Atomic Systems in 2-inner Product Spaces

Bahram Dastourian, Mohammad Janfada*
Department of Pure Mathematics
Ferdowsi University of Mashhad
Mashhad, 1159-91775, Iran
E-mail: bdastorian@gmail.com
E-mail: mjanfada@gmail.com

Abstract. In this paper, the concept of a family of local atoms in a 2-inner product space is introduced and then this concept is generalized to an atomic system for an operator. Next a characterization of atomic systems is proved. This characterization lead us to obtain a new frame which is a generalization of frames in 2-inner product spaces.

Keywords: 2-inner product space, 2-normed space, Family of local atoms, Atomic system, Frame.

1. Introduction and Preliminaries

Frames in Hilbert spaces were introduced by Duffin and Schaffer [9] in the context of nonharmonic Fourier series in 1952. In 1986, frames were brought to life by Daubechies et al. [7]. Now frames play an important role not only in the theoretics but also in many kinds of applications, and have been widely applied in signal processing [13], sampling [10, 11], coding and communications [19], filter bank theory [2], system modeling [8], and so on.

Atomic systems for bounded linear operators on Hilbert spaces have been introduced by L. Găvruţă in [15] as a generalization of families of local atoms

*Corresponding Author

Received 06 September 2016; Accepted 11 November 2017
©2018 Academic Center for Education, Culture and Research TMU
[12]. A sequence \(\{f_j\}_{j \in \mathbb{N}} \) in a Hilbert space \(\mathcal{H} \) is called an *atomic system* for a bounded linear operator \(K \) on \(\mathcal{H} \) if

i) the series \(\sum_{j \in \mathbb{N}} c_j f_j \) converges for all \(c = (c_j) \in l^2 := \{ \{ b_j \}_{j \in \mathbb{N}} : \sum_{j \in \mathbb{N}} |b_j|^2 < \infty \} \);

ii) there exists \(C > 0 \) such that for every \(f \in \mathcal{H} \) there exists \(a_f = (a_j) \in l^2 \) such that \(\|a_f\|_2 \leq C \|f\| \) and \(K f = \sum_{j \in \mathbb{N}} a_j f_j \).

It is proved that this concept is equivalent to \(K \)-frames, where \(K \) is a bounded linear operator on separable Hilbert space \(H \). [15].

A sequence \(\{f_j\}_{j \in \mathbb{N}} \) is said to be a \(K \)-frame for \(\mathcal{H} \) if there exist constants \(A, B > 0 \) such that

\[
A \|K^* f\|^2 \leq \sum_{j \in \mathbb{N}} |\langle f, f_j \rangle|^2 \leq B \|f\|^2, \quad \forall f \in \mathcal{H}.
\]

We refer to [20] for more results on these concepts. In addition, the authors generalized these concepts and gave some new results in Hilbert modules [5] and Banach spaces [6]. Note that frames in Hilbert spaces are just a particular case of \(K \)-frames, when \(K \) is the identity operator on these Hilbert spaces.

The concepts of 2-inner product spaces and 2-normed spaces have been studied by many authors [3, 4, 14, 16, 17, 18]. In the sequel, we introduce 2-inner product and 2-normed spaces.

Definition 1.1. Suppose that \(X \) is a vector space of dimension grater than 1 over the field \(F \) (either \(\mathbb{R} \) or \(\mathbb{C} \)). If there exists a mapping \(\langle ., . | ., . \rangle : X \times X \times X \to F \) with the properties

1. \(\langle f, f | h \rangle \geq 0 \) and \(\langle f, f | h \rangle = 0 \) if and only if \(f \) and \(h \) are linearly dependent;
2. \(\langle f, f | h \rangle = \langle h, h | f \rangle \);
3. \(\langle g, f | h \rangle = \overline{\langle f, g | h \rangle} \);
4. \(\langle \alpha f, g | h \rangle = \alpha \langle f, g | h \rangle \) for \(\alpha \in F \);
5. \(\langle f_1 + f_2, g | h \rangle = \langle f_1, g | h \rangle + \langle f_2, g | h \rangle \),

then the pair \((X, \langle ., | . \rangle) \) is called a 2-inner product space. The map \(\langle ., | . \rangle \) is said to be a 2-inner product on \(X \).

Some basic properties of 2-inner product \(\langle ., | . \rangle \) cane be immediately obtained as follows (see [3, 4]).

- \(\langle 0, g | h \rangle = \langle f, 0 | h \rangle = \langle f, g | 0 \rangle = 0 ; \)
- \(\langle f, \alpha g | h \rangle = \overline{\alpha} \langle f, g | h \rangle ; \)
- \(\langle f, g | \alpha h \rangle = |\alpha|^2 \langle f, g | h \rangle ; \)

for all \(f, g, h \in X \) and \(\alpha \in F \).

One of the most important properties of 2-inner product is the Cauchy-Schwarz inequality

\[
|\langle f, g | h \rangle|^2 \leq \langle f, f | h \rangle \langle g, g | h \rangle, \quad f, g, h \in X.
\]
For a given 2-inner product space \((X, \langle ., | . \rangle)\) we can define a function \(|| . , . ||\) on \(X \times X\) by
\[
||f, h|| = \langle f, f | h \rangle^{\frac{1}{2}}
\] (1.1)
for all \(f, h \in X\).

The above mentioned function satisfies the following conditions:

a. \(||f, h|| \geq 0\) and \(||f, h|| = 0\) if and only if \(f\) and \(h\) are linearly dependent;

b. \(||f, h|| = ||h, f||\);

c. \(||\alpha f, h|| = |\alpha||f, h||, \alpha \in F\);

d. \(||f_1 + f_2, h|| \leq ||f_1, h|| + ||f_2, h||\).

A 2-norm on a vector space \(X\) is a function \(|| . , . ||\) defined on \(X \times X\) satisfying the conditions (a) to (d) and \((X, || . , . ||)\) is called a linear 2-normed space. Whenever a 2-inner product space \((X, \langle ., | . \rangle)\) is given, we consider it as a linear 2-normed space \((X, || . , . ||)\) via the 2-norm defined by (1.1).

Let \(X\) be a 2-inner product space. A sequence \(\{f_j\}\) is called convergent if there exists \(f \in X\) such that \(\lim_{j \to \infty} ||f_j - f, h|| = 0\), for all \(h \in X\). Similarly, we can define a Cauchy sequence in \(X\). Also, \(X\) is said to be a 2-Hilbert space if it is complete (see [18]).

Now we are ready to state the concept of a 2-frame which was introduced in [1]. A sequence \(\{f_j\}\) in a 2-Hilbert space \((X, \langle ., | . \rangle)\) is called a 2-frame associated to \(h \in X\) if there exist \(A, B > 0\) such that
\[
A ||f, h||^2 \leq \sum_j |\langle f, f_j | h \rangle|^2 \leq B ||f, h||^2, \forall f \in X.
\] (1.2)

If the right side of (1.2) holds, then \(\{f_j\}\) is called a 2-Bessel sequence.

In this paper, we shall introduce 2-atomic systems as a generalization of families of local 2-atoms. A characterization of 2-atomic systems is given. This leads us to obtain a generalization of 2-frame.

2. Main Results

In this section we are going to define the concept of a family of local 2-atoms. Next we will generalize this concept to a 2-atomic system for a linear operator and then a generalization of 2-frames will be studied.

In the sequel we assumed that \((X, \langle ., | . \rangle)\) is a 2-Hilbert space, \(h \in X\) and \(\langle h \rangle\) is the subspace generated by \(h\).

Definition 2.1. Let \(\{f_j\}\) be a 2-Bessel sequence in a 2-inner product space \(X\), \(h \in X\) and \(Y\) be a closed subspace of \(X\). We say that \(\{f_j\}\) is a family of local 2-atoms for \(Y\) associated to \(h\) if there exists a sequence of bilinear functionals \(\{c_j\}\) on \(X \times \langle h \rangle\) such that

i) \(\sum_j |c_j(f, h)|^2 \leq C||f, h||^2\), for some \(C > 0\);

ii) \(f = \sum_j c_j(f, h)f_j\),

for all \(f \in Y\).
Note that a map $c_j : X \times \langle h \rangle \to \mathbb{F}$ is called a bilinear functional if the following conditions hold for every $f, g \in X$ and $\alpha \in \mathbb{F}$.

(i) $c_j(\alpha f + g, h) = \alpha c_j(f, h) + c_j(g, h);$

(ii) $c_j(f, \alpha h) = \alpha c_j(f, h).$

In the following proposition, it is proved that every family of local 2-atoms is indeed a 2-frame sequence.

Proposition 2.2. Suppose that $\{f_j\}$ is a family of local 2-atoms for Y, a closed subspace of 2-inner product space X, then $\{f_j\}$ is a 2-frame for Y associated to h.

Proof. It is enough to show that $\{f_j\}$ has a lower bound. Since $\{f_j\}$ is a family of local 2-atoms, there exists a sequence of bilinear functionals $\{c_j\}$ such that

$$\sum_j |c_j(f, h)|^2 \leq C \|f, h\|^2, f \in Y,$$

for some $C > 0$.

$$\|f, h\|^4 = \langle f, f|f,h\rangle^2 = |\langle f, f_j|f,h\rangle|^2 \leq \sum_j |c_j(f, h)|^2 \sum_j |\langle f, f_j|f,h\rangle|^2 \leq C \|f, h\|^2 \sum_j |\langle f, f_j|f,h\rangle|^2,$$

it means that $\frac{1}{C}\|f, h\|^2 \leq \sum_j |\langle f, f_j|f,h\rangle|^2$. \square

Assume that $(X, \langle \cdot, \cdot; \cdot \rangle)$ is a 2-Hilbert space and $h \in X$. The algebraic complement of $\langle h \rangle$ in X is denoted by M_h, i.e. $\langle h \rangle \oplus M_h = X$.

One may see that

$$\langle f, g\rangle_h = \langle f, g|h\rangle, f, g \in X.$$

defines a semi-inner product on X (see [1]). This semi-inner product induces the following inner product on the quotient space $X / \langle h \rangle$ denoted by M_h as follows:

$$\langle f + \langle h \rangle, g + \langle h \rangle\rangle_h = \langle f, g\rangle_h, f, g \in X.$$

So M_h with respect to $\|f\|_h := \sqrt{\langle f, f\rangle_h}$, $f \in M_h$, is a normed space. The completion of the inner product space M_h is denoted by X_h.

With these notations, one can rewrite (1.2) as follows:

$$A \|f\|_h^2 \leq \sum_j |\langle f, f_j\rangle_h|^2 \leq B \|f\|_h^2, \forall f \in X_h.$$

Now we are going to generalize the concept of a family of local 2-atoms.

Definition 2.3. Let X be a 2-inner product space and fix $h \in X$. Let K_h be a bounded linear operator on the Hilbert space X_h. A sequence $\{f_j\} \subseteq X$ is
called a 2-atomic system for K_h associated to h if

i) $\{f_j\}$ is a 2-Bessel sequence;

ii) for any $f \in X_h$ there exists $a_f = \{a_j\} \in \ell^2$ such that $K_h f = \sum_j a_j f_j$, where $\|a_f\|_{\ell^2} \leq C\|f,h\|_X$ and C is a positive constant.

Note that the convergence of the series $\sum_j a_j f_j$ is in the topology of X. Also if $\{f_j\} \subseteq X_h$ then the convergence of the series $\sum_j a_j f_j$ is in the topology of X implies its convergence in X_h.

A characterization of a 2-atomic system corresponding to $h \in X$ is given as follows which lead us to obtain a generalization of 2-frame.

Theorem 2.4. Let K_h be a bounded linear operator on X_h. Then for a sequence $\{f_j\} \subseteq X_h$ the following statements are equivalent:

(i) $\{f_j\}$ is a 2-atomic system for K_h;

(ii) there exist $A, B > 0$ such that

$$A\|K_h^* f\|^2 \leq \sum_j |\langle f, f_j | h \rangle|^2 \leq B\|f\|^2_{\ell^2}, \forall f \in X_h;$$

(iii) $\{f_j\} \subseteq X_h$ is a 2-Bessel sequence and there exists a 2-Bessel sequence $\{g_j\}$ such that

$$K_h f = \sum_j \langle f, g_j | h \rangle f_j, f \in X_h;$$

(iv) $\{f_j\} \subseteq X_h$ is a 2-Bessel sequence and there exists a 2-Bessel sequence $\{g_j\}$ such that

$$K_h^* f = \sum_j \langle f, f_j | h \rangle g_j, f \in X_h;$$

(v) $\{Q_h f_j\}$ is a 2-atomic system for the bounded linear operator $Q_h K_h$, where Q_h is an injective operator on X_h.

Proof. $i \rightarrow ii)$ For every $f \in X_h$ we have

$$\|K_h^* f\|^2 = \|K_h^* f, h\|^2 = \sup\{\|\langle K_h^* f, g | h \rangle\|^2 : g \in X_h, \|g, h\| = 1\} = \sup\{\|\langle f, K_h g | h \rangle\|^2 : g \in X_h, \|g, h\| = 1\}. $$
By definition of a 2-atomic system for K_h, there exists $C > 0$ such that $K_h g = \sum_j b_j f_j$ with $\|b_j\|_{\ell^2} = \|\{b_j\}\|_{\ell^2} \leq C\|g, h\|$ and so

$$\|K_h^* f\|^2 = \sup\{ |\langle f, \sum_j b_j f_j | h \rangle |^2 : g \in X_h, \|g, h\| = 1\}$$

$$= \sup\{ \|\sum_j b_j \langle f, f_j | h \rangle \|^2 : g \in X_h, \|g, h\| = 1\}$$

$$\leq \sup\{ \sum_j |b_j|^2 \sum_j |\langle f, f_j | h \rangle|^2 : g \in X_h, \|g, h\| = 1\}$$

$$\leq C^2 \|g, h\|^2 \sum_j |\langle f, f_j | h \rangle|^2$$

It means that $\frac{1}{C^2} \|K_h^* f\|^2 \leq \sum_j |\langle f, f_j | h \rangle|^2$.

$ii \rightarrow iii$ Similar to Theorem 3 of [15], there exists a 2-Bessel sequence $\{g_j\} \in X_h$ such that

$$K_h f = \sum_j \langle f, g_j | h \rangle f_j h = \sum_j \langle f, g_j | h \rangle f_j.$$

$iii \rightarrow iv$ For $f, g \in X_h$ we have

$$\langle K_h f, g \rangle_h = \langle \sum_j \langle f, g_j | h \rangle f_j h, g \rangle_h$$

$$= \sum_j \langle f, g_j | h \rangle \langle f_j h, g \rangle_h$$

$$= \sum_j \langle f, g_j \rangle_h \langle f_j, g \rangle_h$$

$$= \langle f, \sum_j \langle g, f_j | h \rangle g_j | h \rangle_h,$$

that is $K_h^* f = \sum_j \langle f, f_j | h \rangle g_j$.

$iv \rightarrow iii$ It is similar to $iii \rightarrow iv$ so we omit it.

$i \rightarrow v$ Since $\{f_j\}$ is a 2-atomic system for K_h, for any $f \in X_h$ there exists $a_f = \{a_j\} \in \ell^2$ such that $K_h f = \sum_j a_j f_j$ so $Q_h K_h f = \sum_j a_j Q_h f_j$, i.e. $\{Q_h f_j\}$ is a 2-atomic system for $Q_h K_h$.

$v \rightarrow i$ Since $\{Q_h f_j\}$ is a 2-atomic system for $Q_h K_h$, for any $f \in X_h$ there exists $\{b_j\} \in \ell^2$ such that $Q_h K_h f = \sum_j b_j Q_h f_j$ so $Q_h (K_h f - \sum_j b_j f_j) = 0$.

Due to injectivity of Q_h, $K_h f = \sum_j b_j f_j$.

\[\square\]

As a result of Theorem 2.4 the following definition is given.
Definition 2.5. Let K_h be a bounded linear operator on X_h. A sequence $\{f_j\}$ in X is called a 2-K_h-frame if there exist $A, B > 0$ such that

$$A\|K_h f\|^2_h \leq \sum_j |\langle f, f_j | h \rangle|^2 \leq B\|f\|^2_h, \forall f \in X_h.$$

Trivially a 2-frame, which was defined in [1], is a special case of 2-K_h-frames with $K_h = I$.

A consequence of Theorem 2.4 is given as follows.

Theorem 2.6. Let P_{Y_h} be the orthogonal projection on Y_h as a closed subspace of X_h. Then for a sequence $\{f_j\} \subseteq X_h$ the following statements are equivalent:

(i) $\{f_j\}$ is a family of local 2-atoms for Y_h;
(ii) $\{f_j\}$ is a 2-atomic system for P_{Y_h};
(iii) $\{f_j\}$ is a 2-P_{Y_h}-frame;
(iv) $\{f_j\}$ is a 2-Bessel sequence and there exists a 2-Bessel sequence $\{g_j\}$ such that

$$P_{Y_h} f = \sum_j \langle f, g_j | h \rangle f_j = \sum_j \langle f, f_j | h \rangle g_j, f \in X_h;$$

(v) $\{Q_h f_j\}$ is a 2-atomic system for bounded linear operator $Q_h P_{Y_h}$, where Q_h is an injective operator on X_h.

Proof. $i \rightarrow ii$ is obvious.

$ii \leftarrow iii, iii \leftarrow iv, iv \leftarrow ii$ and $v \leftarrow i$ hold from Theorem 2.4.

$iv \rightarrow i$ Since $P_{Y_h} f = \sum_j \langle f, g_j | h \rangle f_j$, it is enough to put $c_j(f, h) = \langle f, g_j | h \rangle$ because it is linear and

$$\sum_j |c_j(f, h)|^2 = \sum_j |\langle f, g_j | h \rangle|^2 \leq D\|f, h\|^2,$$

where D is the upper 2-frame bound of $\{g_j\}$. □

Example 2.7. Let $n \in \mathbb{N}$ be odd and consider $X = \mathbb{R}^n$ with the following standard two inner product

$$\langle x, y | z \rangle = \det \begin{pmatrix} \langle x, y \rangle & \langle x, z \rangle \\ \langle z, y \rangle & \langle z, z \rangle \end{pmatrix}$$

where $\langle ., . \rangle$ is the inner product of \mathbb{R}^n. Let $\{e_1, ..., e_n\}$ be the standard basis of \mathbb{R}^n and $h = e_n$. Trivially in this case $X_h = \mathbb{R}^{n-1}$ and one can see that its induced inner product is the standard inner product of \mathbb{R}^{n-1}. Now define the operator K_h on X_h by

$$K_h(e_{2i}) = e_i, i = 1, 2, ..., \frac{n-1}{2} \text{ and otherwise } K_h e_i = e_i, i \leq n - 1.$$

Then one can see that $e_1, e_1, e_3, e_2, ..., e_{n-1}, e_{n-1}$ is a 2-K_h-frame.
Acknowledgments

The authors wish to thank the anonymous reviewers for their specific and useful comments.

References