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1. Introduction

Frames have been introduced by J. Duffin and A.C. Schaeffer in [9], in con-
nection with non-harmonic Fourier series. A frame for a Hilbert space is a
possibly redundant set of vectors which yields, in a stable way, a representa-
tion for each vector in the space. Frames have many nice properties which make
them very useful in the characterization of function space, signal processing and
many other fields, see the book [7]. The concept of frames was extended to
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Banach spaces by K. Gröchenig in [11] to develop atomic decompositions from
the paper [10]. See also [3], [8].

Definition 1.1. Let X be a Banach space. A countable family {gi}i∈I ⊂ X∗

is a p-frame for X (1 < p < ∞), 1 < p < ∞, if there exist constants A,B > 0

such that
A∥f∥X ≤ (

∑
i∈I

|gi(f)|p)
1
p ≤ B∥f∥X , f ∈ X.

G-frame as a natural generalization of frame in Hilbert spaces, introduced
by Sun [18] in 2006. G-frame covers many previous extensions of a frame.

Definition 1.2. Let H be a Hilbert space and {Hi}i∈I be a sequence of Hilbert
spaces. We call a sequence {Λi ∈ B(H,Hi) : i ∈ I} a g-frame for H with respect
to {Hi}i∈I if there exist two positive constants A and B such that

A∥f∥2 ≤
∑
i∈I

∥Λif∥2 ≤ B∥f∥2, f ∈ H.

We call A and B the lower and upper g−frame bounds, respectively. We call
{Λi}i∈J a tight g-frame if A = B and Parseval g-frame if A = B = 1.

If {Λi ∈ B(H,Hi) : i ∈ I} is a g-frame then ∥Λi∥ ≤
√
B for all i ∈ I.

Bessel multipliers for Hilbert spaces are investigated by Peter Balazs [4, 5]. We
use the following notations for sequence spaces.

(1) c0 = {{an}∞n=1 ⊆ C : limn→∞an = 0};
(2) lp = {{an}∞n=1 ⊆ C : ∥a∥p = (

∑
n∈N |an|p)

1
p < ∞}, 0 < p < ∞;

(3) l∞ = {{an}∞n=1 ⊆ C : ∥a∥∞ = supn∈N |an| < ∞}.

Definition 1.3. Let H1 and H2 be Hilbert spaces. Let {fi}∞i=1 ⊆ H1 and
{gi}∞i=1 ⊆ H2 be Bessel sequences. Fix m = {mi}∞i=1 ∈ l∞. The operator

Mm,{fi},{gi} : H1 → H2, Mm,{fi},{gi}(f) =

∞∑
i=1

mi⟨f, fi⟩gi

is called the Bessel multiplier of the Bessel sequences {fi}∞i=1 and {gi}∞n=1.

For more results about multipliers in Hilbert spaces we can cite the papers
[6, 15, 16, 17].
Multipliers for p-Bessel sequences in Banach spaces were introduced in [13].
Rahimi investigated g-Bessel multipliers in [12]. In this note, by mixing the
concepts of multipliers for p-Bessel sequences and g-Bessel multipliers, we will
define multipliers for the pg-Bessel sequences (pg−frames) and we will investi-
gate some of their properties.
In our opinion, it is possible that the results of this paper can be applied in
Quantum Information Theory. A beautiful presentation of the connections
between frames and POVM is the paper [14].
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2. Review of pg-Frames and qg-Riesz Bases

In [1], pg-frames and qg-Riesz bases for Banach spaces have been introduced.
In this section, we recall some properties of pg-frames and qg−Riesz bases from
[1]. Throughout this section, I is a subset of N, X is a Banach space with dual
X∗ and also {Yi}i∈I is a sequence of Banach spaces.

Definition 2.1. We call a sequence Λ = {Λi ∈ B(X,Yi) : i ∈ I} a pg−frame
for X with respect to {Yi : i ∈ I} (1 < p < ∞), if there exist A,B > 0 such
that

A∥x∥X ≤

(∑
i∈I

∥Λix∥p
) 1

p

≤ B∥x∥X , ∀x ∈ X. (2.1)

A,B is called the pg-frame bounds of {Λi}i∈I .

If only the second inequality in (2.1) is satisfied, {Λi}i∈I is called a pg-Bessel
sequence for X with respect to {Yi : i ∈ I} with bound B.

Definition 2.2. Let {Yi}i∈I be a sequence of Banach spaces. We define(∑
i∈I

⊕
Yi

)
lp

=

{
{xi}i∈I |xi ∈ Yi,

∑
i∈I

∥xi∥p < +∞

}
.

Therefore
(∑

i∈I

⊕
Yi

)
lp

is a Banach space with the norm

∥{xi}i∈I∥p =

(∑
i∈I

∥xi∥p
) 1

p

.

Let 1 < p, q < ∞ be conjugate exponents, i.e., 1
p + 1

q = 1. If x∗ = {x∗
i }i∈I ∈

(
∑

i∈I

⊕
Y ∗
i )lq , then one can show that the formula

⟨x, x∗⟩ =
∑
i∈I

⟨xi, x
∗
i ⟩, x = {xi}i∈I ∈ (

∑
i∈I

⊕
Yi)lp

defines a continuous functional on (
∑

i∈I

⊕
Yi)lp , whose norm is equal to ∥x∗∥q.

Lemma 2.3. [2] Let 1 < p, q < ∞ such that 1
p + 1

q = 1, then(∑
i∈J

⊕
Yi

)∗

lp

=

(∑
i∈J

⊕
Y ∗
i

)
lq

;

where the equality holds under the duality

⟨x, x∗⟩ =
∑
i∈J

⟨xi, x
∗
i ⟩.

Definition 2.4. Let Λ = {Λi ∈ B(X,Yi) : i ∈ I} be a pg-Bessel sequence for
X with respect to {Yi}. We define the operators

UΛ : X →

(∑
i∈I

⊕
Yi

)
lp

, UΛ(x) = {Λix}i∈I (2.2)
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and

TΛ :

(∑
i∈I

⊕
Y ∗
i

)
lq

→ X∗ TΛ{gi}i∈I =
∑
i∈I

Λ∗
i gi. (2.3)

UΛ and TΛ are called the analysis and synthesis operators of Λ = {Λi}i∈I ,

respectively.

The following proposition, characterizes the pg-Bessel sequence by the op-
erator TΛ defined in (2.3).

Proposition 2.5. [1] Λ = {Λi ∈ B(X,Yi) : i ∈ I} is a pg-Bessel sequence
for X with respect to {Yi}i∈I , if and only if the operator TΛ defined in (2.3)
is a well defined and bounded operator. In this case,

∑
i∈I Λ

∗
i gi converges

unconditionally for any {gi}i∈I ∈
(∑

i∈I

⊕
Y ∗
i

)
lq
.

Lemma 2.6. [1] If Λ = {Λi ∈ B(X,Yi) : i ∈ I} is a pg-Bessel sequence for X

with respect to {Yi}i∈I , then
(i) U∗

Λ = T ,
(ii) If Λ = {Λi ∈ B(X,Yi) : i ∈ I} is a pg-frame for reflexive Banach space

X and Yi is reflexive, for all i ∈ I then T ∗
Λ = UΛ.

Theorem 2.7. [1] Λ = {Λi ∈ B(X,Yi) : i ∈ I} is a pg-frame for X with
respect to {Yi}i∈I if and only if TΛ defined in (2.3) is a bounded and onto
operator.

Definition 2.8. Let 1 < q < ∞. A family Λ = {Λi ∈ B(X,Yi) : i ∈ I} is
called a qg−Riesz basis for X∗ with respect to {Yi}i∈I , if

(i) {f : Λif = 0, i ∈ I} = {0} (i.e., {Λi}i∈J is g-complete);
(ii) There are positive constants A,B such that for any finite subset I1 ⊆ I

A

(∑
i∈I1

∥gi∥q
) 1

q

≤ ∥
∑
i∈I1

Λ∗
i gi∥ ≤ B

(∑
i∈I1

∥gi∥q
) 1

q

, gi ∈ Y ∗
i .

The assumptions of the Definition 2.8 imply that
∑

i∈J Λ∗
i gi converges un-

conditionally for all {gi}i∈I ∈ (
∑

i∈I

⊕
Y ∗
i )lq , and

A

(∑
i∈I

∥gi∥q
) 1

q

≤ ∥
∑
i∈I

Λ∗
i gi∥ ≤ B

(∑
i∈I

∥gi∥q
) 1

q

.

In [1], it is proved that if Λ = {Λi ∈ B(X,Yi) : i ∈ I} is a qg-Riesz basis for
X∗ with respect to {Yi}i∈I , then Λ is a pg-frame for X with respect to {Yi}i∈I .

Therefore Λ = {Λi ∈ B(X,Yi) : i ∈ I} is a qg-Riesz basis for X∗ if and only if
the operator TΛ defined in (2.3) is an invertible operator from

(∑
i∈J

⊕
Y ∗
i

)
lq

onto X∗.
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Theorem 2.9. [1] Let {Yi}i∈I be a sequence of reflexive Banach spaces. Let
Λ = {Λi ∈ B(X,Yi) : i ∈ I} be a pg-frame for X with respect to {Yi}i∈I . Then
the following statements are equivalent:

(i) {Λi}i∈I is a qg-Riesz basis for X∗;

(ii) If {gi}i∈I ∈
(∑

i∈I

⊕
Y ∗
i

)
lq

and
∑

i∈I Λ
∗
i gi = 0 then gi = 0, for all

i ∈ I;

(iii) RU = (
∑

i∈I

⊕
Yi)lp .

3. Multipliers for pg-Bessel Sequences

In this section, we assume that X1 and X2 are reflexive Banach spaces and
{Yi}∞i=1 is a family of reflexive Banach spaces. Also, we consider p, q > 1 are
real numbers such that 1

p + 1
q = 1.

Proposition 3.1. Let X be a Banach space and let Λ = {Λi ∈ B(X,Yi)}∞i=1

be a pg-Bessel sequence for X with respect to {Yi}∞i=1 with the bound B.

(1) If Θ = {Θi ∈ B(X,Yi)}∞i=1 is a sequence of bounded operators such
that (

∑∞
i=1 ∥Λi −Θi∥p)

1
p < K < ∞, then Θ is a pg-Bessel sequence for

X with bound B +K.

(2) Let Θ(n) = {Θ(n)
i ∈ B(X,Yi)}∞i=1 be a sequence of bounded operators

such that for all ε > 0 there exists N > 0 with( ∞∑
i=1

∥Λi −Θ
(n)
i ∥p

) 1
p

< ε, n ≥ N,

then Θ(n) is a pg-Bessel sequence and for all n ≥ N,

∥UΘ(n) − UΛ∥ ≤ ε, ∥TΘ(n) − TΛ∥ ≤ ε.

Proof. (1) If {gi}∞i=1 ∈ (
∑∞

i=1

⊕
Y ∗
i )lq we have

∥TΛ{gi}∞i=1 − TΘ{gi}∞i=1∥ =∥
∞∑
i=1

(Λ∗
i −Θ∗

i )gi∥

=sup∥f∥≤1∥
∞∑
i=1

gi(Λif −Θif)∥

≤sup∥f∥≤1

∞∑
i=1

∥gi∥∥Λif −Θif∥

≤

( ∞∑
i=1

∥gi∥q
) 1

q

sup∥f∥≤1

( ∞∑
i=1

∥Λif −Θif∥p
) 1

p

≤K∥{gi}∞i=1∥q,
and so

∥TΘ{gi}∞i=1∥ ≤∥TΘ{gi}∞i=1 − TΛ{gi}∞i=1∥+ ∥TΛ{gi}∞i=1∥
≤(B +K)∥{gi}∞i=1∥q.
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Consequently, Proposition 2.5 implies that {Θi}∞i=1 is a pg-Bessel sequence with
the bound B +K.

(2) It follows from (1) that {Θ(n)
i }∞i=1 is a pg-Bessel sequence and ∥TΘ(n)−TΛ∥ ≤

ε for all n ≥ N . But for f ∈ X and n ≥ N we have

∥UΛf − UΘ(n)f∥p =

( ∞∑
i=1

∥Λif −Θ
(n)
i f∥p

) 1
p

≤

( ∞∑
i=1

∥Λi −Θ
(n)
i ∥p

) 1
p

∥f∥

hence ∥UΘ(n) − UΛ∥ ≤ ε. □

We say that Θ(n) = {Θ(n)
i ∈ B(X,Yi)}∞i=1 converges to Λ = {Λi ∈ B(X,Yi)}∞i=1

in lp-sense, if the condition of Proposition 3.1 (2) is fullfilled.

Proposition 3.2. Let Λ = {Λi ∈ B(X2, Yi)}∞i=1 be a pg-Bessel sequence for
X2 with bound BΛ and Θ = {Θi ∈ B(X∗

1 , Y
∗
i )}∞i=1 be a qg-Bessel sequence for

X∗
1 with bound BΘ. If m ∈ l∞, then the operator

Mm,Λ,Θ : X∗
1 → X∗

2 , Mm,Λ,Θ(g) =

∞∑
i=1

miΛ
∗
iΘig

is well defined, the sum converges unconditionally for all g ∈ X∗
1 and

∥Mm,Λ,Θ∥ ≤ BΛBΘ∥m∥∞.

Proof. Let g ∈ X∗
1 , then {miΘig}∞i=1 ∈ (

∑∞
i=1

⊕
Y ∗
i )lq , and Proposition 2.5

implies that
∑∞

i=1 miΛ
∗
iΘig converges unconditionally and Mm,Λ,Θ is well de-

fined. Also we have

∥
∞∑
i=1

miΛ
∗
iΘig∥ =sup∥x∥≤1|⟨x,

∞∑
i=1

miΛ
∗
iΘig⟩|

=sup∥x∥≤1|
∞∑
i=1

mi(Θig)(Λix)|

≤sup∥x∥≤1

∞∑
i=1

|mi||(Θig)(Λix)|

≤∥m∥∞sup∥x∥≤1

∞∑
i=1

∥Θig∥∥Λix∥

≤∥m∥∞

( ∞∑
i=1

∥Θig∥q
) 1

q

sup∥x∥≤1

( ∞∑
i=1

∥Λix∥p
) 1

p

≤∥m∥∞ ·BΘ∥g∥ · sup∥x∥≤1(BΛ∥x∥)
≤∥m∥∞ ·BΘ ·BΛ∥g∥.

Therefore Mm,Λ,Θ is bounded and ∥Mm,Λ,Θ∥ ≤ BΛBΘ∥m∥∞. □
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Definition 3.3. Let Λ = {Λi ∈ B(X2, Yi)}∞i=1 be a pg-Bessel sequence for X2

with bound BΛ and Θ = {Θi ∈ B(X∗
1 , Y

∗
i )}∞i=1 be a qg-Bessel sequence for X∗

1

with bound BΘ. Let m = {mi}∞i=1 ∈ l∞. The operator

Mm,Λ,Θ : X∗
1 → X∗

2 , Mm,Λ,Θ(g) =

∞∑
i=1

miΛ
∗
iΘig (3.1)

is called the (p, q)g−Bessel multiplier of Λ, Θ and m. The sequence m is called
the symbol of M.

Proposition 3.4. Let Λ = {Λi ∈ B(X2, Yi)}∞i=1 be a qg-Riesz basis for X∗
2 and

Θ = {Θi ∈ B(X∗
1 , Y

∗
i )}∞i=1 be a qg-Bessel sequence for X∗

1 with all members
non-zero. Then the mapping

m → Mm,Λ,Θ

is injective from l∞ into B(X∗
1 , X

∗
2 ).

Proof. If Mm,Λ,Θ = 0, then
∑∞

i=1 miΛ
∗
iΘig = 0 for all g ∈ X∗

1 . Then Theorem
2.9 implies that miΘig = 0 for all i ∈ N and for all g ∈ X∗

1 . Since Θi ̸= 0 for
each i ∈ N, we get mi = 0. □

Theorem 3.5. Let Λ = {Λi ∈ B(X2, Yi)}∞i=1 be a qg-Riesz basis for X∗
2 with

respect to {Yi}∞i=1, then there exist a sequence {Λ̃i ∈ B(X∗
2 , Y

∗
i )}∞i=1 which is a

pg-Riesz basis for X2 with respect to {Y ∗
i }∞i=1 such that

x∗ =

∞∑
i=1

Λ∗
i Λ̃ix

∗, x∗ ∈ X∗
2

and Λ̃kΛ
∗
i = δk,iI.

Proof. Since Λ = {Λi ∈ B(X2, Yi)}∞i=1 is a pg-frame for X2, Theorem 2.7
implies that for every x∗ ∈ X∗

2 there exists a unique {gi}∞i=1 ∈ (
∑∞

i=1

⊕
Y ∗
i )lq

such that x∗ =
∑∞

i=1 Λ
∗
i gi. Let us define the operator

Λ̃i : X
∗
2 → Y ∗

i , Λ̃i(x
∗) = gi.

By Theorem 2.9, Λ̃i is well defined. Let AΛ, BΛ be the qg-Riesz basis bounds
for Λ = {Λi ∈ B(X2, Yi)}∞i=1. Then for any {gi}∞i=1 ∈ (

∑∞
i=1

⊕
Y ∗
i )lq we have

AΛ

( ∞∑
i=1

∥gi∥q
) l

q

≤ ∥
∞∑
i=1

Λ∗
i gi∥ ≤ BΛ

( ∞∑
i=1

∥gi∥q
) l

q

.

Therefore

1

BΛ
∥

∞∑
i=1

Λ∗
i gi∥ ≤

( ∞∑
i=1

∥gi∥q
) l

q

≤ 1

AΛ
∥

∞∑
i=1

Λ∗
i gi∥,
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for all {gi}∞i=1 ∈ (
∑∞

i=1

⊕
Y ∗
i )lq . Hence we get

1

BΛ
∥x∗∥ ≤

( ∞∑
i=1

∥Λ̃i(x
∗)∥q

) l
q

≤ 1

AΛ
∥x∗∥, x∗ ∈ X∗

2 .

This implies that {Λ̃i ∈ B(X∗
2 , Y

∗
i )}∞i=1 is a qg-frame for X∗

2 with respect to
{Y ∗

i }∞i=1 with bounds 1
AΛ

and 1
BΛ

and

x∗ =

∞∑
i=1

Λ∗
i Λ̃ix

∗, x∗ ∈ X∗
2

and Λ̃kΛ
∗
i = δk,iI. At the other hand the synthesis operator is invertible and

UΛ̃ = T−1
Λ , therefore UΛ̃ is invertible. So by Lemma 2.6, U∗

Λ̃
= TΛ̃ is invertible

and therefore {Λ̃i}i∈N is a pg-Riesz basis for X2. □

By a duality argument it can be shown for a reflexive space that ΛiΛ̃
∗
k = δi,kI

on X2.

Corollary 3.6. Let Θ = {Θi ∈ B(X∗
1 , Y

∗
i )}∞i=1 be a pg-Riesz basis for X1 with

respect to {Y ∗
i }∞i=1 with bounds AΘ, BΘ, then there exists a sequence {Θ̃i ∈

B(X1, Yi)}∞i=1 which is a qg-Riesz basis for X∗
1 with respect to {Yi}∞i=1 with

bounds 1
BΘ

, 1
AΘ

and

x =

∞∑
i=1

Θ∗
i Θ̃ix, x ∈ X1,

and Θ̃kΘ
∗
i = δk,iI.

Proposition 3.7. Let Λ = {Λi ∈ B(X2, Yi)}∞i=1 be a qg-Riesz basis for X∗
2

with respect to {Yi}∞i=1 with bound AΛ, BΛ and Θ = {Θi ∈ B(X∗
1 , Y

∗
i )}∞i=1 be a

pg-Riesz basis for X1 with respect to {Y ∗
i }∞i=1 with bounds AΘ, BΘ. If m ∈ l∞,

then
AΛAΘ∥m∥∞ ≤ ∥Mm,Λ,Θ∥ ≤ BΛBΘ∥m∥∞.

Proof. By Proposition 3.2, it is enough to show that we have the lower bound.
Corollary 3.6 implies that there exists a sequence

{Θ̃i ∈ B(X1, Yi)}∞i=1

which is a qg-Riesz basis for X∗
1 (therefore a pg-frame for X1) with respect to

{Yi}∞i= with bounds 1
BΘ

, 1
AΘ

and

x =

∞∑
i=1

Θ∗
i Θ̃ix, x ∈ X1,
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and Θ̃kΘ
∗
i = δk,iI. Let us fix 0 ̸= y∗k ∈ Y ∗

k for each k ∈ N, then we have

∥Mm,Λ,Θ∥ = sup
0 ̸=g∈X∗

1

∥Mm,Λ,Θg∥
∥g∥

= sup
0 ̸=g∈X∗

1

∥
∑∞

i=1 miΛ
∗
iΘig∥

∥g∥

≥ sup
k∈N

∥
∑∞

i=1 miΛ
∗
iΘi(Θ̃k)

∗y∗k∥
∥(Θ̃k)∗y∗k∥

=sup
k∈N

∥mkΛ
∗
ky

∗
k∥

∥(Θ̃k)∗y∗k∥

=sup
k∈N

|mk|
∥Λ∗

ky
∗
k∥

∥(Θ̃k)∗y∗k∥
≥AΛAΘ∥m∥∞.

□

Theorem 3.8. Let Λ = {Λi ∈ B(X2, Yi)}∞i=1 be a qg-Riesz basis for X∗
2

with respect to {Yi}∞i=1 and Θ = {Θi ∈ B(X∗
1 , Y

∗
i )}∞i=1 be a pg-Riesz basis

for X1 with respect to {Y ∗
i }∞i=1. If m = {mi}∞i=1 satisfies 0 < infi∈N|mi| ≤

supi∈N|mi| < +∞, then Mm,Λ,Θ is invertible with inverse M 1
m ,Θ̃,Λ̃.

Proof. Let us consider {Λ̃i ∈ B(X∗
2 , Y

∗
i )}∞i=1 and {Θ̃i ∈ B(X1, Yi)}∞i=1 which

appear in Proposition 3.5 and Corollary 3.6, respectively. We prove that

(Mm,Λ,Θ)
−1 = M 1

m ,Θ̃,Λ̃.

Let g ∈ X∗
1 , then

M 1
m ,Θ̃,Λ̃ ◦Mm,Λ,Θ(g) =M 1

m ,Θ̃,Λ̃

( ∞∑
i=1

miΛ
∗
iΘig

)
=

∞∑
k=1

1

mk
(Θ̃k)

∗Λ̃k

( ∞∑
i=1

miΛ
∗
iΘig

)
=

∞∑
k=1

1

mk
(Θ̃k)

∗( ∞∑
i=1

miΛ̃kΛ
∗
iΘig

)
=

∞∑
k=1

1

mk
(Θ̃k)

∗(mkΘkg)

=g.
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Let us consider f ∈ X∗
2 , then

Mm,Λ,Θ ◦M 1
m ,Θ̃,Λ̃f =Mm,Λ,Θ

( ∞∑
k=1

1

mk
(Θ̃k)

∗Λ̃kf
)

=

∞∑
i=1

miΛ
∗
iΘi

( ∞∑
k=1

1

mk
(Θ̃k)

∗Λ̃kf
)

=

∞∑
i=1

miΛ
∗
i

( ∞∑
k=1

1

mk
Θi(Θ̃k)

∗Λ̃kf
)

=

∞∑
i=1

miΛ
∗
i (

1

mi
Λ̃if)

=f.

□

In the next results, we show that the (p, q)g-Bessel multiplier M = Mm,Λ,Θ

depends continuously on its parameters, m = {mi}∞i=1, Λ = {Λi}∞i=1 and Θ =

{Θi}∞i=1.

Theorem 3.9. Let Λ = {Λi ∈ B(X2, Yi)}∞i=1 be a pg-Bessel sequence for X2

with bound BΛ and Θ = {Θi ∈ B(X∗
1 , Y

∗
i )}∞i=1 be a qg-Bessel sequence for

X∗
1 with bound BΘ. Let p1, q1 > 1 such that 1

p1
+ 1

q1
= 1 and m ∈ l∞. Let

Λ(n) = {Λ(n)
i ∈ B(X2, Yi)}∞i=1 be a pg-Bessel sequence for X2 with bound BΛ(n)

and Θ(n) = {Θ(n)
i ∈ B(X∗

1 , Y
∗
i )}∞i=1 be a qg-Bessel sequence for X∗

1 with bound
BΘ(n) for all n ∈ N. Then

(1) If ∥m(n) −m∥p1
→ 0, then ∥Mm(n),Λ,Θ −Mm,Λ,Θ∥ → 0, as n → ∞.

(2) If m ∈ lp1 and {Θ(n)
i }∞i=1 converges to {Θi}∞i=1 in lq1-sense, then

∥Mm,Λ,Θ(n) −Mm,Λ,Θ∥ → 0, n → ∞.

(3) If m ∈ lp1 and {Λ(n)
i }∞i=1 converges to {Λi}∞i=1 in lq1-sense, then

∥Mm,Λ(n),Θ −Mm,Λ,Θ∥ → 0, n → ∞.

(4) Let

B1 = sup
n∈N

BΛ(n) < +∞, B2 = sup
n∈N

BΘ(n) < +∞.

If ∥m(n)−m∥lp1 → 0 and {Θ(n)
i }∞i=1 and {Λ(n)

i }∞i=1 converge to {Θi}∞i=1

and {Λi}∞i=1 in lq1-sense, respectively, then

∥Mm(n),Λ(n),Θ(n) −Mm,Λ,Θ∥ → 0, n → ∞.
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Proof. (1) Using proof of the Proposition 3.2 we have

∥Mm(n),Λ,Θ −Mm,Λ,Θ∥ =∥Mm(n)−m,Λ,Θ∥

≤BΛBΘ∥m(n) −m∥∞
≤BΛBΘ∥m(n) −m∥p1

→ 0.

(2) For g ∈ X∗
1 , we have

∥Mm,Λ,Θ(n)g −Mm,Λ,Θg∥ =∥
∞∑
i=1

miΛ
∗
i (Θ

(n)
i −Θi)g∥

≤
∞∑
i=1

|mi|∥Λ∗
i ∥∥(Θ

(n)
i −Θi)g∥

≤
∞∑
i=1

BΛ|mi|∥(Θ(n)
i −Θi)g∥

≤BΛ∥m∥p1

( ∞∑
i=1

∥(Θ(n)
i −Θi)g∥q1

) 1
q1

.

So

∥Mm,Λ,Θ(n) −Mm,Λ,Θ∥ ≤ BΛ∥m∥p1

( ∞∑
i=1

∥(Θ(n)
i −Θi)∥q1

) 1
q1

→ 0.

(3) It is similar to the proof of (2).
(4) We have

∥Mm(n),Λ(n),Θ(n) −Mm,Λ(n),Θ(n)∥ ≤ B1B2∥m(n) −m∥p1
, (3.2)

∥Mm,Λ(n),Θ(n) −Mm,Λ,Θ(n)∥ ≤ B2∥m∥p1

( ∞∑
i=1

∥(Λ(n)
i − Λi)∥q1

) 1
q1

, (3.3)

∥Mm,Λ,Θ(n) −Mm,Λ,Θ∥ ≤ BΛ∥m∥p

( ∞∑
i=1

∥(Θ(n)
i −Θi)∥q1

) 1
q1

. (3.4)

Since
∥Mm(n),Λ(n),Θ(n) −Mm,Λ,Θ∥ ≤∥Mm(n),Λ(n),Θ(n) −Mm,Λ(n),Θ(n)∥

+∥Mm,Λ(n),Θ(n) −Mm,Λ,Θ(n)∥
+∥Mm,Λ,Θ(n) −Mm,Λ,Θ∥,

(3.2), (3.3), (3.4) imply that

∥MΛ(n),Θ(n),m(n) −MΛ,Θ,m∥ → 0, n → ∞.

□
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