) \leq L_id(x, y), \quad x, y \in B_i
\]
Since \(M \) is compact then the function \(F : M \times M \to R \), defined by \(F(x, y) = d(f(x), f(y)) \) has a maximum which we denote it by \(N \). Let \(\delta \) be the lebesgue’s number related to the covering \(B_i \) of \(M \), and put \(L = \max\{\frac{N}{\delta}, L_i : i\} \). Then for given \(x, y \in M \), either there is a \(B_i \) such that \(x, y \in B_i \) or \(d(x, y) \geq \delta \). In the first case we have \(d(f(x), f(y)) \leq Ld(x, y) \). In the second case we have
\[
d(f(x), f(y)) \leq N \leq \frac{N}{\delta}d(x, y) \leq Ld(x, y)
\]
\(\square\)

If \(M \) and \(N \) are compact differentiable manifolds and \(f : M \to N \) is continuously differentiable, then \(f \) is a lipschitz function. So, we get the following remark easily.

Remark 2.3. If \(M \) and \(N \) are compact Riemannian manifolds and \(\phi : M \to N \) is a map such that \(\phi \) and its inverse are continuously differentiable, then the map \(\psi : M \times R \to N \times R \) defined by \(\psi(x, y) = (\phi(x), y) \) is bilipschitz.

Remark 2.4. If \(M \) is a compact Riemannian manifold, \(f : M \to R \) is continuously differentiable, \(g : M \to R \) is continuous and \(k = f + g \), then \(\overline{\dim}_B(graph(k)) = \overline{\dim}_B(graph(g)) \). The same result is true for \(\overline{\dim}_B \).

Proof. Consider the map \(\psi : graph(g) \to graph(k) \), defined by \(\psi(x, g(x)) = (x, k(x)) \). We show that \(\psi \) and \(\psi^{-1} \) are Lipschitz functions. We have
\[
d(\psi(x, g(x)), \psi(y, g(y))) = d((x, k(x)), (y, k(y))) = \sqrt{d^2(x, y) + (k(x) - k(y))^2}
\]
Since \(f \) is continuously differentiable, it is locally Lipschitz and by Remark 2.2, it must be Lipschitz. Then, there exist a positive number \(N \) such that
\[
|f(x) - f(y)| \leq Nd(x, y), \quad x, y \in M.
\]
Thus
\[
(k(x) - k(y))^2 = (f(x) - f(y) + g(x) - g(y))^2 \leq (Nd(x, y) + |g(x) - g(y)|)^2
\]
\[
= N^2d^2(x, y) + 2Nd(x, y)|g(x) - g(y)| + |g(x) - g(y)|^2
\]
\[
\leq N^2d^2(x, y) + N^2d^2(x, y) + |g(x) - g(y)|^2 + |g(x) - g(y)|^2
\]
\[
= 2N^2d^2(x, y) + 2|g(x) - g(y)|^2
\]
Then
\[
d(\psi(x, g(x)), \psi(y, g(y))) \leq \sqrt{d^2(x, y) + 2N^2d^2(x, y) + 2|g(x) - g(y)|^2}
\]
\[
\leq \sqrt{2(N^2 + 1)d^2(x, y) + (g(x) - g(y))^2} = \sqrt{2(N^2 + 1)d((x, g(x)), (y, g(y)))}.
\]
Therefore, \(\psi \) is Lipschitz. In a similar way we can show that \(\psi^{-1} \) is Lipschitz.

Remark 2.5. (generalized Stone-Weierstrass Theorem) Suppose \(X \) is a compact Hausdorff space and \(A \) is a subalgebra of \(C(X, \mathbb{R}) \) which contains a nonzero constant function. Then \(A \) is dense in \(C(X, \mathbb{R}) \) if and only if it separates points.

3. Results

Lemma 3.1. If \(f : M \to \mathbb{R} \) is continuously differentiable and \(\epsilon > 0 \), then there exists \(g \in C(M, \mathbb{R}) \) such that \(d(f, g) < \epsilon \) and \(\overline{\text{dim}}_{B}(\text{graph}(g)) = n + 1 \), \(n = \text{dim}M \).

Proof. Let \(N \) be a compact Riemannian manifold. Consider a function \(g_1 \in C(I, \mathbb{R}^+) \) such that \(\overline{\text{dim}}_{B}(\text{graph}(g_1)) = 2 \) and put
\[
g_2 : I^n = I \times I^{n-1} \to \mathbb{R}^+, \quad g_2(t_1, t_2) = g_1(t_1).
\]
Then
\[
\text{graph}(g_2) = \{(t_1, t_2, g_1(t_1)), (t_1, t_2) \in I \times I^{n-1}\} \approx
\]
\[
\{(t_1, g_1(t_1), t_2), (t_1, t_2) \in I \times I^{n-1}\} = \text{graph}(g_1) \times I^{n-1}.
\]
So, by Remark 2.1
\[
\overline{\text{dim}}_{B}(\text{graph}(g_2)) = 2 + n - 1 = n + 1.
\]
Consider a chart \((U, \phi) \) on \(N \) such that \(I^n \subset \phi(U) \) and put \(W = \phi^{-1}(I^n) \). Now, put \(g_3 = g_2 \circ \phi : W \to \mathbb{R} \). By Remark 2.3, the function \(\psi : W \times \mathbb{R} \to I^n \times \mathbb{R} \), defined by \(\psi(x, y) = (\phi(x), y) \) is bilipschitz. Since \(\psi(\text{graph}(g_3)) = \text{graph}(g_2) \), then \(\overline{\text{dim}}_{B}(\text{graph}(g_3)) = n + 1 \). Extend the function \(g_3 \) to a continuous function \(g_4 : N \to \mathbb{R} \). Since \(\text{graph}(g_3) \subset \text{graph}(g_4) \) then \(\overline{\text{dim}}_{B}(\text{graph}(g_4)) = n + 1 \). Now put \(N = \text{graph}(f) \). We know that \(N \) is a submanifold of \(M \times \mathbb{R} \), which with the induced metric is a riemannian manifold. Given \(\delta > 0 \), the function \(g_5 = \delta g_4 : N \to \mathbb{R} \) is a positive function such that \(\overline{\text{dim}}(\text{graph}(g_5)) = \overline{\text{dim}}(\text{graph}(g_4)) = n + 1 \).
Fractal dimension of graphs of typical continuous functions on manifolds

97

By compactness condition we can choose \(\delta \) small enough such that for all \(y = (x, f(x)) \in N, g_5(y) < \epsilon \).

Now, consider the function \(g_6 : M \to R \), defined by \(g_6(x) = g_5(x, f(x)) \) and put \(\psi : M \times R \to N \times R, \psi(x, y) = ((x, f(x)), y) \). We have

\[
\psi : \text{graph}(g_6) = \text{graph}(g_5)
\]

By Remark 2.3, \(\psi \) is bilipshitz, so

\[
\overline{\dim}_B(\text{graph}(g_6)) = \overline{\dim}_B(\text{graph}(g_5)) = n + 1
\]

Put \(g : M \to R, g(x) = f(x) + g_6(x) \). Since \(f \) is differentiable, then by Remark 2.4, \(\overline{\dim}_B(\text{graph}(g)) = \overline{\dim}_B(\text{graph}(g_6)) = n + 1 \). Also, we have \(d(f, g) = \max_{x \in M} |g(x) - f(x)| = \max_{x \in M} |g_6(x)| = \max_{x \in M} g_5(x, f(x)) < \epsilon \). \(\square \)

Theorem 3.2. Let \(M \) be a compact Riemannian manifold, \(\dim(M) = n \), and \(C(M, R) \) be the set of all continuous functions defined on \(M \). Then for typical members \(f \) in \(C(M, R) \), \(\overline{\dim}_B(\text{graph}(f)) = n \).

Proof. Put

\[
A = \{ f \in C(M, R) : \dim_B(\text{graph}(f)) = n \}.
\]

Let \(f \in A \) and consider a positive number \(\epsilon > 0 \) and \(g \in C(M, R) \) such that \(d(f, g) < \epsilon \). If a collection of balls of radius \(\delta \) in \(M \times R \) covers \(\text{graph}(f) \) and \(\epsilon < \delta \), then the same number of balls with radius \(2\delta \) covers \(\text{graph}(g) \). Since each ball of radius \(2\delta \) can be covered by \(4^{n+1} \) balls of radius \(\delta \), then

\[
N_\delta(\text{graph}(g)) \leq 4^{n+1}N_\delta(\text{graph}(f))
\]

If \(\delta < 1 \) then

\[
\frac{\log N_\delta(\text{graph}(g))}{-\log(\delta)} \leq (n + 1) \frac{\log 4}{-\log(\delta)} + \frac{\log N_\delta(\text{graph}(f))}{-\log(\delta)}
\]

Since \(\dim_B(\text{graph}(f)) = n \) and \(\lim_{\delta \to 0} \frac{\log 4}{-\log(\delta)} = 0 \), then for each \(k \in \mathbb{N} \) there exists \(\delta = \delta(f, k) > 0 \) such that

\[
\frac{\log N_\delta(\text{graph}(g))}{-\log(\delta)} \leq (n + 1) \frac{\log 4}{-\log(\delta)} + \frac{\log N_\delta(\text{graph}(f))}{-\log(\delta)} < n + \frac{1}{k}
\]

Put

\[
U_{f,k} = \{ g \in C(M, R) : d(f, g) < \delta(f, k) \}
\]

and

\[
W_k = \bigcup_{(f \in A)} U_{f,k}
\]

\(W_{f,k} \) is an open set in \(C(M, R) \) such that for each \(g \in W_k \),

\[
\dim_B(\text{graph}(g)) < n + \frac{1}{k}
\]

Clearly \(A \subset \bigcap_k W_k \). If \(g \in \bigcap_k W_k \) then \(\dim_B(\text{graph}(g)) \leq n \), and since for all \(g \in C(M, R) \), \(n \leq \dim_B(\text{graph}(g)) \) then \(\dim_B(\text{graph}(g)) = n \). Thus
Now, we show that W_k is dense for all k, then the proof will be complete. Given $g \in C(M, R)$ and $\epsilon > 0$. By Remark 2.5, collection of differentiable functions is dense, so there exists a differentiable function $f : M \to R$ such that $d(f, g) < \epsilon$. But for a differentiable function f, $\dim_B(\text{graph}(f)) = \overline{\dim}_B(\text{graph}(f)) = n$. So $f \in A \subset W_k$.

Lemma 3.3. If $g \in C(M, R)$ and $\epsilon > 0$, then there exists $k \in C(M, R)$ such that $d(g, k) < \epsilon$ and $\dim_B(\text{graph}(k)) = n + 1$.

Proof. By Remark 2.5, for a given $\delta > 0$ there exists a differentiable function $f \in C(M, R)$ such that $d(f, g) < \delta$. Consider a function $f_1 \in C(M, R)$ such that $\overline{\dim}_B(\text{graph}(f_1)) = n + 1$. Since M is compact, for a given number $\delta_2 > 0$ there is a positive number δ_1 such that $|\delta_1 f_1(x)| < \delta_2$ for all $x \in M$. Now, put $k = f + \delta_1 f_1$. By Remark 2.4, we have

$$\overline{\dim}_B(\text{graph}(k)) = \overline{\dim}_B(\text{graph}(\delta_1 f_1)) = \overline{\dim}_B(\text{graph}(f_1)) = n + 1.$$

If we choose δ and δ_2 smaller than $\frac{\delta_1}{2}$, then

$$d(g, k) \leq d(g, f) + d(f, k) \leq \delta + \delta_1 |f_1| \leq \delta + \delta_2 < \epsilon.$$

\[\square\]

Theorem 3.4. Let M be a compact Riemannian manifold, $\dim(M) = n$, and $C(M, R)$ be the set of all continuous functions defined on M. Then for typical members f in $C(M, R)$, $\overline{\dim}_B(\text{graph}(f)) = n + 1$.

Proof. Clearly for all $f \in C(M, R)$, $\overline{\dim}_B(\text{graph}(f)) \leq n + 1$. Put

$$A = \{f \in C(M, R) : \overline{\dim}_B(\text{graph}(f)) = n + 1\}.$$

Consider $f \in A$, a positive number $\epsilon > 0$ and $g \in C(M, R)$ such that $d(f, g) < \epsilon$. If a collection of balls of radius δ in $M \times R$ covers $\text{graph}(g)$ and $\epsilon < \delta$, then the same number of balls with radius 2δ covers $\text{graph}(f)$. Since each ball of radius 2δ can be covered by 4^{n+1} balls of radius δ, then

$$N_{\delta}(\text{graph}(f)) < 4^{n+1} N_{\delta}(\text{graph}(g))$$

So, if $\delta < 1$ then

$$\frac{\log N_{\delta}(\text{graph}(f))}{-\log(\delta)} < (n + 1) \frac{\log 4}{-\log \delta} + \frac{\log N_{\delta}(\text{graph}(g))}{-\log(\delta)}$$

Since $\overline{\dim}_B(\text{graph}(f)) = n + 1$, then for each $k \in N$ there is $\delta(k) = \delta(f, k) > 0$ such that

$$n + 1 - \frac{1}{k} < \frac{\log N_{\delta(k)}(\text{graph}(f))}{-\log(\delta(k))} - (n + 1) \frac{\log 4}{-\log \delta(k)} < \frac{\log N_{\delta(k)}(\text{graph}(g))}{-\log(\delta(k))}$$

Put

$$U_{f, k} = \{g \in C(M, R) : d(f, g) < \delta(f, k)\}$$
and
\[W_k = \bigcup_{f \in A} U_{f,k} \]

\(W_k \) is an open set in \(C(M,R) \) such that for each \(g \in W_k \),
\[\overline{\dim}_B(\text{graph}(g)) > n + 1 - \frac{1}{k} \]

Clearly
\[\bigcap_k W_k = A \]

Now it remains to show that \(W_k \) is dense for all \(k \). Let \(h \in C(M,R) \) and \(\epsilon > 0 \) we show that there exists \(g \in W_k \) such that \(d(h,g) < \epsilon \). Since by Remark 2.5, the collection of all differentiable functions is dense in \(C(M,R) \) then there exists a differentiable function \(g_1 \in C(M,R) \) such that \(d(h,g_1) < \frac{\epsilon}{2} \). Consider a function \(f \in A \subset W_k \). Since \(f \) is continuous and \(M \) is compact then there exists \(\delta > 0 \) such that \(|\delta f(x)| < \frac{\epsilon}{2} \) for all \(x \in M \). Now, put \(g = g_1 + \delta f \). Since \(g_1 \) is differentiable then \(\overline{\dim}_B(\text{graph}(g)) = \overline{\dim}_B(\text{graph}\delta f) = \overline{\dim}_B(\text{graph}(f)) = n + 1 \). So, \(g \in A \subset W_k \) and we have
\[d(h,g) \leq d(h,g_1) + d(g_1,g) < \frac{\epsilon}{2} + \max_{x \in M} |\delta f(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \]

Acknowledgments
The author wish to thank the referee for his/her helpful comments.

References