Egoroff Theorem for Operator-Valued Measures in Locally Convex Cones

Davood Ayaseha,\ast, Asghar Ranjbarib

aDepartment of Pure Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran.

bDepartment of Pure Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran.

E-mail: d.ayaseh@tabrizu.ac.ir
E-mail: ranjbari@tabrizu.ac.ir

Abstract. In this paper, we define the almost uniform convergence and the almost everywhere convergence for cone-valued functions with respect to an operator valued measure. We prove the Egoroff theorem for \(\mathcal{P} \)-valued functions and operator valued measure \(\theta : \mathcal{R} \to \mathcal{L}(\mathcal{P}, \mathcal{Q}) \), where \(\mathcal{R} \) is a \(\sigma \)-ring of subsets of \(X \neq \emptyset \), \((\mathcal{P}, V) \) is a quasi-full locally convex cone and \((\mathcal{Q}, W) \) is a locally convex complete lattice cone.

Keywords: Locally convex cones, Egoroff Theorem, Operator valued measure.

2000 Mathematics subject classification: 28A12, 46A03.

1. Introduction

The theory of locally convex cones as developed in [7] and [9] uses an order theoretical concept or convex quasi-uniform structure to introduce a topological structure on a cone. For recent researches see [1, 2, 3, 4, 8].

A cone is a set \(\mathcal{P} \) endowed with an addition and a scalar multiplication for nonnegative real numbers. The addition is assumed to be associative and commutative, and there is a neutral element \(0 \in \mathcal{P} \). For the scalar multiplication the usual associative and distributive properties hold, that is \(\alpha(\beta a) = (\alpha\beta)a \),

\ast Corresponding Author

Received 02 January 2016; Accepted 28 June 2016
©2017 Academic Center for Education, Culture and Research TMU
\[(\alpha + \beta)a = \alpha a + \beta a,\ \alpha(a + b) = \alpha a + \alpha b,\ 1a = a \text{ and } 0a = 0 \text{ for all } a, b \in \mathcal{P}\]
and \(\alpha, \beta \geq 0\).

An ordered cone \(\mathcal{P}\) carries a reflexive transitive relation \(\leq\) such that \(a \leq b\) implies \(a + c \leq b + c\) and \(\alpha a \leq \alpha b\) for all \(a, b, c \in \mathcal{P}\) and \(\alpha \geq 0\). The extended real numbers \(\mathbb{R} = \mathbb{R} \cup \{+\infty\}\) is a natural example of an ordered cone with the usual order and algebraic operations in \(\mathbb{R}\), in particular \(0 \cdot (+\infty) = 0\).

A subset \(\mathcal{V}\) of the ordered cone \(\mathcal{P}\) is called an abstract neighborhood system, if the following properties hold:

1. \(0 < v\) for all \(v \in \mathcal{V}\);
2. for all \(u, v \in \mathcal{V}\) there is a \(w \in \mathcal{V}\) with \(w \leq u\) and \(w \leq v\);
3. \(u + v \in \mathcal{V}\) and \(\alpha v \in \mathcal{V}\) whenever \(u, v \in \mathcal{V}\) and \(\alpha > 0\).

For every \(a \in \mathcal{P}\) and \(v \in \mathcal{V}\) we define

\[v(a) = \{b \in \mathcal{P} | b \leq a + v\} \quad \text{resp.} \quad (a)v = \{b \in \mathcal{P} | a \leq b + v\},\]
to be a neighborhood of \(a\) in the upper, resp. lower topologies on \(\mathcal{P}\). Their common refinement is called the symmetric topology generated by the neighborhoods \(v^\circ(a) = v(a) \cap (a)v\). If we suppose that all elements of \(\mathcal{P}\) are bounded below, that is for every \(a \in \mathcal{P}\) and \(v \in \mathcal{V}\) we have \(0 \leq a + \lambda v\) for some \(\lambda > 0\), then the pair \((\mathcal{P}, \mathcal{V})\) is called a full locally convex cone. A locally convex cone \((\mathcal{P}, \mathcal{V})\) is a subcone of a full locally convex cone, not necessarily containing the abstract neighborhood system \(\mathcal{V}\). For example, the extended real number system \(\mathbb{R} = \mathbb{R} \cup \{+\infty\}\) endowed with the usual order and algebraic operations and the neighborhood system \(\mathcal{V} = \{\varepsilon \in \mathbb{R} | \varepsilon > 0\}\) is a full locally convex cone.

A subset \(B\) of the locally convex cone \((\mathcal{P}, \mathcal{V})\) is called bounded below whenever for every \(v \in \mathcal{V}\) there is \(\lambda > 0\), such that \(0 \leq b + \lambda v\) for all \(b \in B\).

For cones \(\mathcal{P}\) and \(\mathcal{Q}\) a mapping \(T : \mathcal{P} \to \mathcal{Q}\) is called a linear operator if \(T(a + b) = T(a) + T(b)\) and \(T(\alpha a) = \alpha T(a)\) hold for all \(a, b \in \mathcal{P}\) and \(\alpha \geq 0\). If both \(\mathcal{P}\) and \(\mathcal{Q}\) are ordered, then \(T\) is called monotone, if \(a \leq b\) implies \(T(a) \leq T(b)\). If both \((\mathcal{P}, \mathcal{V})\) and \((\mathcal{Q}, \mathcal{W})\) are locally convex cones, the operator \(T\) is called (uniformly) continuous if for every \(w \in \mathcal{W}\) one can find \(v \in \mathcal{V}\) such that \(T(a) \leq T(b) + w\) whenever \(a \leq b + v\) for all \(a, b \in \mathcal{P}\).

A linear functional on \(\mathcal{P}\) is a linear operator \(\mu : \mathcal{P} \to \mathbb{R} = \mathbb{R} \cup \{+\infty\}\). The dual cone \(\mathcal{P}^*\) of a locally convex cone \((\mathcal{P}, \mathcal{V})\) consists of all continuous linear functionals on \(\mathcal{P}\) and is the union of all polars \(v^\circ\) of neighborhoods \(v \in \mathcal{V}\), where \(\mu \in v^\circ\) means that \(\mu(a) \leq \mu(b) + 1\), whenever \(a \leq b + v\) for all \(a, b \in \mathcal{P}\).

In addition to the given order \(\leq\) on the locally convex cone \((\mathcal{P}, \mathcal{V})\), the weak preorder \(\preceq\) is defined for \(a, b \in \mathcal{P}\) by

\[a \preceq b \quad \text{if} \quad a \leq \gamma b + \varepsilon v\]

for all \(v \in \mathcal{V}\) and \(\varepsilon > 0\) with some \(1 \leq \gamma \leq 1 + \varepsilon\) (for details, see [9], I.3). It is obviously coarser than the given order, that is \(a \leq b\) implies \(a \preceq b\) for all \(a, b \in \mathcal{P}\).
Given a neighborhood \(v \in \mathcal{V} \) and \(\varepsilon > 0 \), the corresponding upper and lower relative neighborhoods \(v_+(a) \) and \((a)v_-(a) \) for an element \(a \in \mathcal{P} \) are defined by

\[
v_+(a) = \{ b \in \mathcal{P} | b \leq \gamma a + \varepsilon v \text{ for some } 1 \leq \gamma \leq 1 + \varepsilon \},
\]

\[
(a)v_-(a) = \{ b \in \mathcal{P} | a \leq \gamma b + \varepsilon v \text{ for some } 1 \leq \gamma \leq 1 + \varepsilon \}.
\]

Their intersection \(v_+(a) = v_-(a) \cap (a)v_-(a) \) is the corresponding symmetric relative neighborhood. Suppose \(v \in \mathcal{V} \). If we consider the abstract neighborhood system \(\mathcal{V}_v = \{ \alpha v : \alpha > 0 \} \) on \(\mathcal{P} \), then the corresponding upper (lower or symmetric) relative topology on \(\mathcal{P} \) is called upper (lower or symmetric) relative \(v \)-topology.

We shall say that a locally convex cone \((\mathcal{P}, \mathcal{V})\) is a \textit{locally convex} \(\vee \)-\textit{semilattice cone} if its order is antisymmetric and if for any two elements \(a, b \in \mathcal{P} \) their supremum \(a \vee b \) exists in \(\mathcal{P} \) and if

\[
(\forall 1) \quad (a + c) \vee (b + c) = a \vee b + c \text{ holds for all } a, b, c \in \mathcal{P},
\]

\[
(\forall 2) \quad a \leq c + v \text{ and } b \leq c + w \text{ for } a, b, c \in \mathcal{P} \text{ and } v, w \in \mathcal{V} \text{ imply that } a \vee b \leq c + (v + w).
\]

Likewise, \((\mathcal{P}, \mathcal{V})\) is a \textit{locally convex} \(\wedge \)-\textit{semilattice cone} if its order is antisymmetric and if for any two elements \(a, b \in \mathcal{P} \) their infimum \(a \wedge b \) exists in \(\mathcal{P} \) and if

\[
(\wedge 1) \quad (a + c) \wedge (b + c) = a \wedge b + c \text{ holds for all } a, b, c \in \mathcal{P},
\]

\[
(\wedge 2) \quad c \leq a + v \text{ and } c \leq b + w \text{ for } a, b, c \in \mathcal{P} \text{ and } v, w \in \mathcal{V} \text{ imply that } c \leq a \wedge b + (v + w).
\]

If both sets of the above conditions hold, then \((\mathcal{P}, \mathcal{V})\) is called a \textit{locally convex lattice cone} (cf. [9]).

We shall say that a locally convex cone \((\mathcal{P}, \mathcal{V})\) is a locally convex \(\vee^c \)-\textit{semilattice cone} if \(\mathcal{P} \) carries the weak preorder (that is the given order coincides with the weak preorder for the elements and the neighborhoods in \(\mathcal{P} \)), this order is antisymmetric and if

\[
(\forall 1) \quad \text{every non-empty subset } A \subseteq \mathcal{P} \text{ has a supremum } \sup A \in \mathcal{P} \text{ and } \sup(A + b) = \sup A + b \text{ holds for all } b \in \mathcal{P},
\]

\[
(\forall 2) \quad \text{let } \emptyset \neq A \subseteq \mathcal{P}, b \in \mathcal{P} \text{ and } v \in \mathcal{V}. \text{ If } a \leq b + v \text{ for all } a \in A, \text{ then } \sup A \leq b + v.
\]

Likewise, \((\mathcal{P}, \mathcal{V})\) is said to be a locally convex \(\wedge^c \)-\textit{semilattice cone} if \(\mathcal{P} \) carries the weak preorder, this order is antisymmetric and if

\[
(\wedge 1) \quad \text{every bounded below subset } A \subseteq \mathcal{P} \text{ has an infimum } \inf A \in \mathcal{P} \text{ and } \inf(A + b) = \inf A + b \text{ holds for all } b \in \mathcal{P},
\]

\[
(\wedge 2) \quad \text{let } A \subseteq \mathcal{P} \text{ be bounded below, } b \in \mathcal{P} \text{ and } v \in \mathcal{V}. \text{ If } b \leq a + v \text{ for all } a \in A, \text{ then } b \leq \inf A + v.
\]

Combining both of the above notions, we shall say that a locally convex cone \((\mathcal{P}, \mathcal{V})\) is a \textit{locally convex complete lattice cone} if \(\mathcal{P} \) is both a \(\vee^c \)-semilattice cone and a \(\wedge^c \)-semilattice cone.
As a simple example, the locally convex cone \((\mathbb{R}, \mathcal{V})\), where \(\mathbb{R} = \mathbb{R} \cup \{\infty\}\) and \(\mathcal{V} = \{\varepsilon \in \mathbb{R} : \varepsilon > 0\}\), is a locally convex lattice cone and a locally convex complete lattice cone.

Suppose \((\mathcal{P}, \mathcal{V})\) is a locally convex complete lattice cone. A net \((a_i)_{i \in I}\) in \(\mathcal{P}\) is called bounded below if there is \(i_0 \in I\) such that the set \(\{a_i \mid i \geq i_0\}\) is bounded below. We define the superior and the inferior limits of a bounded below net \((a_i)_{i \in I}\) in \(\mathcal{P}\) by
\[
\liminf_{i \in I} a_i = \sup \{\inf_{i \geq i_0} a_k \mid i_0 \in I\} \quad \text{and} \quad \limsup_{i \in I} a_i = \inf \{\sup_{i \geq i_0} a_k \mid i_0 \in I\}.
\]
If \(\liminf_{i \in I} a_i\) and \(\limsup_{i \in I} a_i\) coincide, then we denote their common value by \(\lim_{i \in I} a_i\) and say that the net \((a_i)_{i \in I}\) is order convergent. A series \(\sum_{i=1}^{\infty} a_i\) in \((\mathcal{P}, \mathcal{V})\) is said to be order convergent to \(s \in \mathcal{P}\) if the sequence \(s_n = \sum_{i=1}^{n} a_i\) is order convergent to \(s\).

2. Egoroff Theorem for Operator-Valued Measures in Locally Convex Cones

The classical Egoroff theorem states that almost everywhere convergent sequences of measurable functions on a finite measure space converge almost uniformly. In this paper, we prove the Egoroff theorem for operator-valued measures in locally convex cones.

We shall say that a locally convex cone \((\mathcal{P}, \mathcal{V})\) is quasi-full if
\[(QF1)\ a \leq b + v \ \text{for} \ a, b \in \mathcal{P} \ \text{and} \ v \in \mathcal{V} \ \text{if and only if} \ a \leq b + s \ \text{for some} \ s \in \mathcal{P} \ \text{such that} \ s \leq v, \]
\[(QF2)\ a \leq u + v \ \text{for} \ a \in \mathcal{P} \ \text{and} \ u, v \in \mathcal{V} \ \text{if and only if} \ a \leq s + t \ \text{for some} \ s, t \in \mathcal{P} \ \text{such that} \ s \leq u \ \text{and} \ t \leq v.\]

The collection \(\mathcal{R}\) of subsets of a set \(X\) is called a (weak) \(\sigma\)-ring whenever:
\[(R1)\ \emptyset \in \mathcal{R}, \quad (R2)\ \text{If} \ E_1, E_2 \in \mathcal{R}, \ \text{then} \ E_1 \cup E_2 \in \mathcal{R} \ \text{and} \ E_1 \setminus E_2 \in \mathcal{R}, \quad (R3)\ \text{If} \ E_n \in \mathcal{R} \ \text{for} \ n \in \mathbb{N} \ \text{and} \ E_n \subseteq E \ \text{for some} \ E \in \mathcal{R}, \ \text{then} \ \bigcup_{n \in \mathbb{N}} E_n \in \mathcal{R} \ \text{(see [9]).}\]

Any \(\sigma\)-algebra is a \(\sigma\)-ring and a \(\sigma\)-ring \(\mathcal{R}\) is a \(\sigma\)-algebra if and only if \(X \in \mathcal{R}\). However, we can associate with \(\mathcal{R}\) in a canonical way the \(\sigma\)-algebra
\[\mathcal{U}_\mathcal{R} = \{A \subset X : A \cap E \in \mathcal{R} \ \text{for all} \ E \in \mathcal{R}\}.\]

A subset \(A\) of \(X\) is said to be measurable whenever \(A \in \mathcal{U}_\mathcal{R}\).

We consider the symmetric relative topology on \(\mathcal{P}\). The function \(f : X \to \mathcal{P}\) is measurable with respect to the \(\sigma\)-ring \(\mathcal{R}\) if for every \(v \in \mathcal{V}\),
\[(M_1)\ f^{-1}(O) \cap E \in \mathcal{R} \ \text{for every open subset} \ O \ \text{of} \ \mathcal{P} \ \text{and every} \ E \in \mathcal{R}, \quad (M_2)\ f(E) \ \text{is separable in} \ \mathcal{P} \ \text{for every} \ E \in \mathcal{R}.\]

The operator–valued measures in locally convex cones have been defined in [9]. Let \((\mathcal{P}, \mathcal{V})\) be a quasi-full locally convex cone and let \((\mathcal{Q}, \mathcal{W})\) be a locally convex complete lattice cone. Let \(\mathcal{L}(\mathcal{P}, \mathcal{Q})\) denote the cone of all (uniformly)
Egoroff Theorem for Operator-Valued Measures in Locally Convex Cones

continuous linear operators from \mathcal{P} to \mathcal{Q}. Recall from Section 3 in Chapter I from [9] that a continuous linear operator between locally convex cones is monotone with respect to the respective weak preorders. Because \mathcal{Q} carries its weak preorder, this implies monotonicity with respect to the given orders of \mathcal{P} and \mathcal{Q} as well. Let X be a set and \mathfrak{A} a σ-ring of subsets of X. An $\mathcal{L}(\mathcal{P}, \mathcal{Q})$-valued measure θ on \mathfrak{A} is a set function $E \mapsto \theta_E : \mathfrak{A} \rightarrow \mathcal{L}(\mathcal{P}, \mathcal{Q})$

such that $\theta_0 = 0$ and $\theta(\bigcup_{n \in \mathbb{N}} E_n) = \sum_{n \in \mathbb{N}} \theta_{E_n}$

holds whenever the sets $E_n \in \mathfrak{A}$ are disjoint and $\bigcup_{n=1}^{\infty} E_n \in \mathfrak{A}$. Convergence for the series on the right-hand side is meant in the following way: For every $a \in \mathcal{P}$ the series $\sum_{n \in \mathbb{N}} \theta_{E_n}(a)$ is order convergent in \mathcal{Q}. We note that the order convergence is implied by convergence in the symmetric relative topology.

Let $(\mathcal{P}, \mathcal{V})$ be a quasi-full locally convex cone and let $(\mathcal{Q}, \mathcal{W})$ be a locally convex complete lattice cone. Suppose θ is a fixed $\mathcal{L}(\mathcal{P}, \mathcal{Q})$-valued measure on \mathfrak{A}. For a neighborhood $v \in \mathcal{V}$ and a set $E \in \mathfrak{A}$, semivariation of θ is defined as follows:

$|\theta|(E, v) = \sup \left\{ \sum_{i \in \mathbb{N}} \theta_{E_i}(s_i) : s_i \in \mathcal{P}, s_i \leq v, E_i \in \mathfrak{A} \text{ disjoint subsets of } E \right\}.$

It is proved in Lemma 3.3 chapter II from [9], that if $v \in \mathcal{P}$, then $|\theta|(E, v) = \theta_E(v)$.

Proposition 2.1. Let $(\mathcal{P}, \mathcal{V})$ be a quasi-full locally convex cone, $(\mathcal{Q}, \mathcal{W})$ be a locally convex complete lattice cone and θ be a fixed $\mathcal{L}(\mathcal{P}, \mathcal{Q})$-valued measure on \mathfrak{A}.

(a) If for $E \in \mathfrak{A}$, $\theta_E = 0$, then for every $v \in \mathcal{V}$, $|\theta|(E, v) = 0$,

(b) If for every $v \in \mathcal{V}$, $|\theta|(E, v) = 0$, then $\theta_E(a) = 0$ for every bounded element $a \in \mathcal{P}$.

Proof. For (a), let $\theta_E = 0$ and F_1, \ldots, F_n, $n \in \mathbb{N}$ be a partition of E. Then for $0 \leq s_i \leq v$, $i = 1, \ldots, n$, we have $0 \leq \theta_{F_i}(s_i) \leq \theta_E(s_i) = 0$. Since the order of \mathcal{Q} is antisymmetric, for every $i \in \{1, \ldots, n\}$, we have $\theta_{F_i}(s_i) = 0$. Then $|\theta|(E, v) = 0$.

For (b), let $a \in \mathcal{P}$ and for every $v \in \mathcal{V}$, $|\theta|(E, v) = 0$. Since a is bounded, for $v \in \mathcal{V}$, there is $\lambda > 0$ such that $0 \leq a + \lambda v$ and $a \leq \lambda v$. Now we have $0 \leq \theta_E(a) + |\theta|(E, \lambda v)$ and $\theta_E(a) \leq |\theta|(E, \lambda v)$ by Lemma II.3.4 of [9]. This shows that $0 \leq \theta_E(a)$ and $\theta_E(a) \leq 0$. Since the order of \mathcal{Q} is antisymmetric, we have $\theta_E(a) = 0$.

Corollary 2.2. Let $(\mathcal{P}, \mathcal{V})$ be a quasi-full locally convex cone, $(\mathcal{Q}, \mathcal{W})$ be a locally convex complete lattice cone and θ be a fixed $\mathcal{L}(\mathcal{P}, \mathcal{Q})$-valued measure on
\(\mathfrak{R}\). If all elements of \(\mathcal{P}\) are bounded, then for \(E \in \mathfrak{R}\), \(\theta_E = 0\) if and only if \(|\theta|(E, v) = 0\) for all \(v \in \mathcal{V}\).

Definition 2.3. Let \(\mathfrak{R}\) be a \(\sigma\)-ring of subsets of \(X\). The set \(A \in \mathfrak{R}\) is said to be of positive \(v\)-semivariation of the measure \(\theta\) if \(|\theta|(A, v) > 0\). Also, we say that the set \(A\) has bounded \(v\)-semivariation of the measure \(\theta\), if \(|\theta|(A, v)\) is bounded in \((\mathcal{Q}, \mathcal{W})\).

Definition 2.4. Let \(\theta\) be an operator-valued measure on \(X\). We shall say that \(\theta\) is generalized strongly \(v\)-continuous (GS\(_v\)-continuous, for short) if for every set of bounded \(v\)-semivariation \(E \in \mathfrak{R}\) and every monotone sequence of sets \((E_n)_{n \in \mathbb{N}} \subseteq \mathfrak{R}\), \(E_n \subseteq E\), \(n \in \mathbb{N}\) the following holds

\[
\lim_{n \in \mathbb{N}} |\theta|(E_n, v) = |\theta|(\lim_{n \in \mathbb{N}} E_n, v) \quad v \in \mathcal{V},
\]

where the limit in the left hand side of the equality means convergence with respect to the symmetric relative topology of \((\mathcal{Q}, \mathcal{W})\).

Example 2.5. Let \(X = \mathbb{N} \cup \{+\infty\}\) and \(\mathcal{P} = \mathcal{Q} = \mathfrak{R}\). We consider on \(\mathfrak{R}\) the abstract neighborhood system \(\mathcal{V} = \{\varepsilon \in \mathfrak{R}: \varepsilon > 0\}\). Then \(\mathcal{L}(\mathcal{P}, \mathcal{Q})\) contains all nonnegative reals and the linear functional \(\bar{0}\) acting as

\[
\bar{0}(x) = \begin{cases} 1 & x = +\infty \\ 0 & \text{else.} \end{cases}
\]

We set \(\mathfrak{R} = \{E \subset X : E\text{ is finite}\}\). Then \(\mathfrak{R}\) is a \(\sigma\)-ring on \(X\). We define the set function \(\theta\) on \(\mathfrak{R}\) as following: for \(x \in X\), \(\theta_0 = 0\), \(\theta_{(n)}(x) = nx\) for \(n \in \mathbb{N}\) and \(\theta_{(+\infty)}(x) = 0(x)\). For \(E = \{a_1, \cdots, a_n\} \subseteq \mathfrak{R}\), \(n \in \mathbb{N}\), we define \(\theta_E(x) = \sum_{i=1}^n \theta_{(n)}(x)\) for \(x \in X\). Then \(\theta\) is clearly an operator-valued measure on \(\mathfrak{R}\).

For \(n \in \mathbb{N}\) and \(\varepsilon > 0\), we have \(|\theta|\{\varepsilon\} = \theta_{(\varepsilon)}(\varepsilon) = n\varepsilon\) and \(|\theta|\{+\infty\}, \varepsilon\) = \(\theta_{(+\infty)}(\varepsilon) = \bar{0}(\varepsilon) = 0\). Therefore each \(E \in \mathfrak{R}\) has finite \(\varepsilon\)-semivariation for all \(\varepsilon > 0\). Let \(E \in \mathfrak{R}\). If \((E_n)_{n \in \mathbb{N}} \subseteq \mathfrak{R}\) is a monotone sequence of subsets of \(E\) such that \(\lim_{n \in \mathbb{N}} E_n = F\), then there is \(n_0 \in \mathbb{N}\) such that \(E_n = F\) for all \(n \geq n_0\). Then \(\theta\) is clearly GS\(_v\)-continuous for each \(\varepsilon > 0\).

Definition 2.6. A sequence \((f_n)_{n \in \mathbb{N}}\) of measurable functions is said to be \(\theta\)-almost uniformly convergent to a measurable function \(f\) on \(E \in \mathfrak{R}\) if for every \(\varepsilon > 0\), \(w \in \mathcal{W}\) and \(v \in \mathcal{V}\) there exists a subset \(F = F(\varepsilon, v, w)\) of \(E\) and \(n_0 \in \mathbb{N}\) such that for every \(n > n_0\),

\[
|\theta|(F, v) \in w^*_\varepsilon(0),
\]

for all \(x \in E \setminus F\).

Theorem 2.7 (Egoroff Theorem). Let \(\mathfrak{R}\) be a \(\sigma\)-ring of subsets of \(X\), \((\mathcal{P}, \mathcal{V})\) be a full locally convex cone and \((\mathcal{Q}, \mathcal{W})\) be a locally convex complete lattice cone. For \(v \in \mathcal{V}\), suppose \(\theta: \mathfrak{R} \rightarrow \mathcal{L}(\mathcal{P}, \mathcal{Q})\) be a GS\(_v\)-continuous operator valued measure, and \(E \in \mathfrak{R}\) has bounded \(v\)-semivariation. If \(f: X \rightarrow \mathcal{P}\) is a measurable function, and \((f_n: X \rightarrow \mathcal{P})_{n \in \mathbb{N}}\) is a sequence of measurable
functions, such that for every $t \in E$, $f_n(t) \to f(t)$ with respect to the symmetric relative ν-topology of $(\mathcal{P}, \mathcal{V})$, then $(f_n)_{n \in \mathbb{N}}$ is θ-almost uniformly convergent to f on E, with respect to the symmetric relative ν-topology of $(\mathcal{P}, \mathcal{V})$.

Proof. We identify $\nu \in \mathcal{V}$ with the constant function $x \to \nu$ from X into \mathcal{P}.

For $m, n \in \mathbb{N}$, we set

$$B_n^m = \bigcap_{i=n}^\infty \{x \in E : f_i(x) \preceq_\nu f(x) + \frac{1}{m} \nu \text{ and } f(x) \preceq_\nu f_i(x) + \frac{1}{m} \nu\}.$$

For every $n, m \in \mathbb{N}$ we have $B_n^m \in \mathcal{B}$ by Theorem II.1.6 from [9]. Clearly, $B_n^m \subset B_n^{m+1}$ for all $n, m \in \mathbb{N}$. We claim that $E = \bigcup_{n=1}^\infty B_n^m$. Let $x \in E$ and $m \in \mathbb{N}$. Then $(f_n(x))_{n \in \mathbb{N}}$ is convergent to $f(x)$ with respect to the symmetric relative ν-topology. This shows that for each $\varepsilon > 0$ there is $n_0 \in \mathbb{N}$ such that $f_n(x) \in (\frac{1}{m})^\varepsilon f(x)$ for all $n \geq n_0$. Therefore $f_n(x) \leq \gamma f(x) + \varepsilon(\frac{1}{m})^\varepsilon$ and $f_n(x) \leq \gamma f(x) + \varepsilon(\frac{1}{m})^\varepsilon$ for all $n \geq n_0$ and some $1 \leq \gamma \leq 1 + \varepsilon$. This yields that $f_n(x) \leq \gamma f(x) + (1 + \varepsilon)(\frac{1}{m})^\varepsilon$ and $f_n(x) \leq \gamma f(x) + (1 + \varepsilon)(\frac{1}{m})^\varepsilon$ for all $n \geq n_0$ and some $1 \leq \gamma \leq 1 + \varepsilon$. Now Lemma I.3.1 from [9] shows that $f_n(x) \preceq_\nu f(x) + \frac{1}{m} \nu$ and $f(x) \preceq_\nu f_n(x) + \frac{1}{m} \nu$ for all $n \geq n_0$. Thus $x \in B_n^m$.

Then $(E \setminus B_n^m)_{m \in \mathbb{N}}$ is a decreasing sequence of subsets of E, such that $\lim_{m \to \infty} E \setminus B_n^m = 0$. Therefore for every $m \in \mathbb{N}$, $|\theta|(E \setminus B_n^m, v) = 0$ with respect to the symmetric relative topology of $(\mathcal{Q}, \mathcal{W})$ by the assumption. For $\varepsilon > 0$ and $m \in \mathbb{N}$ we choose n_m such that $|\theta|(E \setminus B_n^m, v) \leq \frac{\varepsilon}{2m}$. We set

$$F = \bigcup_{n=1}^\infty E \setminus B_n^{n_m}.$$

Then we have

$$|\theta|(F, v) = \sum_{m=1}^\infty |\theta|(B_n^{n_m}, v) \leq \sum_{m=1}^\infty \frac{\varepsilon}{2m} w = \varepsilon w.$$

Also, we have $0 \leq |\theta|(F, v) + \varepsilon w$. Then $|\theta|(F, v) \in w_+^c(0)$.

Now, we show that the convergence on $E \setminus F$ is uniform. Let $\delta > 0$. There is $k \in \mathbb{N}$ such that $\frac{2}{k} + \frac{1}{k^2} \leq \delta$. We have

$$E \setminus F = E \setminus (\bigcup_{m=1}^\infty E \setminus B_n^{n_m}) = \bigcap_{m=1}^\infty B_n^{n_m} \subset B_n^{n_k}.$$

Now for each $n \geq n_k$ and every $x \in E \setminus F$ we have $f_n(x) \preceq_\nu f(x) + \frac{1}{k} \nu$ and $f(x) \preceq_\nu f_n(x) + \frac{1}{k} \nu$. The definition of \preceq_ν shows that for $\varepsilon = \frac{1}{k}$ there is $1 \leq \gamma \leq 1 + \frac{1}{k}$, and
1 + \frac{1}{k} such that \(f_n(x) \leq \gamma(f(x) + \frac{1}{k}v) + \frac{1}{k}v \) and \(f(x) \leq \gamma(f_n(x) + \frac{1}{k}v) + \frac{1}{k}v \).

Therefore \(f_n(x) \leq \gamma f(x) + \left(\frac{2}{k} + \frac{1}{k^2}\right)v \leq \gamma f(x) + \delta v \) and \(f(x) \leq \gamma f_n(x) + \left(\frac{2}{k} + \frac{1}{k^2}\right)v \leq \gamma f_n(x) + \delta v \). Since \(1 \leq \gamma \leq 1 + \frac{1}{k} \leq 1 + \frac{2}{k} + \frac{1}{k^2} \leq 1 + \delta \), we realize that \((f_n)_{n \in \mathbb{N}} \) is uniformly convergent to \(f \) on \(E \setminus F \), with respect to the symmetric relative topology. \(\square \)

Remark 2.8. If in the assumptions of Theorem 2.7, \((\mathcal{P}, \mathcal{V}) \) is a quasi-full locally convex cone, then the theorem holds again. In fact every quasi-full locally convex cone can be embedded in a full locally convex cone as elaborated in ([9], I, 6.2).

Definition 2.9. W say that a sequence \((f_n : X \to \mathcal{P})_{n \in \mathbb{N}} \) of measurable functions is \(\theta \)-almost everywhere convergent (with respect to the symmetric topology of \((\mathcal{P}, \mathcal{V}) \)) to \(f \), if the set \(\{ x \in X : f_n(x) \not\to f(x) \} \) is contained in a subset \(E \) of \(X \) with \(\theta_E = 0 \).

Definition 2.10. Let \(v \in \mathcal{V} \). We say that the sequence \((f_n : X \to \mathcal{P})_{n \in \mathbb{N}} \) of measurable functions is \(|\theta|_v \)-almost everywhere convergent (with respect to symmetric topology of \((\mathcal{P}, \mathcal{V}) \)) to \(f \), if the set \(\{ x \in X : f_n(x) \not\to f(x) \} \) is contained in a subset \(E \) of \(X \) with \(|\theta|(E, v) = 0 \).

Lemma 2.11. Let \(\mathfrak{R} \) be a \(\sigma \)-ring of subsets of \(X \), \((\mathcal{P}, \mathcal{V}) \) be a full locally convex cone and \((\mathcal{Q}, \mathcal{W}) \) be a locally convex complete lattice cone. Then

(a) \(\theta \)-almost everywhere convergence implies \(|\theta|_v \)-almost everywhere convergence for each \(v \in \mathcal{V} \).

(b) If all elements of \((\mathcal{P}, \mathcal{V}) \) are bounded and a sequence \((f_n : X \to \mathcal{P})_{n \in \mathbb{N}} \) is \(|\theta|_v \)-almost everywhere convergent to \(f \) for each \(v \in \mathcal{V} \), then \((f_n : X \to \mathcal{P})_{n \in \mathbb{N}} \) is \(\theta \)-almost everywhere convergent to \(f \).

Proof. The assertions are proved by the help of Proposition 2.1. \(\square \)

Theorem 2.12. If in the Egoroff theorem (2.7), \(f_n \rightarrow f \), \(\theta \)-almost everywhere or \(|\theta|_v \)-almost everywhere, then the assertion of theorem holds.

Proof. Suppose \(f_n \rightarrow f \), \(\theta \)-almost everywhere, then there is a subset \(A \) of \(E \), which is contained in some \(B \in \mathfrak{R} \) with \(\theta_B = 0 \). Now \(E \setminus B \in \mathfrak{R} \) and it has bounded \(v \)-semivariation. We apply the theorem 2.7 for \(E \setminus B \) and obtain a subset \(F \) satisfying in definition 2.6. Now clearly \(f_n \) is \(\theta \)-almost uniformly convergent to \(f \) on \(E \setminus (F \cap B) \). A similar argument yields our claim for \(|\theta|_v \)-almost everywhere convergence. \(\square \)

Theorem 2.13. Let the symmetric relative \(w \)-topology of \((\mathcal{Q}, \mathcal{W}) \) be Hausdorff for each \(w \in \mathcal{W} \) and let \((f_n : X \to \mathcal{P})_{n \in \mathbb{N}} \) be a sequence of measurable functions which converges to \(f \), \(\theta \)-almost uniformly on \(E \in \mathfrak{R} \). Then \(\{f_n\}_{n \in \mathbb{N}} \), is \(|\theta|_v \)-almost everywhere convergent to \(f \) for each \(v \in \mathcal{V} \).
Proof. For each $n \in \mathbb{N}$, $v \in V$ and $w \in W$ there is $F_n = F_n(v, w) \in \mathfrak{N}$ such that $F_n \subseteq E$ and $\theta(F_n, v) \in w^*_n(0)$ and (f_n) is convergent to f on $E \setminus F_n$. Now, we set $F = \bigcap_{n=1}^{\infty} F_n$. Since (Q, W) is separated, we have $\theta(F, v) = 0$. Clearly, $(f_n(x))_{n \in \mathbb{N}}$ is convergent to $f(x)$ for each $x \in E \setminus F = \bigcup_{n=1}^{\infty} E \setminus F_n$. \hfill \Box

Acknowledgments

The authors would like to thank the referees for their useful comments.

References