Multipliers of pg-Bessel Sequences in Banach Spaces

Mohammad Reza Abdollahpour ${ }^{a, *}$, Abbas Najati ${ }^{a}$ and Pasc Găvruţa ${ }^{b}$
${ }^{a}$ Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran.
${ }^{b}$ Department of Mathematics, Politehnica University of Timişoara, Piaţa Victoriei, Nr. 2, 300006, Timişoara, Romania.

```
E-mail: m.abdollah@uma.ac.ir, mrabdollahpour@yahoo.com
    E-mail: a.nejati@yahoo.com
    E-mail: pgavruta@yahoo.com
```

Abstract. In this paper, we introduce $(p, q) g$-Bessel multipliers in Banach spaces and we show that under some conditions a $(p, q) g$-Bessel multiplier is invertible. Also, we show the continuous dependency of $(p, q) g$-Bessel multipliers on their parameters.

Keywords: p-Frames, g-Frames, $p g$-Frames, $q g$-Riesz bases, $(p, q) g$-Bessel multiplier.

2010 Mathematics Subject Classification: 47B10, 42C15, 47A58.

1. Introduction

Frames have been introduced by J. Duffin and A.C. Schaeffer in [9], in connection with non-harmonic Fourier series. A frame for a Hilbert space is a possibly redundant set of vectors which yields, in a stable way, a representation for each vector in the space. Frames have many nice properties which make them very useful in the characterization of function space, signal processing and many other fields, see the book [7]. The concept of frames was extended to

[^0]Banach spaces by K. Gröchenig in [11] to develop atomic decompositions from the paper [10]. See also [3], [8].

Definition 1.1. Let X be a Banach space. A countable family $\left\{g_{i}\right\}_{i \in I} \subset X^{*}$ is a p-frame for $X(1<p<\infty), 1<p<\infty$, if there exist constants $A, B>0$ such that

$$
A\|f\|_{X} \leq\left(\sum_{i \in I}\left|g_{i}(f)\right|^{p}\right)^{\frac{1}{p}} \leq B\|f\|_{X}, \quad f \in X
$$

G-frame as a natural generalization of frame in Hilbert spaces, introduced by Sun [18] in 2006. G-frame covers many previous extensions of a frame.

Definition 1.2. Let \mathcal{H} be a Hilbert space and $\left\{\mathcal{H}_{i}\right\}_{i \in I}$ be a sequence of Hilbert spaces. We call a sequence $\left\{\Lambda_{i} \in B\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in I\right\}$ a g-frame for \mathcal{H} with respect to $\left\{\mathcal{H}_{i}\right\}_{i \in I}$ if there exist two positive constants A and B such that

$$
A\|f\|^{2} \leq \sum_{i \in I}\left\|\Lambda_{i} f\right\|^{2} \leq B\|f\|^{2}, \quad f \in \mathcal{H}
$$

We call A and B the lower and upper g-frame bounds, respectively. We call $\left\{\Lambda_{i}\right\}_{i \in J}$ a tight g-frame if $A=B$ and Parseval g-frame if $A=B=1$.

If $\left\{\Lambda_{i} \in B\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in I\right\}$ is a g-frame then $\left\|\Lambda_{i}\right\| \leq \sqrt{B}$ for all $i \in I$. Bessel multipliers for Hilbert spaces are investigated by Peter Balazs [4, 5]. We use the following notations for sequence spaces.
(1) $c_{0}=\left\{\left\{a_{n}\right\}_{n=1}^{\infty} \subseteq \mathbb{C}: \lim _{n \rightarrow \infty} a_{n}=0\right\}$;
(2) $l^{p}=\left\{\left\{a_{n}\right\}_{n=1}^{\infty} \subseteq \mathbb{C}:\|a\|_{p}=\left(\sum_{n \in \mathbb{N}}\left|a_{n}\right|^{p}\right)^{\frac{1}{p}}<\infty\right\}, 0<p<\infty$;
(3) $l^{\infty}=\left\{\left\{a_{n}\right\}_{n=1}^{\infty} \subseteq \mathbb{C}:\|a\|_{\infty}=\sup _{n \in \mathbb{N}}\left|a_{n}\right|<\infty\right\}$.

Definition 1.3. Let \mathcal{H}_{1} and \mathcal{H}_{2} be Hilbert spaces. Let $\left\{f_{i}\right\}_{i=1}^{\infty} \subseteq \mathcal{H}_{1}$ and $\left\{g_{i}\right\}_{i=1}^{\infty} \subseteq \mathcal{H}_{2}$ be Bessel sequences. Fix $m=\left\{m_{i}\right\}_{i=1}^{\infty} \in l^{\infty}$. The operator

$$
\mathbf{M}_{m,\left\{f_{i}\right\},\left\{g_{i}\right\}}: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}, \quad \mathbf{M}_{m,\left\{f_{i}\right\},\left\{g_{i}\right\}}(f)=\sum_{i=1}^{\infty} m_{i}\left\langle f, f_{i}\right\rangle g_{i}
$$

is called the Bessel multiplier of the Bessel sequences $\left\{f_{i}\right\}_{i=1}^{\infty}$ and $\left\{g_{i}\right\}_{n=1}^{\infty}$.
For more results about multipliers in Hilbert spaces we can cite the papers $[6,15,16,17]$.
Multipliers for p-Bessel sequences in Banach spaces were introduced in [13]. Rahimi investigated g-Bessel multipliers in [12]. In this note, by mixing the concepts of multipliers for p-Bessel sequences and g-Bessel multipliers, we will define multipliers for the $p g$-Bessel sequences ($p g$-frames) and we will investigate some of their properties.
In our opinion, it is possible that the results of this paper can be applied in Quantum Information Theory. A beautiful presentation of the connections between frames and POVM is the paper [14].

2. Review of pg-Frames and qg-Riesz Bases

In [1], $p g$-frames and $q g$-Riesz bases for Banach spaces have been introduced. In this section, we recall some properties of $p g$-frames and $q g$-Riesz bases from [1]. Throughout this section, I is a subset of \mathbb{N}, X is a Banach space with dual X^{*} and also $\left\{Y_{i}\right\}_{i \in I}$ is a sequence of Banach spaces.

Definition 2.1. We call a sequence $\boldsymbol{\Lambda}=\left\{\Lambda_{i} \in B\left(X, Y_{i}\right): i \in I\right\}$ a $p g$-frame for X with respect to $\left\{Y_{i}: i \in I\right\}(1<p<\infty)$, if there exist $A, B>0$ such that

$$
\begin{equation*}
A\|x\|_{X} \leq\left(\sum_{i \in I}\left\|\Lambda_{i} x\right\|^{p}\right)^{\frac{1}{p}} \leq B\|x\|_{X}, \quad \forall x \in X \tag{2.1}
\end{equation*}
$$

A, B is called the $p g$-frame bounds of $\left\{\Lambda_{i}\right\}_{i \in I}$.
If only the second inequality in (2.1) is satisfied, $\left\{\Lambda_{i}\right\}_{i \in I}$ is called a $p g$-Bessel sequence for X with respect to $\left\{Y_{i}: i \in I\right\}$ with bound B.

Definition 2.2. Let $\left\{Y_{i}\right\}_{i \in I}$ be a sequence of Banach spaces. We define

$$
\left(\sum_{i \in I} \bigoplus Y_{i}\right)_{l_{p}}=\left\{\left\{x_{i}\right\}_{i \in I} \mid x_{i} \in Y_{i}, \sum_{i \in I}\left\|x_{i}\right\|^{p}<+\infty\right\}
$$

Therefore $\left(\sum_{i \in I} \bigoplus Y_{i}\right)_{l_{p}}$ is a Banach space with the norm

$$
\left\|\left\{x_{i}\right\}_{i \in I}\right\|_{p}=\left(\sum_{i \in I}\left\|x_{i}\right\|^{p}\right)^{\frac{1}{p}}
$$

Let $1<p, q<\infty$ be conjugate exponents, i.e., $\frac{1}{p}+\frac{1}{q}=1$. If $x^{*}=\left\{x_{i}^{*}\right\}_{i \in I} \in$ $\left(\sum_{i \in I} \bigoplus Y_{i}^{*}\right)_{l_{q}}$, then one can show that the formula

$$
\left\langle x, x^{*}\right\rangle=\sum_{i \in I}\left\langle x_{i}, x_{i}^{*}\right\rangle, \quad x=\left\{x_{i}\right\}_{i \in I} \in\left(\sum_{i \in I} \bigoplus Y_{i}\right)_{l_{p}}
$$

defines a continuous functional on $\left(\sum_{i \in I} \bigoplus Y_{i}\right)_{l_{p}}$, whose norm is equal to $\left\|x^{*}\right\|_{q}$.
Lemma 2.3. [2] Let $1<p, q<\infty$ such that $\frac{1}{p}+\frac{1}{q}=1$, then

$$
\left(\sum_{i \in J} \bigoplus Y_{i}\right)_{l_{p}}^{*}=\left(\sum_{i \in J} \bigoplus Y_{i}^{*}\right)_{l_{q}}
$$

where the equality holds under the duality

$$
\left\langle x, x^{*}\right\rangle=\sum_{i \in J}\left\langle x_{i}, x_{i}^{*}\right\rangle .
$$

Definition 2.4. Let $\boldsymbol{\Lambda}=\left\{\Lambda_{i} \in B\left(X, Y_{i}\right): i \in I\right\}$ be a $p g$-Bessel sequence for X with respect to $\left\{Y_{i}\right\}$. We define the operators

$$
\begin{equation*}
U_{\Lambda}: X \rightarrow\left(\sum_{i \in I} \bigoplus Y_{i}\right)_{l_{p}}, \quad U_{\Lambda}(x)=\left\{\Lambda_{i} x\right\}_{i \in I} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{\Lambda}:\left(\sum_{i \in I} \bigoplus Y_{i}^{*}\right)_{l_{q}} \rightarrow X^{*} \quad T_{\Lambda}\left\{g_{i}\right\}_{i \in I}=\sum_{i \in I} \Lambda_{i}^{*} g_{i} \tag{2.3}
\end{equation*}
$$

U_{Λ} and T_{Λ} are called the analysis and synthesis operators of $\Lambda=\left\{\Lambda_{i}\right\}_{i \in I}$, respectively.

The following proposition, characterizes the $p g$-Bessel sequence by the operator T_{Λ} defined in (2.3).

Proposition 2.5. [1] $\boldsymbol{\Lambda}=\left\{\Lambda_{i} \in B\left(X, Y_{i}\right): i \in I\right\}$ is a pg-Bessel sequence for X with respect to $\left\{Y_{i}\right\}_{i \in I}$, if and only if the operator T_{Λ} defined in (2.3) is a well defined and bounded operator. In this case, $\sum_{i \in I} \Lambda_{i}^{*} g_{i}$ converges unconditionally for any $\left\{g_{i}\right\}_{i \in I} \in\left(\sum_{i \in I} \oplus Y_{i}^{*}\right)_{l_{q}}$.

Lemma 2.6. [1] If $\boldsymbol{\Lambda}=\left\{\Lambda_{i} \in B\left(X, Y_{i}\right): i \in I\right\}$ is a pg-Bessel sequence for X with respect to $\left\{Y_{i}\right\}_{i \in I}$, then
(i) $U_{\Lambda}^{*}=T$,
(ii) If $\boldsymbol{\Lambda}=\left\{\Lambda_{i} \in B\left(X, Y_{i}\right): i \in I\right\}$ is a pg-frame for reflexive Banach space X and Y_{i} is reflexive, for all $i \in I$ then $T_{\Lambda}^{*}=U_{\Lambda}$.

Theorem 2.7. [1] $\boldsymbol{\Lambda}=\left\{\Lambda_{i} \in B\left(X, Y_{i}\right): i \in I\right\}$ is a pg-frame for X with respect to $\left\{Y_{i}\right\}_{i \in I}$ if and only if T_{Λ} defined in (2.3) is a bounded and onto operator.

Definition 2.8. Let $1<q<\infty$. A family $\boldsymbol{\Lambda}=\left\{\Lambda_{i} \in B\left(X, Y_{i}\right): i \in I\right\}$ is called a $q g-$ Riesz basis for X^{*} with respect to $\left\{Y_{i}\right\}_{i \in I}$, if
(i) $\left\{f: \Lambda_{i} f=0, i \in I\right\}=\{0\}$ (i.e., $\left\{\Lambda_{i}\right\}_{i \in J}$ is g-complete);
(ii) There are positive constants A, B such that for any finite subset $I_{1} \subseteq I$

$$
A\left(\sum_{i \in I_{1}}\left\|g_{i}\right\|^{q}\right)^{\frac{1}{q}} \leq\left\|\sum_{i \in I_{1}} \Lambda_{i}^{*} g_{i}\right\| \leq B\left(\sum_{i \in I_{1}}\left\|g_{i}\right\|^{q}\right)^{\frac{1}{q}}, \quad g_{i} \in Y_{i}^{*} .
$$

The assumptions of the Definition 2.8 imply that $\sum_{i \in J} \Lambda_{i}^{*} g_{i}$ converges unconditionally for all $\left\{g_{i}\right\}_{i \in I} \in\left(\sum_{i \in I} \oplus Y_{i}^{*}\right)_{l_{q}}$, and

$$
A\left(\sum_{i \in I}\left\|g_{i}\right\|^{q}\right)^{\frac{1}{q}} \leq\left\|\sum_{i \in I} \Lambda_{i}^{*} g_{i}\right\| \leq B\left(\sum_{i \in I}\left\|g_{i}\right\|^{q}\right)^{\frac{1}{q}}
$$

In [1], it is proved that if $\boldsymbol{\Lambda}=\left\{\Lambda_{i} \in B\left(X, Y_{i}\right): i \in I\right\}$ is a $q g$-Riesz basis for X^{*} with respect to $\left\{Y_{i}\right\}_{i \in I}$, then $\boldsymbol{\Lambda}$ is a $p g$-frame for X with respect to $\left\{Y_{i}\right\}_{i \in I}$. Therefore $\boldsymbol{\Lambda}=\left\{\Lambda_{i} \in B\left(X, Y_{i}\right): i \in I\right\}$ is a $q g$-Riesz basis for X^{*} if and only if the operator T_{Λ} defined in (2.3) is an invertible operator from $\left(\sum_{i \in J} \oplus Y_{i}^{*}\right)_{l_{q}}$ onto X^{*}.

Theorem 2.9. [1] Let $\left\{Y_{i}\right\}_{i \in I}$ be a sequence of reflexive Banach spaces. Let $\boldsymbol{\Lambda}=\left\{\Lambda_{i} \in B\left(X, Y_{i}\right): i \in I\right\}$ be a pg-frame for X with respect to $\left\{Y_{i}\right\}_{i \in I}$. Then the following statements are equivalent:
(i) $\left\{\Lambda_{i}\right\}_{i \in I}$ is a qg-Riesz basis for X^{*};
(ii) If $\left\{g_{i}\right\}_{i \in I} \in\left(\sum_{i \in I} \bigoplus Y_{i}^{*}\right)_{l_{q}}$ and $\sum_{i \in I} \Lambda_{i}^{*} g_{i}=0$ then $g_{i}=0$, for all $i \in I$;
(iii) $\mathcal{R}_{U}=\left(\sum_{i \in I} \bigoplus Y_{i}\right)_{l_{p}}$.

3. Multipliers for $\mathbf{p g}$-Bessel Sequences

In this section, we assume that X_{1} and X_{2} are reflexive Banach spaces and $\left\{Y_{i}\right\}_{i=1}^{\infty}$ is a family of reflexive Banach spaces. Also, we consider $p, q>1$ are real numbers such that $\frac{1}{p}+\frac{1}{q}=1$.
Proposition 3.1. Let X be a Banach space and let $\boldsymbol{\Lambda}=\left\{\Lambda_{i} \in B\left(X, Y_{i}\right)\right\}_{i=1}^{\infty}$ be a pg-Bessel sequence for X with respect to $\left\{Y_{i}\right\}_{i=1}^{\infty}$ with the bound B.
(1) If $\boldsymbol{\Theta}=\left\{\Theta_{i} \in B\left(X, Y_{i}\right)\right\}_{i=1}^{\infty}$ is a sequence of bounded operators such that $\left(\sum_{i=1}^{\infty}\left\|\Lambda_{i}-\Theta_{i}\right\|^{p}\right)^{\frac{1}{p}}<K<\infty$, then Θ is a $p g$-Bessel sequence for X with bound $B+K$.
(2) Let $\boldsymbol{\Theta}^{(\mathbf{n})}=\left\{\Theta_{i}^{(n)} \in B\left(X, Y_{i}\right)\right\}_{i=1}^{\infty}$ be a sequence of bounded operators such that for all $\varepsilon>0$ there exists $N>0$ with

$$
\left(\sum_{i=1}^{\infty}\left\|\Lambda_{i}-\Theta_{i}^{(n)}\right\|^{p}\right)^{\frac{1}{p}}<\varepsilon, \quad n \geq N
$$

then $\boldsymbol{\Theta}^{(\mathbf{n})}$ is a pg-Bessel sequence and for all $n \geq N$,

$$
\left\|U_{\Theta^{(n)}}-U_{\Lambda}\right\| \leq \varepsilon, \quad\left\|T_{\Theta^{(n)}}-T_{\Lambda}\right\| \leq \varepsilon
$$

Proof. (1) If $\left\{g_{i}\right\}_{i=1}^{\infty} \in\left(\sum_{i=1}^{\infty} \bigoplus Y_{i}^{*}\right)_{l_{q}}$ we have

$$
\begin{aligned}
\left\|T_{\Lambda}\left\{g_{i}\right\}_{i=1}^{\infty}-T_{\Theta}\left\{g_{i}\right\}_{i=1}^{\infty}\right\| & =\left\|\sum_{i=1}^{\infty}\left(\Lambda_{i}^{*}-\Theta_{i}^{*}\right) g_{i}\right\| \\
& =\sup _{\|f\| \leq 1}\left\|\sum_{i=1}^{\infty} g_{i}\left(\Lambda_{i} f-\Theta_{i} f\right)\right\| \\
& \leq \sup _{\|f\| \leq 1} \sum_{i=1}^{\infty}\left\|g_{i}\right\|\left\|\Lambda_{i} f-\Theta_{i} f\right\| \\
& \leq\left(\sum_{i=1}^{\infty}\left\|g_{i}\right\|^{q}\right)^{\frac{1}{q}} \sup _{\|f\| \leq 1}\left(\sum_{i=1}^{\infty}\left\|\Lambda_{i} f-\Theta_{i} f\right\|^{p}\right)^{\frac{1}{p}} \\
& \leq K\left\|\left\{g_{i}\right\}_{i=1}^{\infty}\right\|_{q}
\end{aligned}
$$

and so

$$
\begin{aligned}
\left\|T_{\Theta}\left\{g_{i}\right\}_{i=1}^{\infty}\right\| & \leq\left\|T_{\Theta}\left\{g_{i}\right\}_{i=1}^{\infty}-T_{\Lambda}\left\{g_{i}\right\}_{i=1}^{\infty}\right\|+\left\|T_{\Lambda}\left\{g_{i}\right\}_{i=1}^{\infty}\right\| \\
& \leq(B+K)\left\|\left\{g_{i}\right\}_{i=1}^{\infty}\right\|_{q}
\end{aligned}
$$

Consequently, Proposition 2.5 implies that $\left\{\Theta_{i}\right\}_{i=1}^{\infty}$ is a $p g$-Bessel sequence with the bound $B+K$.
(2) It follows from (1) that $\left\{\Theta_{i}^{(n)}\right\}_{i=1}^{\infty}$ is a $p g$-Bessel sequence and $\left\|T_{\Theta^{(n)}}-T_{\Lambda}\right\| \leq$ ε for all $n \geq N$. But for $f \in X$ and $n \geq N$ we have

$$
\left\|U_{\Lambda} f-U_{\Theta^{(n)}} f\right\|_{p}=\left(\sum_{i=1}^{\infty}\left\|\Lambda_{i} f-\Theta_{i}^{(n)} f\right\|^{p}\right)^{\frac{1}{p}} \leq\left(\sum_{i=1}^{\infty}\left\|\Lambda_{i}-\Theta_{i}^{(n)}\right\|^{p}\right)^{\frac{1}{p}}\|f\|
$$

hence $\left\|U_{\Theta^{(n)}}-U_{\Lambda}\right\| \leq \varepsilon$.
We say that $\boldsymbol{\Theta}^{(\mathbf{n})}=\left\{\Theta_{i}^{(n)} \in B\left(X, Y_{i}\right)\right\}_{i=1}^{\infty}$ converges to $\boldsymbol{\Lambda}=\left\{\Lambda_{i} \in B\left(X, Y_{i}\right)\right\}_{i=1}^{\infty}$ in l_{p}-sense, if the condition of Proposition 3.1 (2) is fullfilled.

Proposition 3.2. Let $\boldsymbol{\Lambda}=\left\{\Lambda_{i} \in B\left(X_{2}, Y_{i}\right)\right\}_{i=1}^{\infty}$ be a pg-Bessel sequence for X_{2} with bound B_{Λ} and $\Theta=\left\{\Theta_{i} \in B\left(X_{1}^{*}, Y_{i}^{*}\right)\right\}_{i=1}^{\infty}$ be a qg-Bessel sequence for X_{1}^{*} with bound B_{Θ}. If $m \in l^{\infty}$, then the operator

$$
\mathbf{M}_{m, \Lambda, \Theta}: X_{1}^{*} \rightarrow X_{2}^{*}, \quad \mathbf{M}_{m, \Lambda, \Theta}(g)=\sum_{i=1}^{\infty} m_{i} \Lambda_{i}^{*} \Theta_{i} g
$$

is well defined, the sum converges unconditionally for all $g \in X_{1}^{*}$ and

$$
\left\|\mathbf{M}_{m, \Lambda, \Theta}\right\| \leq B_{\Lambda} B_{\Theta}\|m\|_{\infty}
$$

Proof. Let $g \in X_{1}^{*}$, then $\left\{m_{i} \Theta_{i} g\right\}_{i=1}^{\infty} \in\left(\sum_{i=1}^{\infty} \bigoplus Y_{i}^{*}\right)_{l_{q}}$, and Proposition 2.5 implies that $\sum_{i=1}^{\infty} m_{i} \Lambda_{i}^{*} \Theta_{i} g$ converges unconditionally and $\mathbf{M}_{m, \Lambda, \Theta}$ is well defined. Also we have

$$
\begin{aligned}
\left\|\sum_{i=1}^{\infty} m_{i} \Lambda_{i}^{*} \Theta_{i} g\right\| & =\sup _{\|x\| \leq 1}\left|\left\langle x, \sum_{i=1}^{\infty} m_{i} \Lambda_{i}^{*} \Theta_{i} g\right\rangle\right| \\
& =\sup _{\|x\| \leq 1}\left|\sum_{i=1}^{\infty} m_{i}\left(\Theta_{i} g\right)\left(\Lambda_{i} x\right)\right| \\
& \leq \sup _{\|x\| \leq 1} \sum_{i=1}^{\infty}\left|m_{i} \|\left(\Theta_{i} g\right)\left(\Lambda_{i} x\right)\right| \\
& \leq\|m\|_{\infty} \sup _{\|x\| \leq 1} \sum_{i=1}^{\infty}\left\|\Theta_{i} g\right\|\left\|\Lambda_{i} x\right\| \\
& \leq\|m\|_{\infty}\left(\sum_{i=1}^{\infty}\left\|\Theta_{i} g\right\|^{q}\right)^{\frac{1}{q}} \sup _{\|x\| \leq 1}\left(\sum_{i=1}^{\infty}\left\|\Lambda_{i} x\right\|^{p}\right)^{\frac{1}{p}} \\
& \leq\|m\|_{\infty} \cdot B_{\Theta}\|g\| \cdot \sup _{\|x\| \leq 1}\left(B_{\Lambda}\|x\|\right) \\
& \leq\|m\|_{\infty} \cdot B_{\Theta} \cdot B_{\Lambda}\|g\|
\end{aligned}
$$

Therefore $\mathbf{M}_{m, \Lambda, \Theta}$ is bounded and $\left\|\mathbf{M}_{m, \Lambda, \Theta}\right\| \leq B_{\Lambda} B_{\Theta}\|m\|_{\infty}$.

Definition 3.3. Let $\boldsymbol{\Lambda}=\left\{\Lambda_{i} \in B\left(X_{2}, Y_{i}\right)\right\}_{i=1}^{\infty}$ be a $p g$-Bessel sequence for X_{2} with bound B_{Λ} and $\Theta=\left\{\Theta_{i} \in B\left(X_{1}^{*}, Y_{i}^{*}\right)\right\}_{i=1}^{\infty}$ be a $q g$-Bessel sequence for X_{1}^{*} with bound B_{Θ}. Let $m=\left\{m_{i}\right\}_{i=1}^{\infty} \in l^{\infty}$. The operator

$$
\begin{equation*}
\mathbf{M}_{m, \Lambda, \Theta}: X_{1}^{*} \rightarrow X_{2}^{*}, \quad \mathbf{M}_{m, \Lambda, \Theta}(g)=\sum_{i=1}^{\infty} m_{i} \Lambda_{i}^{*} \Theta_{i} g \tag{3.1}
\end{equation*}
$$

is called the $(p, q) g$-Bessel multiplier of $\boldsymbol{\Lambda}, \boldsymbol{\Theta}$ and m. The sequence m is called the symbol of \mathbf{M}.

Proposition 3.4. Let $\boldsymbol{\Lambda}=\left\{\Lambda_{i} \in B\left(X_{2}, Y_{i}\right)\right\}_{i=1}^{\infty}$ be a $q g$-Riesz basis for X_{2}^{*} and $\Theta=\left\{\Theta_{i} \in B\left(X_{1}^{*}, Y_{i}^{*}\right)\right\}_{i=1}^{\infty}$ be a $q g$-Bessel sequence for X_{1}^{*} with all members non-zero. Then the mapping

$$
m \rightarrow \mathbf{M}_{m, \Lambda, \Theta}
$$

is injective from l^{∞} into $B\left(X_{1}^{*}, X_{2}^{*}\right)$.
Proof. If $\mathbf{M}_{m, \Lambda, \Theta}=0$, then $\sum_{i=1}^{\infty} m_{i} \Lambda_{i}^{*} \Theta_{i} g=0$ for all $g \in X_{1}^{*}$. Then Theorem 2.9 implies that $m_{i} \Theta_{i} g=0$ for all $i \in \mathbb{N}$ and for all $g \in X_{1}^{*}$. Since $\Theta_{i} \neq 0$ for each $i \in \mathbb{N}$, we get $m_{i}=0$.

Theorem 3.5. Let $\boldsymbol{\Lambda}=\left\{\Lambda_{i} \in B\left(X_{2}, Y_{i}\right)\right\}_{i=1}^{\infty}$ be a qg-Riesz basis for X_{2}^{*} with respect to $\left\{Y_{i}\right\}_{i=1}^{\infty}$, then there exist a sequence $\left\{\widetilde{\Lambda}_{i} \in B\left(X_{2}^{*}, Y_{i}^{*}\right)\right\}_{i=1}^{\infty}$ which is a $p g$-Riesz basis for X_{2} with respect to $\left\{Y_{i}^{*}\right\}_{i=1}^{\infty}$ such that

$$
x^{*}=\sum_{i=1}^{\infty} \Lambda_{i}^{*} \widetilde{\Lambda}_{i} x^{*}, \quad x^{*} \in X_{2}^{*}
$$

$\operatorname{and} \widetilde{\Lambda}_{k} \Lambda_{i}^{*}=\delta_{k, i} I$.
Proof. Since $\boldsymbol{\Lambda}=\left\{\Lambda_{i} \in B\left(X_{2}, Y_{i}\right)\right\}_{i=1}^{\infty}$ is a $p g$-frame for X_{2}, Theorem 2.7 implies that for every $x^{*} \in X_{2}^{*}$ there exists a unique $\left\{g_{i}\right\}_{i=1}^{\infty} \in\left(\sum_{i=1}^{\infty} \bigoplus Y_{i}^{*}\right)_{l_{q}}$ such that $x^{*}=\sum_{i=1}^{\infty} \Lambda_{i}^{*} g_{i}$. Let us define the operator

$$
\widetilde{\Lambda}_{i}: X_{2}^{*} \rightarrow Y_{i}^{*}, \quad \widetilde{\Lambda}_{i}\left(x^{*}\right)=g_{i}
$$

By Theorem 2.9, $\widetilde{\Lambda}_{i}$ is well defined. Let A_{Λ}, B_{Λ} be the $q g$-Riesz basis bounds for $\boldsymbol{\Lambda}=\left\{\Lambda_{i} \in B\left(X_{2}, Y_{i}\right)\right\}_{i=1}^{\infty}$. Then for any $\left\{g_{i}\right\}_{i=1}^{\infty} \in\left(\sum_{i=1}^{\infty} \bigoplus Y_{i}^{*}\right)_{l_{q}}$ we have

$$
A_{\Lambda}\left(\sum_{i=1}^{\infty}\left\|g_{i}\right\|^{q}\right)^{\frac{l}{q}} \leq\left\|\sum_{i=1}^{\infty} \Lambda_{i}^{*} g_{i}\right\| \leq B_{\Lambda}\left(\sum_{i=1}^{\infty}\left\|g_{i}\right\|^{q}\right)^{\frac{l}{q}}
$$

Therefore

$$
\frac{1}{B_{\Lambda}}\left\|\sum_{i=1}^{\infty} \Lambda_{i}^{*} g_{i}\right\| \leq\left(\sum_{i=1}^{\infty}\left\|g_{i}\right\|^{q}\right)^{\frac{l}{q}} \leq \frac{1}{A_{\Lambda}}\left\|\sum_{i=1}^{\infty} \Lambda_{i}^{*} g_{i}\right\|
$$

for all $\left\{g_{i}\right\}_{i=1}^{\infty} \in\left(\sum_{i=1}^{\infty} \oplus Y_{i}^{*}\right)_{l_{q}}$. Hence we get

$$
\frac{1}{B_{\Lambda}}\left\|x^{*}\right\| \leq\left(\sum_{i=1}^{\infty}\left\|\widetilde{\Lambda}_{i}\left(x^{*}\right)\right\|^{q}\right)^{\frac{L}{q}} \leq \frac{1}{A_{\Lambda}}\left\|x^{*}\right\|, \quad x^{*} \in X_{2}^{*}
$$

This implies that $\left\{\widetilde{\Lambda}_{i} \in B\left(X_{2}^{*}, Y_{i}^{*}\right)\right\}_{i=1}^{\infty}$ is a $q g$-frame for X_{2}^{*} with respect to $\left\{Y_{i}^{*}\right\}_{i=1}^{\infty}$ with bounds $\frac{1}{A_{\Lambda}}$ and $\frac{1}{B_{\Lambda}}$ and

$$
x^{*}=\sum_{i=1}^{\infty} \Lambda_{i}^{*} \widetilde{\Lambda}_{i} x^{*}, \quad x^{*} \in X_{2}^{*}
$$

and $\widetilde{\Lambda}_{k} \Lambda_{i}^{*}=\delta_{k, i} I$. At the other hand the synthesis operator is invertible and $U_{\widetilde{\Lambda}}=T_{\Lambda}^{-1}$, therefore $U_{\widetilde{\Lambda}}$ is invertible. So by Lemma 2.6, $U_{\widetilde{\Lambda}}^{*}=T_{\widetilde{\Lambda}}$ is invertible and therefore $\left\{\widetilde{\Lambda}_{i}\right\}_{i \in \mathbb{N}}$ is a $p g$-Riesz basis for X_{2}.

By a duality argument it can be shown for a reflexive space that $\Lambda_{i} \tilde{\Lambda}_{k}^{*}=\delta_{i, k} I$ on X_{2}.

Corollary 3.6. Let $\boldsymbol{\Theta}=\left\{\Theta_{i} \in B\left(X_{1}^{*}, Y_{i}^{*}\right)\right\}_{i=1}^{\infty}$ be a pg-Riesz basis for X_{1} with respect to $\left\{Y_{i}^{*}\right\}_{i=1}^{\infty}$ with bounds A_{Θ}, B_{Θ}, then there exists a sequence $\left\{\widetilde{\Theta}_{i} \in\right.$ $\left.B\left(X_{1}, Y_{i}\right)\right\}_{i=1}^{\infty}$ which is a qg-Riesz basis for X_{1}^{*} with respect to $\left\{Y_{i}\right\}_{i=1}^{\infty}$ with bounds $\frac{1}{B_{\Theta}}, \frac{1}{A_{\Theta}}$ and

$$
x=\sum_{i=1}^{\infty} \Theta_{i}^{*} \widetilde{\Theta}_{i} x, \quad x \in X_{1},
$$

and $\widetilde{\Theta}_{k} \Theta_{i}^{*}=\delta_{k, i} I$.
Proposition 3.7. Let $\boldsymbol{\Lambda}=\left\{\Lambda_{i} \in B\left(X_{2}, Y_{i}\right)\right\}_{i=1}^{\infty}$ be a qg-Riesz basis for X_{2}^{*} with respect to $\left\{Y_{i}\right\}_{i=1}^{\infty}$ with bound A_{Λ}, B_{Λ} and $\boldsymbol{\Theta}=\left\{\Theta_{i} \in B\left(X_{1}^{*}, Y_{i}^{*}\right)\right\}_{i=1}^{\infty}$ be a pg-Riesz basis for X_{1} with respect to $\left\{Y_{i}^{*}\right\}_{i=1}^{\infty}$ with bounds A_{Θ}, B_{Θ}. If $m \in l^{\infty}$, then

$$
A_{\Lambda} A_{\Theta}\|m\|_{\infty} \leq\left\|\mathbf{M}_{m, \Lambda, \Theta}\right\| \leq B_{\Lambda} B_{\Theta}\|m\|_{\infty}
$$

Proof. By Proposition 3.2, it is enough to show that we have the lower bound. Corollary 3.6 implies that there exists a sequence

$$
\left\{\widetilde{\Theta}_{i} \in B\left(X_{1}, Y_{i}\right)\right\}_{i=1}^{\infty}
$$

which is a $q g$-Riesz basis for X_{1}^{*} (therefore a $p g$-frame for X_{1}) with respect to $\left\{Y_{i}\right\}_{i=}^{\infty}$ with bounds $\frac{1}{B_{\ominus}}, \frac{1}{A_{\Theta}}$ and

$$
x=\sum_{i=1}^{\infty} \Theta_{i}^{*} \widetilde{\Theta}_{i} x, \quad x \in X_{1},
$$

and $\widetilde{\Theta}_{k} \Theta_{i}^{*}=\delta_{k, i} I$. Let us fix $0 \neq y_{k}^{*} \in Y_{k}^{*}$ for each $k \in \mathbb{N}$, then we have

$$
\begin{aligned}
\left\|\mathbf{M}_{m, \Lambda, \Theta}\right\| & =\sup _{0 \neq g \in X_{1}^{*}} \frac{\left\|\mathbf{M}_{m, \Lambda, \Theta} g\right\|}{\|g\|}=\sup _{0 \neq g \in X_{1}^{*}} \frac{\left\|\sum_{i=1}^{\infty} m_{i} \Lambda_{i}^{*} \Theta_{i} g\right\|}{\|g\|} \\
& \geq \sup _{k \in \mathbb{N}} \frac{\left\|\sum_{i=1}^{\infty} m_{i} \Lambda_{i}^{*} \Theta_{i}\left(\widetilde{\Theta}_{k}\right)^{*} y_{k}^{*}\right\|}{\left\|\left(\widetilde{\Theta}_{k}\right)^{*} y_{k}^{*}\right\|} \\
& =\sup _{k \in \mathbb{N}} \frac{\left\|m_{k} \Lambda_{k}^{*} y_{k}^{*}\right\|}{\left\|\left(\widetilde{\Theta}_{k}\right)^{*} y_{k}^{*}\right\|} \\
& =\sup _{k \in \mathbb{N}}\left|m_{k}\right| \frac{\left\|\Lambda_{k}^{*} y_{k}^{*}\right\|}{\left\|\left(\widetilde{\Theta}_{k}\right)^{*} y_{k}^{*}\right\|} \\
& \geq A_{\Lambda} A_{\Theta}\|m\|_{\infty} .
\end{aligned}
$$

Theorem 3.8. Let $\boldsymbol{\Lambda}=\left\{\Lambda_{i} \in B\left(X_{2}, Y_{i}\right)\right\}_{i=1}^{\infty}$ be a qg-Riesz basis for X_{2}^{*} with respect to $\left\{Y_{i}\right\}_{i=1}^{\infty}$ and $\boldsymbol{\Theta}=\left\{\Theta_{i} \in B\left(X_{1}^{*}, Y_{i}^{*}\right)\right\}_{i=1}^{\infty}$ be a pg-Riesz basis for X_{1} with respect to $\left\{Y_{i}^{*}\right\}_{i=1}^{\infty}$. If $m=\left\{m_{i}\right\}_{i=1}^{\infty}$ satisfies $0<\inf _{i \in \mathbb{N}}\left|m_{i}\right| \leq$ $\sup _{i \in \mathbb{N}}\left|m_{i}\right|<+\infty$, then $\mathbf{M}_{m, \Lambda, \Theta}$ is invertible with inverse $\mathbf{M}_{\frac{1}{m}, \widetilde{\Theta}, \widetilde{\Lambda}}$.

Proof. Let us consider $\left\{\widetilde{\Lambda}_{i} \in B\left(X_{2}^{*}, Y_{i}^{*}\right)\right\}_{i=1}^{\infty}$ and $\left\{\widetilde{\Theta}_{i} \in B\left(X_{1}, Y_{i}\right)\right\}_{i=1}^{\infty}$ which appear in Proposition 3.5 and Corollary 3.6, respectively. We prove that

$$
\left(\mathbf{M}_{m, \Lambda, \Theta}\right)^{-1}=\mathbf{M}_{\frac{1}{m}, \tilde{\Theta}, \tilde{\Lambda}}
$$

Let $g \in X_{1}^{*}$, then

$$
\begin{aligned}
\mathbf{M}_{\frac{1}{m}, \tilde{\Theta}, \widetilde{\Lambda}} \circ \mathbf{M}_{m, \Lambda, \Theta}(g) & =\mathbf{M}_{\frac{1}{m}, \tilde{\Theta}, \tilde{\Lambda}}\left(\sum_{i=1}^{\infty} m_{i} \Lambda_{i}^{*} \Theta_{i} g\right) \\
& =\sum_{k=1}^{\infty} \frac{1}{m_{k}}\left(\widetilde{\Theta}_{k}\right)^{*} \widetilde{\Lambda}_{k}\left(\sum_{i=1}^{\infty} m_{i} \Lambda_{i}^{*} \Theta_{i} g\right) \\
& =\sum_{k=1}^{\infty} \frac{1}{m_{k}}\left(\widetilde{\Theta}_{k}\right)^{*}\left(\sum_{i=1}^{\infty} m_{i} \widetilde{\Lambda}_{k} \Lambda_{i}^{*} \Theta_{i} g\right) \\
& =\sum_{k=1}^{\infty} \frac{1}{m_{k}}\left(\widetilde{\Theta}_{k}\right)^{*}\left(m_{k} \Theta_{k} g\right) \\
& =g .
\end{aligned}
$$

Let us consider $f \in X_{2}^{*}$, then

$$
\begin{aligned}
\mathbf{M}_{m, \Lambda, \Theta} \circ \mathbf{M}_{\frac{1}{m}, \tilde{\Theta}, \widetilde{\Lambda}} f & =\mathbf{M}_{m, \Lambda, \Theta}\left(\sum_{k=1}^{\infty} \frac{1}{m_{k}}\left(\widetilde{\Theta}_{k}\right)^{*} \widetilde{\Lambda}_{k} f\right) \\
& =\sum_{i=1}^{\infty} m_{i} \Lambda_{i}^{*} \Theta_{i}\left(\sum_{k=1}^{\infty} \frac{1}{m_{k}}\left(\widetilde{\Theta}_{k}\right)^{*} \widetilde{\Lambda}_{k} f\right) \\
& =\sum_{i=1}^{\infty} m_{i} \Lambda_{i}^{*}\left(\sum_{k=1}^{\infty} \frac{1}{m_{k}} \Theta_{i}\left(\widetilde{\Theta}_{k}\right)^{*} \widetilde{\Lambda}_{k} f\right) \\
& =\sum_{i=1}^{\infty} m_{i} \Lambda_{i}^{*}\left(\frac{1}{m_{i}} \widetilde{\Lambda}_{i} f\right) \\
& =f .
\end{aligned}
$$

In the next results, we show that the $(p, q) g$-Bessel multiplier $\mathbf{M}=\mathbf{M}_{m, \Lambda, \Theta}$ depends continuously on its parameters, $m=\left\{m_{i}\right\}_{i=1}^{\infty}, \boldsymbol{\Lambda}=\left\{\Lambda_{i}\right\}_{i=1}^{\infty}$ and $\boldsymbol{\Theta}=$ $\left\{\Theta_{i}\right\}_{i=1}^{\infty}$.

Theorem 3.9. Let $\boldsymbol{\Lambda}=\left\{\Lambda_{i} \in B\left(X_{2}, Y_{i}\right)\right\}_{i=1}^{\infty}$ be a pg-Bessel sequence for X_{2} with bound B_{Λ} and $\boldsymbol{\Theta}=\left\{\Theta_{i} \in B\left(X_{1}^{*}, Y_{i}^{*}\right)\right\}_{i=1}^{\infty}$ be a qg-Bessel sequence for X_{1}^{*} with bound B_{Θ}. Let $p_{1}, q_{1}>1$ such that $\frac{1}{p_{1}}+\frac{1}{q_{1}}=1$ and $m \in l^{\infty}$. Let $\Lambda^{(\mathbf{n})}=\left\{\Lambda_{i}^{(n)} \in B\left(X_{2}, Y_{i}\right)\right\}_{i=1}^{\infty}$ be a pg-Bessel sequence for X_{2} with bound $B_{\Lambda^{(n)}}$ and $\boldsymbol{\Theta}^{(\mathbf{n})}=\left\{\Theta_{i}^{(n)} \in B\left(X_{1}^{*}, Y_{i}^{*}\right)\right\}_{i=1}^{\infty}$ be a qg-Bessel sequence for X_{1}^{*} with bound $B_{\Theta^{(n)}}$ for all $n \in \mathbb{N}$. Then
(1) If $\left\|m^{(n)}-m\right\|_{p_{1}} \rightarrow 0$, then $\left\|\mathbf{M}_{m^{(n)}, \Lambda, \Theta}-\mathbf{M}_{m, \Lambda, \Theta}\right\| \rightarrow 0$, as $n \rightarrow \infty$.
(2) If $m \in l^{p_{1}}$ and $\left\{\Theta_{i}^{(n)}\right\}_{i=1}^{\infty}$ converges to $\left\{\Theta_{i}\right\}_{i=1}^{\infty}$ in $l^{q_{1}}$-sense, then

$$
\left\|\mathbf{M}_{m, \Lambda, \Theta^{(n)}}-\mathbf{M}_{m, \Lambda, \Theta}\right\| \rightarrow 0, \quad n \rightarrow \infty
$$

(3) If $m \in l^{p_{1}}$ and $\left\{\Lambda_{i}^{(n)}\right\}_{i=1}^{\infty}$ converges to $\left\{\Lambda_{i}\right\}_{i=1}^{\infty}$ in $l^{q_{1}}$-sense, then

$$
\left\|\mathbf{M}_{m, \Lambda^{(n)}, \Theta}-\mathbf{M}_{m, \Lambda, \Theta}\right\| \rightarrow 0, \quad n \rightarrow \infty
$$

(4) Let

$$
B_{1}=\sup _{n \in \mathbb{N}} B_{\Lambda^{(n)}}<+\infty, \quad B_{2}=\sup _{n \in \mathbb{N}} B_{\Theta^{(n)}}<+\infty
$$

If $\left\|m^{(n)}-m\right\|_{l^{p_{1}}} \rightarrow 0$ and $\left\{\Theta_{i}^{(n)}\right\}_{i=1}^{\infty}$ and $\left\{\Lambda_{i}^{(n)}\right\}_{i=1}^{\infty}$ converge to $\left\{\Theta_{i}\right\}_{i=1}^{\infty}$ and $\left\{\Lambda_{i}\right\}_{i=1}^{\infty}$ in $l^{q_{1}}$-sense, respectively, then

$$
\left\|\mathbf{M}_{m^{(n)}, \Lambda^{(n)}, \Theta^{(n)}}-\mathbf{M}_{m, \Lambda, \Theta}\right\| \rightarrow 0, \quad n \rightarrow \infty
$$

Proof. (1) Using proof of the Proposition 3.2 we have

$$
\begin{aligned}
\left\|\mathbf{M}_{m^{(n), \Lambda, \Theta}}-\mathbf{M}_{m, \Lambda, \Theta}\right\| & =\left\|\mathbf{M}_{m^{(n)}-m, \Lambda, \Theta}\right\| \\
& \leq B_{\Lambda} B_{\Theta}\left\|m^{(n)}-m\right\|_{\infty} \\
& \leq B_{\Lambda} B_{\Theta}\left\|m^{(n)}-m\right\|_{p_{1}} \rightarrow 0 .
\end{aligned}
$$

(2) For $g \in X_{1}^{*}$, we have

$$
\begin{aligned}
\left\|\mathbf{M}_{m, \Lambda, \Theta^{(n)}} g-\mathbf{M}_{m, \Lambda, \Theta} g\right\| & =\left\|\sum_{i=1}^{\infty} m_{i} \Lambda_{i}^{*}\left(\Theta_{i}^{(n)}-\Theta_{i}\right) g\right\| \\
& \leq \sum_{i=1}^{\infty}\left|m_{i}\right|\left\|\Lambda_{i}^{*}\right\|\left\|\left(\Theta_{i}^{(n)}-\Theta_{i}\right) g\right\| \\
& \leq \sum_{i=1}^{\infty} B_{\Lambda}\left|m_{i}\right|\left\|\left(\Theta_{i}^{(n)}-\Theta_{i}\right) g\right\| \\
& \leq B_{\Lambda}\|m\|_{p_{1}}\left(\sum_{i=1}^{\infty}\left\|\left(\Theta_{i}^{(n)}-\Theta_{i}\right) g\right\|^{q_{1}}\right)^{\frac{1}{q_{1}}} .
\end{aligned}
$$

So

$$
\left\|\mathbf{M}_{m, \Lambda, \Theta^{(n)}}-\mathbf{M}_{m, \Lambda, \Theta}\right\| \leq B_{\Lambda}\|m\|_{p_{1}}\left(\sum_{i=1}^{\infty}\left\|\left(\Theta_{i}^{(n)}-\Theta_{i}\right)\right\|^{q_{1}}\right)^{\frac{1}{q_{1}}} \rightarrow 0 .
$$

(3) It is similar to the proof of (2).
(4) We have

$$
\begin{gather*}
\left\|\mathbf{M}_{m^{(n)}, \Lambda^{(n)}, \Theta^{(n)}}-\mathbf{M}_{m, \Lambda^{(n)}, \Theta^{(n)}}\right\| \leq B_{1} B_{2}\left\|m^{(n)}-m\right\|_{p_{1}}, \tag{3.2}\\
\left\|\mathbf{M}_{m, \Lambda^{(n)}, \Theta^{(n)}}-\mathbf{M}_{m, \Lambda, \Theta^{(n)}}\right\| \leq B_{2}\|m\|_{p_{1}}\left(\sum_{i=1}^{\infty}\left\|\left(\Lambda_{i}^{(n)}-\Lambda_{i}\right)\right\|^{q_{1}}\right)^{\frac{1}{q_{1}}}, \tag{3.3}\\
\left\|\mathbf{M}_{m, \Lambda, \Theta^{(n)}}-\mathbf{M}_{m, \Lambda, \Theta}\right\| \leq B_{\Lambda}\|m\|_{p}\left(\sum_{i=1}^{\infty}\left\|\left(\Theta_{i}^{(n)}-\Theta_{i}\right)\right\|^{q_{1}}\right)^{\frac{1}{q_{1}}} \tag{3.4}
\end{gather*}
$$

Since

$$
\begin{aligned}
\left\|\mathbf{M}_{m^{(n)}, \Lambda^{(n)}, \Theta^{(n)}}-\mathbf{M}_{m, \Lambda, \Theta}\right\| & \leq\left\|\mathbf{M}_{m^{(n)}, \Lambda^{(n)}, \Theta^{(n)}}-\mathbf{M}_{m, \Lambda^{(n)}, \Theta^{(n)}}\right\| \\
& +\left\|\mathbf{M}_{m, \Lambda^{(n)}, \Theta^{(n)}}-\mathbf{M}_{m, \Lambda, \Theta^{(n)}}\right\| \\
& +\left\|\mathbf{M}_{m, \Lambda, \Theta^{(n)}}-\mathbf{M}_{m, \Lambda, \Theta}\right\|,
\end{aligned}
$$

(3.2), (3.3), (3.4) imply that

$$
\left\|\mathbf{M}_{\Lambda^{(n)}, \Theta^{(n)}, m^{(n)}}-\mathbf{M}_{\Lambda, \Theta, m}\right\| \rightarrow 0, \quad n \rightarrow \infty
$$

Acknowledgments

The work of P. Găvruţa was partial supported by a grant of Romanian National Authority for Scientific Research, CNCSUEFISCDI, project number PN-II-ID-JRP-RO-FR-2011-2-11-RO-FR/01.03.2013.

References

1. M. R. Abdollahpour, M. H. Faroughi, A. Rahimi, pg-Frames in Banach spaces, Methods Func. Anal. Topology, 135(3), (2007), 201-210.
2. C. D. Aliprantis, K. C. Border, Infinite dimensional analysis, Springer, 1999.
3. A. Aldroubi, Q. Sung, W. Tang, $p-$ frames and shift invariant subspaces of L^{p}, J. Fourier Anal. Appl., 7, (2001), 1-22.
4. P. Balazs, Basic definition and properties of Bessel multipliers, J. Math. Anal. and Appl., 325(1), (2007), 571-585.
5. P. Balazs, Hilbert-Schmidt operators and frames-classifications, approximation by multipliers and algorithms, Int. J. Wavelets, Multiresolut. Inf. Process., 6(2), (2008), 315-330.
6. P. Balazs, D. Stoeva, Representation of the inverse of a multiplier, J. Math. Anal. Appl., 422(2), (2015), 981-994.
7. O. Christensen, An Introduction to Frames and Riesz Bases, Birkhaüser, 2003.
8. O. Christensen, D. Stoeva, p-Frames in separable Banach spaces, Adv. Comput. Math., 18, (2003), 117-126.
9. R. J. Duffin, A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72, (1952), 341-366.
10. H. G. Feichtinger, K. Gröchenig, A unified approach to atomic decompositions via integrable group representations, In: Proc. Conf. Function Spaces and Applications.(M. Cwikel et al. eds.), 52-73. Lect. Notes Math 1302. Berlin-Heidelberg-New York: Springer, 1988.
11. K. Gröchenig, Describing functions: atomic decompositions versus frames, Monatsh. Math, 112, (1991), 1-41.
12. A. Rahimi, Multipliers of Generalized Frames in Hilbert spaces, Bull. Iranian Math. Soc., 37(1), (2011), 63-80.
13. A. Rahimi, P. Balazs, Multipliers for p-Bessel sequences in Banach spaces, Integr. Equ. Oper. Theory, 68, (2010), 193-205, DOI: 10.1007/s00020-010-1814-7.
14. M.B. Ruskai, Some connections between frames, mutually unbiased bases, and POVM s in Quantum Information Theory, Acta Appl.Math., 108(3), (2009), 709-719.
15. D. Stoeva, P. Balazs, Invertibility of Multipliers, Applied and Computational Harmonic Analysis, 33(2), (2012), 292-299.
16. D. Stoeva, P. Balazs, Canonical forms of unconditionally convergent multipliers, J. Math. Anal. Appl., 399, (2013), 252-259.
17. D. Stoeva, P. Balazs, Detailed characterization of unconditional convergence and invertibility of multipliers, Sampling Theory in Signal and Image Processing (STSIP), 12(2), (2013), 87-125.
18. W. Sun, g-Frames, g-Riesz bases, J. Math. Anal. Appl, 322(1), (2006), 437-452.

[^0]: * Corresponding Author

 Received 17 November 2015; Accepted 11 December 2019
 ©2020 Academic Center for Education, Culture and Research TMU

