Balanced Degree-Magic Labelings of Complete Bipartite Graphs under Binary Operations

Phaisatcha Inpoonjai*, Thiradet Jiarasuksakun
Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi
126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand.
E-mail: phaisatcha.in@outlook.com
E-mail: thiradet.jia@mail.kmutt.ac.th

ABSTRACT. A graph is called supermagic if there is a labeling of edges where the edges are labeled with consecutive distinct positive integers such that the sum of the labels of all edges incident with any vertex is constant. A graph \(G \) is called degree-magic if there is a labeling of the edges by integers 1, 2, ..., \(|E(G)| \) such that the sum of the labels of the edges incident with any vertex \(v \) is equal to \((1 + |E(G)|)\deg(v)/2 \). Degree-magic graphs extend supermagic regular graphs. In this paper we find the necessary and sufficient conditions for the existence of balanced degree-magic labelings of graphs obtained by taking the join, composition, Cartesian product, tensor product and strong product of complete bipartite graphs.

Keywords: Complete bipartite graphs, Supermagic graphs, Degree-magic graphs, Balanced degree-magic graphs.

2000 Mathematics subject classification: 05C78.

*Corresponding Author
1. Introduction

We consider simple graphs without isolated vertices. If G is a graph, then $V(G)$ and $E(G)$ stand for the vertex set and the edge set of G, respectively. Cardinalities of these sets are called the order and size of G.

Let a graph G and a mapping f from $E(G)$ into positive integers be given. The index mapping of f is the mapping f^* from $V(G)$ into positive integers defined by

$$f^*(v) = \sum_{e \in E(G)} \eta(v, e) f(e) \quad \text{for every} \quad v \in V(G),$$

where $\eta(v, e)$ is equal to 1 when e is an edge incident with a vertex v, and 0 otherwise. An injective mapping f from $E(G)$ into positive integers is called a magic labeling of G for an index λ if its index mapping f^* satisfies

$$f^*(v) = \lambda \quad \text{for all} \quad v \in V(G).$$

A magic labeling f of a graph G is called a supermagic labeling if the set $\{f(e) : e \in E(G)\}$ consists of consecutive positive integers. We say that a graph G is supermagic (magic) whenever a supermagic (magic) labeling of G exists.

A bijective mapping f from $E(G)$ into $\{1, 2, \ldots, |E(G)|\}$ is called a degree-magic labeling (or only d-magic labeling) of a graph G if its index mapping f^* satisfies

$$f^*(v) = \frac{1 + |E(G)|}{2} \deg(v) \quad \text{for all} \quad v \in V(G).$$

A d-magic labeling f of a graph G is called balanced if for all $v \in V(G)$, the following equation is satisfied

$$|\{e \in E(G) : \eta(v, e) = 1, f(e) \leq \lfloor|E(G)|/2\rfloor\}| = |\{e \in E(G) : \eta(v, e) = 1, f(e) > \lfloor|E(G)|/2\rfloor\}|.$$

We say that a graph G is degree-magic (balanced degree-magic) or only d-magic when a d-magic (balanced d-magic) labeling of G exists.

The concept of magic graphs was introduced by Sedláček [8]. Later, supermagic graphs were introduced by Stewart [9]. There are now many papers published on magic and supermagic graphs; see [6, 7, 10] for more comprehensive references. The concept of degree-magic graphs was then introduced by Bezegová and Ivančo [2] as an extension of supermagic regular graphs. They established the basic properties of degree-magic graphs and characterized degree-magic and balanced degree-magic complete bipartite graphs in [2]. They also characterized degree-magic complete tripartite graphs in [4]. Some of these concepts are investigated in [1, 3, 5]. We will hereinafter use the auxiliary results from these studies.
Theorem 1.1. [2] Let G be a regular graph. Then G is supermagic if and only if it is d-magic.

Theorem 1.2. [2] Let G be a d-magic graph of even size. Then every vertex of G has an even degree and every component of G has an even size.

Theorem 1.3. [2] Let G be a balanced d-magic graph. Then G has an even number of edges and every vertex has an even degree.

Theorem 1.4. [2] Let G be a d-magic graph having a half-factor. Then $2G$ is a balanced d-magic graph.

Theorem 1.5. [2] Let H_1 and H_2 be edge-disjoint subgraphs of a graph G which form its decomposition. If H_1 is d-magic and H_2 is balanced d-magic, then G is a balanced d-magic graph. Moreover, if H_1 and H_2 are both balanced d-magic, then G is a balanced d-magic graph.

Proposition 1.6. [2] For $p, q > 1$, the complete bipartite graph $K_{p,q}$ is d-magic if and only if $p \equiv q \equiv 0 \pmod{2}$ and $(p, q) \neq (2, 2)$.

Theorem 1.7. [2] The complete bipartite graph $K_{p,q}$ is balanced d-magic if and only if the following statements hold:

(i) $p \equiv q \equiv 0 \pmod{2}$;

(ii) if $p \equiv q \equiv 2 \pmod{4}$, then $\min\{p, q\} \geq 6$.

Lemma 1.8. [4] Let m, n and o be even positive integers. Then the complete tripartite graph $K_{m,n,o}$ is balanced d-magic.

2. Balanced Degree-Magic Labelings in the Join of Complete Bipartite Graphs

For two vertex-disjoint graphs G and H, the join of graphs G and H, denoted by $G \cup H$, consists of $G \cup H$ and all edges joining a vertex of G and a vertex of H. For any positive integers p and q, we consider the join $K_{p,q} + K_{p,q}$ of complete bipartite graphs. Let $K_{p,q} + K_{p,q}$ be a d-magic graph. Since $\deg(v) = p + 2q$ or $p + q$ and $f^*(v) = (2pq + (p + q)^2 + 1)\deg(v)/2$ for any $v \in V(K_{p,q} + K_{p,q})$, we have

Proposition 2.1. Let $K_{p,q} + K_{p,q}$ be a d-magic graph. Then p or q is even.

Proposition 2.2. Let $K_{p,q} + K_{p,q}$ be a balanced d-magic graph. Then both p and q are even.

Proposition 2.3. Let p and q be even positive integers. Then $K_{p+q,p+q}$ is a balanced d-magic graph.

Proof. Applying Theorem 1.7, $K_{p+q,p+q}$ is a balanced d-magic graph. \qed

In the next result we show a sufficient condition for the existence of balanced d-magic labelings of the join of complete bipartite graphs $K_{p,q} + K_{p,q}$.
Figure 1. A balanced d-magic graph $K_{2,6} + K_{2,6}$ with 16 vertices and 88 edges.

Theorem 2.4. Let p and q be even positive integers. Then $K_{p,q} + K_{p,q}$ is a balanced d-magic graph.

Proof. Let p and q be even positive integers. We consider the following two cases:

Case I. If $(p, q) = (2, 2)$, the graph $K_{2,2} + K_{2,2}$ is decomposable into three balanced d-magic subgraphs isomorphic to $K_{2,4}$. According to Theorem 1.5, $K_{2,2} + K_{2,2}$ is a balanced d-magic graph.

Case II. If $(p, q) \neq (2, 2)$, then $K_{p,q} + K_{p,q}$ is balanced d-magic by Proposition 2.3, and $2K_{p,q}$ is balanced d-magic by Theorem 1.4. Since $K_{p,q} + K_{p,q}$ is the graph such that $K_{p+q,p+q}$ and $2K_{p,q}$ form its decomposition, by Theorem 1.5, $K_{p,q} + K_{p,q}$ is a balanced d-magic graph. \qed

We know that $K_{2,6}$ is d-magic, but it is not balanced d-magic. Applying Theorem 2.4, we can construct a balanced d-magic graph $K_{2,6} + K_{2,6}$ (see Figure 1) with the labels on edges of $K_{2,6} + K_{2,6}$ in Table 2.

We will now generalize to find the necessary and sufficient conditions for the existence of balanced d-magic labelings of the join of complete bipartite graphs in a general form. For any positive integers p, q, r and s, we consider the join $K_{p,q} + K_{r,s}$ of complete bipartite graphs. Let $K_{p,q} + K_{r,s}$ be a d-magic graph. Since $\deg(v) = p + r + s, q + r + s, p + q + r$ or $p + q + s$ and $f^*(v) = (pq + (p + q)(r + s) + rs + 1) \deg(v)/2$ for any $v \in V(K_{p,q} + K_{r,s})$, we have

Proposition 2.5. Let $K_{p,q} + K_{r,s}$ be a d-magic graph. Then the following conditions hold:

(i) only one of p, q, r and s is even or
(ii) only two of p, q, r and s are even or
(iii) all of p, q, r and s are even.
Table 1. The labels on edges of balanced d-magic graph $K_{2,6} + K_{2,6}$.

<table>
<thead>
<tr>
<th>Vertices</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>c_1</th>
<th>c_2</th>
<th>d_1</th>
<th>d_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_1</td>
<td>15</td>
<td>70</td>
<td>75</td>
<td>26</td>
<td>23</td>
<td>62</td>
<td>18</td>
<td>67</td>
<td>1</td>
<td>88</td>
</tr>
<tr>
<td>b_2</td>
<td>74</td>
<td>16</td>
<td>17</td>
<td>63</td>
<td>66</td>
<td>24</td>
<td>71</td>
<td>25</td>
<td>11</td>
<td>78</td>
</tr>
<tr>
<td>b_3</td>
<td>69</td>
<td>19</td>
<td>14</td>
<td>68</td>
<td>61</td>
<td>27</td>
<td>76</td>
<td>22</td>
<td>3</td>
<td>86</td>
</tr>
<tr>
<td>b_4</td>
<td>36</td>
<td>57</td>
<td>56</td>
<td>37</td>
<td>44</td>
<td>49</td>
<td>29</td>
<td>48</td>
<td>85</td>
<td>4</td>
</tr>
<tr>
<td>b_5</td>
<td>31</td>
<td>54</td>
<td>59</td>
<td>42</td>
<td>39</td>
<td>46</td>
<td>34</td>
<td>51</td>
<td>84</td>
<td>5</td>
</tr>
<tr>
<td>b_6</td>
<td>58</td>
<td>32</td>
<td>33</td>
<td>47</td>
<td>50</td>
<td>40</td>
<td>55</td>
<td>41</td>
<td>83</td>
<td>6</td>
</tr>
<tr>
<td>d_1</td>
<td>20</td>
<td>73</td>
<td>72</td>
<td>21</td>
<td>28</td>
<td>65</td>
<td>13</td>
<td>64</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>d_2</td>
<td>53</td>
<td>35</td>
<td>30</td>
<td>52</td>
<td>45</td>
<td>43</td>
<td>60</td>
<td>38</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>c_1</td>
<td>77</td>
<td>87</td>
<td>79</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>c_2</td>
<td>12</td>
<td>2</td>
<td>10</td>
<td>80</td>
<td>81</td>
<td>82</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Proposition 2.6. Let $K_{p,q} + K_{r,s}$ be a balanced d-magic graph. Then p, q, r and s are even.

Now we are able to show a sufficient condition for the existence of balanced d-magic labelings of the join of complete bipartite graphs $K_{p,q} + K_{r,s}$.

Theorem 2.7. Let p, q, r and s be even positive integers. Then $K_{p,q} + K_{r,s}$ is a balanced d-magic graph.

Proof. Let p, q, r and s be even positive integers. We consider the following two cases:

Case I. If at least one of p, q, r and s is not congruent to 2 modulo 4. Suppose that p is not congruent to 2 modulo 4. Thus, $K_{p,q}$ is balanced d-magic by Theorem 1.7. Since r, s and $p + q$ are even, $K_{r,s,p+q}$ is balanced d-magic by Lemma 1.8. The graph $K_{p,q} + K_{r,s}$ is decomposable into two balanced d-magic subgraphs isomorphic to $K_{p,q}$ and $K_{r,s,p+q}$. According to Theorem 1.5, $K_{p,q} + K_{r,s}$ is a balanced d-magic graph.

Case II. If p, q, r and s are congruent to 2 modulo 4. Thus $q + r, q + s$ and $p + q$ are not congruent to 2 modulo 4. By Theorem 1.7, $K_{p,q+r}, K_{r,q+s}$ and $K_{s,p+q}$ are balanced d-magic. The graph $K_{p,q} + K_{r,s}$ is decomposable into three balanced d-magic subgraphs isomorphic to $K_{p,q+r}, K_{r,q+s}$ and $K_{s,p+q}$. According to Theorem 1.5, $K_{p,q} + K_{r,s}$ is a balanced d-magic graph. □

Corollary 2.8. Let p, q, r and s be even positive integers. If $p = q = r = s$, then $K_{p,q} + K_{r,s}$ is a supermagic graph.

Proof. Applying Theorems 1.1 and 2.7. □
Since 4 is not congruent to 2 modulo 4, applying Theorem 2.7, a balanced d-magic graph $K_{2,4} + K_{2,10}$ is constructed (see Figure 2), and the labels on edges of $K_{2,4} + K_{2,10}$ are shown in Table 2.

3. Balanced Degree-Magic Labelings in the Composition of Complete Bipartite Graphs

For two vertex-disjoint graphs G and H, the composition of graphs G and H, denoted by $G \cdot H$, is a graph such that the vertex set of $G \cdot H$ is the Cartesian product $V(G) \times V(H)$ and any two vertices (u, v) and (x, y) are adjacent in $G \cdot H$ if and only if either u is adjacent with x in G or $u = x$ and v is adjacent with y in H. For any positive integers p, q, r and s, we consider the composition $K_{p,q} \cdot K_{r,s}$ of complete bipartite graphs. Let $K_{p,q} \cdot K_{r,s}$ be a d-magic graph. Since $\text{deg}(v)$ is $(r + s)p + r$, $(r + s)p + s$, $(r + s)q + r$ or $(r + s)q + s$ and

Table 2. The labels on edges of balanced d-magic graph $K_{2,4} + K_{2,10}$.

<table>
<thead>
<tr>
<th>Vertices</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
<th>a_9</th>
<th>a_{10}</th>
<th>c_1</th>
<th>c_2</th>
<th>d_1</th>
<th>d_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_1</td>
<td>31</td>
<td>70</td>
<td>79</td>
<td>22</td>
<td>57</td>
<td>61</td>
<td>42</td>
<td>41</td>
<td>58</td>
<td>44</td>
<td>85</td>
<td>16</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>b_2</td>
<td>23</td>
<td>78</td>
<td>71</td>
<td>30</td>
<td>45</td>
<td>52</td>
<td>54</td>
<td>53</td>
<td>49</td>
<td>50</td>
<td>84</td>
<td>17</td>
<td>2</td>
<td>99</td>
</tr>
<tr>
<td>b_3</td>
<td>77</td>
<td>24</td>
<td>29</td>
<td>72</td>
<td>56</td>
<td>46</td>
<td>48</td>
<td>47</td>
<td>55</td>
<td>51</td>
<td>18</td>
<td>83</td>
<td>3</td>
<td>98</td>
</tr>
<tr>
<td>b_4</td>
<td>76</td>
<td>25</td>
<td>28</td>
<td>73</td>
<td>39</td>
<td>43</td>
<td>59</td>
<td>60</td>
<td>40</td>
<td>62</td>
<td>19</td>
<td>82</td>
<td>97</td>
<td>4</td>
</tr>
<tr>
<td>d_1</td>
<td>75</td>
<td>26</td>
<td>27</td>
<td>74</td>
<td>38</td>
<td>64</td>
<td>65</td>
<td>36</td>
<td>67</td>
<td>33</td>
<td>81</td>
<td>20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>d_2</td>
<td>21</td>
<td>80</td>
<td>69</td>
<td>32</td>
<td>68</td>
<td>37</td>
<td>35</td>
<td>66</td>
<td>34</td>
<td>63</td>
<td>15</td>
<td>86</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>c_1</td>
<td>96</td>
<td>6</td>
<td>7</td>
<td>93</td>
<td>92</td>
<td>10</td>
<td>11</td>
<td>89</td>
<td>88</td>
<td>14</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>c_2</td>
<td>5</td>
<td>95</td>
<td>94</td>
<td>8</td>
<td>9</td>
<td>91</td>
<td>90</td>
<td>12</td>
<td>13</td>
<td>87</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Balanced degree-magic labelings of complete bipartite graphs under binary operations 7

\[f^*(v) = (pq(r + s)^2 + rs(p + q) + 1) \deg(v)/2 \]

for any \(v \in V(K_{p,q} \times K_{r,s}) \), we have

Proposition 3.1. Let \(K_{p,q} \cdot K_{r,s} \) be a d-magic graph. Then the following conditions hold:

(i) only one of \(p, q, r \) and \(s \) is even or

(ii) at least both \(r \) and \(s \) are even.

Proposition 3.2. Let \(K_{p,q} \cdot K_{r,s} \) be a balanced d-magic graph. Then at least both \(r \) and \(s \) are even.

In the next result we find a sufficient condition for the existence of balanced d-magic labelings of the composition of complete bipartite graphs \(K_{p,q} \cdot K_{r,s} \).

Theorem 3.3. Let \(p \) and \(q \) be positive integers, and let \(r \) and \(s \) be even positive integers. Then \(K_{p,q} \cdot K_{r,s} \) is a balanced d-magic graph.

Proof. Let \(p \) and \(q \) be positive integers, and let \(k = \min\{p, q\} \) and \(h = \max\{p, q\} \). It is clear that \(K_{r+s,r+s}, K_{r,s} \) and \(K_{r,s,r+s} \) are balanced d-magic by Proposition 2.3, Theorem 2.4 and Lemma 1.8, respectively. The graph \(K_{p,q} \cdot K_{r,s} \) is decomposable into \(k \) balanced d-magic subgraphs isomorphic to \(K_{r+s,r+s}, h(k-1) \) balanced d-magic subgraphs isomorphic to \(K_{r+s,r+s} \) and \(h-k \) balanced d-magic subgraphs isomorphic to \(K_{r,s,r+s} \). According to Theorem 1.5, \(K_{p,q} \cdot K_{r,s} \) is a balanced d-magic graph.

Notice that the graph composition \(K_{p,q} \cdot K_{r,s} \) is naturally nonisomorphic to \(K_{r,s} \cdot K_{p,q} \) except for the case \((p, q) = (r, s)\).

Corollary 3.4. Let \(p \) and \(q \) be positive integers, and let \(r \) and \(s \) be even positive integers. If \(p = q \) and \(r = s \), then \(K_{p,q} \cdot K_{r,s} \) is a supermagic graph.

Proof. Applying Theorems 1.1 and 3.3.

The following example is a balanced d-magic graph \(K_{1,2} \cdot K_{2,2} \) (see Figure 3) with the labels on edges of \(K_{1,2} \cdot K_{2,2} \) in Table 3.

4. Balanced Degree-Magic Labelings in the Cartesian Product of Complete Bipartite Graphs

For two vertex-disjoint graphs \(G \) and \(H \), the Cartesian product of graphs \(G \) and \(H \), denoted by \(G \times H \), is a graph such that the vertex set of \(G \times H \) is the Cartesian product \(V(G) \times V(H) \) and any two vertices \((u, v)\) and \((x, y)\) are adjacent in \(G \times H \) if and only if either \(u = x \) and \(v \) is adjacent with \(y \) in \(H \) or \(v = y \) and \(u \) is adjacent with \(x \) in \(G \). For any positive integers \(p, q, r \) and \(s \), we consider the Cartesian product \(K_{p,q} \times K_{r,s} \) of complete bipartite graphs. Let \(K_{p,q} \times K_{r,s} \) be a d-magic graph. Since \(\deg(v) \) is \(p + r, p + s, q + r \) or \(q + s \) and \(f^*(v) = (pq(r + s) + rs(p + q) + 1) \deg(v)/2 \) for any \(v \in V(K_{p,q} \times K_{r,s}) \), we have
Figure 3. A balanced d-magic graph \(K_{1,2} \cdot K_{2,2} \) with 12 vertices and 44 edges.

<table>
<thead>
<tr>
<th>Vertices</th>
<th>(c_1)</th>
<th>(c_2)</th>
<th>(d_1)</th>
<th>(d_2)</th>
<th>(e_1)</th>
<th>(e_2)</th>
<th>(f_1)</th>
<th>(f_2)</th>
<th>(b_1)</th>
<th>(b_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1)</td>
<td>12</td>
<td>34</td>
<td>43</td>
<td>2</td>
<td>27</td>
<td>26</td>
<td>20</td>
<td>17</td>
<td>35</td>
<td>9</td>
</tr>
<tr>
<td>(a_2)</td>
<td>33</td>
<td>11</td>
<td>1</td>
<td>44</td>
<td>19</td>
<td>18</td>
<td>25</td>
<td>28</td>
<td>10</td>
<td>36</td>
</tr>
<tr>
<td>(b_1)</td>
<td>8</td>
<td>38</td>
<td>39</td>
<td>5</td>
<td>32</td>
<td>14</td>
<td>15</td>
<td>29</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(b_2)</td>
<td>37</td>
<td>7</td>
<td>6</td>
<td>40</td>
<td>13</td>
<td>31</td>
<td>30</td>
<td>16</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(d_1)</td>
<td>4</td>
<td>42</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(d_2)</td>
<td>41</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(f_1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>23</td>
<td>22</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(f_2)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>21</td>
<td>24</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3. The labels on edges of balanced d-magic graph \(K_{1,2} \cdot K_{2,2} \).

Proposition 4.1. Let \(K_{p,q} \times K_{r,s} \) be a d-magic graph. Then the following conditions hold:
(i) only one of \(p, q, r \) and \(s \) is even or
(ii) all of \(p, q, r \) and \(s \) are either odd or even.

Proposition 4.2. Let \(K_{p,q} \times K_{r,s} \) be a balanced d-magic graph. Then \(p, q, r \) and \(s \) are either odd or even.

In the next result we are able to find a sufficient condition for the existence of balanced d-magic labelings of the Cartesian product of complete bipartite graphs \(K_{p,q} \times K_{r,s} \).

Theorem 4.3. Let \(p, q, r \) and \(s \) be even positive integers with \((p, q) \neq (2, 2) \) and \((r, s) \neq (2, 2) \). Then \(K_{p,q} \times K_{r,s} \) is a balanced d-magic graph.

Proof. Let \(p, q, r \) and \(s \) be even positive integers with \((p, q) \neq (2, 2) \) and \((r, s) \neq (2, 2) \). Since \(K_{p,q} \) and \(K_{r,s} \) are d-magic by Proposition 1.6, \(2K_{p,q} \) and \(2K_{r,s} \) are balanced d-magic by Theorem 1.4. The graph \(K_{p,q} \times K_{r,s} \) is decomposable into \((r + s)/2\) balanced d-magic subgraphs isomorphic to \(2K_{p,q} \) and \((p + q)/2\)
balanced d-magic subgraphs isomorphic to $2K_{r,s}$. According to Theorem 1.5, $K_{p,q} \times K_{r,s}$ is a balanced d-magic graph.

Observe that the Cartesian product graph $K_{p,q} \times K_{r,s}$ is naturally isomorphic to $K_{r,s} \times K_{p,q}$.

Corollary 4.4. Let p, q, r and s be even positive integers with $(p, q) \neq (2, 2)$ and $(r, s) \neq (2, 2)$. If $p = q$ and $r = s$, then $K_{p,q} \times K_{r,s}$ is a supermagic graph.

Proof. Applying Theorems 1.1 and 4.3.

The following example is a balanced d-magic graph $K_{2,4} \times K_{2,4}$ (see Figure 4), and the labels on edges of $K_{2,4} \times K_{2,4}$ are shown in Table 4.

<table>
<thead>
<tr>
<th>Vertices</th>
<th>b_1</th>
<th>b_2</th>
<th>b_3</th>
<th>b_4</th>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
<th>c_4</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_9</th>
<th>a_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>96</td>
<td>2</td>
<td>3</td>
<td>93</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>72</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>a_2</td>
<td>1</td>
<td>95</td>
<td>94</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>64</td>
<td>-</td>
<td>-</td>
<td>33</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>a_7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>90</td>
<td>91</td>
<td>5</td>
<td>27</td>
<td>-</td>
<td>-</td>
<td>70</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>a_8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>89</td>
<td>7</td>
<td>6</td>
<td>92</td>
<td>-</td>
<td>35</td>
<td>-</td>
<td>62</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>c_1</td>
<td>48</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>51</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>88</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>c_2</td>
<td>-</td>
<td>32</td>
<td>-</td>
<td>-</td>
<td>67</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>87</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>c_3</td>
<td>-</td>
<td>-</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td>59</td>
<td>-</td>
<td>11</td>
<td>86</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>c_4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>56</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>43</td>
<td>85</td>
<td>12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>f_1</td>
<td>49</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>46</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16</td>
<td>81</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>f_2</td>
<td>-</td>
<td>65</td>
<td>-</td>
<td>-</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>82</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>f_3</td>
<td>-</td>
<td>-</td>
<td>57</td>
<td>-</td>
<td>-</td>
<td>38</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>83</td>
<td>14</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>f_4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>41</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>54</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13</td>
<td>84</td>
<td>-</td>
</tr>
</tbody>
</table>
5. Balanced Degree-Magic Labelings in the Tensor Product of Complete Bipartite Graphs

For two vertex-disjoint graphs G and H, the tensor product of graphs G and H, denoted by $G \oplus H$, is a graph such that the vertex set of $G \oplus H$ is the Cartesian product $V(G) \times V(H)$ and any two vertices (u, v) and (x, y) are adjacent in $G \oplus H$ if and only if u is adjacent with x in G and v is adjacent with y in H. For any positive integers p, q, r and s, we consider the tensor product $K_{p,q} \oplus K_{r,s}$ of complete bipartite graphs. Let $K_{p,q} \oplus K_{r,s}$ be a d-magic graph. Since $\deg(v)$ is pr, ps, qr or qs and $f^*(v) = (2pqr + 1) \deg(v)/2$ for any $v \in V(K_{p,q} \oplus K_{r,s})$, we have

Proposition 5.1. Let $K_{p,q} \oplus K_{r,s}$ be a balanced d-magic graph. Then p and q are even or r and s are even.

Now we can prove a sufficient condition for the existence of balanced d-magic labelings of the tensor product of complete bipartite graphs $K_{p,q} \oplus K_{r,s}$.

Theorem 5.2. Let p and q be positive integers with $(p, q) \neq (1, 1)$. Then $K_{p,q} \oplus K_{2,2}$ is a balanced d-magic graph.

Proof. Let p and q be positive integers with $(p, q) \neq (1, 1)$. Let $k = \min\{p, q\}$ and $h = \max\{p, q\}$. Since $K_{2,2h}$ is d-magic by Proposition 1.6, $2K_{2,2h}$ is balanced d-magic by Theorem 1.4. The graph $K_{p,q} \oplus K_{2,2}$ is decomposable into k balanced d-magic subgraphs isomorphic to $2K_{2,2h}$. According to Theorem 1.5, $K_{p,q} \oplus K_{2,2}$ is a balanced d-magic graph. \(\square\)
Figure 5. A balanced d-magic graph $K_{1,3} \oplus K_{2,2}$ with 16 vertices and 24 edges.

Table 5. The labels on edges of balanced d-magic graph $K_{1,3} \oplus K_{2,2}$.

<table>
<thead>
<tr>
<th>Vertices</th>
<th>b_1</th>
<th>b_2</th>
<th>b_3</th>
<th>b_4</th>
<th>b_5</th>
<th>b_6</th>
<th>b_7</th>
<th>b_8</th>
<th>b_9</th>
<th>b_{10}</th>
<th>b_{11}</th>
<th>b_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>21</td>
<td>-</td>
<td>20</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>a_2</td>
<td>-</td>
<td>-</td>
<td>24</td>
<td>14</td>
<td>-</td>
<td>-</td>
<td>22</td>
<td>4</td>
<td>-</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>a_3</td>
<td>13</td>
<td>23</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>a_4</td>
<td>12</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>17</td>
<td>18</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Theorem 5.3. Let p and q be positive integers, and let r and s be even positive integers with $(r, s) \neq (2, 2)$. Then $K_{p,q} \oplus K_{r,s}$ is a balanced d-magic graph.

Proof. Let p and q be positive integers, and let r and s be even positive integers with $(r, s) \neq (2, 2)$. Since $K_{r,s}$ is d-magic by Proposition 1.6, $2K_{r,s}$ is balanced d-magic by Theorem 1.4. The graph $K_{p,q} \oplus K_{r,s}$ is decomposable into pq balanced d-magic subgraphs isomorphic to $2K_{r,s}$. According to Theorem 1.5, $K_{p,q} \oplus K_{r,s}$ is a balanced d-magic graph.

It is clear that the tensor product graph $K_{p,q} \oplus K_{r,s}$ is isomorphic to $K_{r,s} \oplus K_{p,q}$.

Corollary 5.4. Let p, q be positive integers with $(p, q) \neq (1, 1)$, and let r, s be even positive integers. If $p = q$ and $r = s$, then $K_{p,q} \oplus K_{r,s}$ is a supermagic graph.

Proof. Applying Theorems 1.1, 5.2 and 5.3.

Below is an example of balanced d-magic graph $K_{1,3} \oplus K_{2,2}$ (see Figure 5), and the labels on edges of $K_{1,3} \oplus K_{2,2}$ are shown in Table 5.

For two vertex-disjoint graphs G and H, the strong product of graphs G and H, denoted by $G \otimes H$, is a graph such that the vertex set of $G \otimes H$ is...
the Cartesian product $V(G) \times V(H)$ and any two vertices (u, v) and (x, y) are
adjacent in $G \otimes H$ if and only if $u = x$ and v is adjacent with y in H, or $v = y$
and u is adjacent with x in G, or u is adjacent with x in G and v is adjacent
with y in H. For any positive integers p, q, r and s, we consider the strong
product $K_{p,q} \otimes K_{r,s}$ of complete bipartite graphs. Let $K_{p,q} \otimes K_{r,s}$ be a d-magic
graph. Since $\deg(v) = p + r + pr$, $p + s + ps$, $q + r + qr$ or $q + s + qs$ and
$f^*(v) = (pq(r + s) + rs(p + q) + 2pqr + 1) \deg(v)/2$ for any $v \in V(K_{p,q} \otimes K_{r,s})$,
we have

Proposition 6.1. Let $K_{p,q} \otimes K_{r,s}$ be a d-magic graph. Then the following
conditions hold:
(i) only one of p, q, r and s is even or
(ii) all of p, q, r and s are even.

Proposition 6.2. Let $K_{p,q} \otimes K_{r,s}$ be a balanced d-magic graph. Then p, q, r
and s are even.

We conclude this paper with an identification of the sufficient condition for
the existence of balanced d-magic labelings of the strong product of complete
bipartite graphs $K_{p,q} \otimes K_{r,s}$.

Theorem 6.3. Let p, q, r and s be even positive integers with $(p, q) \neq (2, 2)$
and $(r, s) \neq (2, 2)$. Then $K_{p,q} \otimes K_{r,s}$ is a balanced d-magic graph.

Proof. Let p, q, r and s be even positive integers with $(p, q) \neq (2, 2)$ and $(r, s) \neq
(2, 2)$. Thus, $K_{p,q} \times K_{r,s}$ is balanced d-magic by Theorem 4.3, and $K_{p,q} \otimes K_{r,s}$
is balanced d-magic by Theorem 5.3. Since $K_{p,q} \otimes K_{r,s}$ is the graph such that
$K_{p,q} \times K_{r,s}$ and $K_{p,q} \oplus K_{r,s}$ form its decomposition, by Theorem 1.5, $K_{p,q} \otimes K_{r,s}$
is a balanced d-magic graph. □

It is clear that the strong product graph $K_{p,q} \otimes K_{r,s}$ is isomorphic to $K_{r,s} \otimes
K_{p,q}$.

Corollary 6.4. Let p, q, r and s be even positive integers with $(p, q) \neq (2, 2)$
and $(r, s) \neq (2, 2)$. If $p = q$ and $r = s$, then $K_{p,q} \otimes K_{r,s}$ is a supermagic graph.

Proof. Applying Theorems 1.1 and 6.3. □

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referee for careful reading
and the helpful comments improving this paper.

REFERENCES

Balanced degree-magic labelings of complete bipartite graphs under binary operations