A Graphical Characterization for $SPAP$-Rings

Esmaeil Rostami

Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran

E-mail: e_rostami@uk.ac.ir

Abstract. Let R be a commutative ring and I an ideal of R. The zero-divisor graph of R with respect to I, denoted by $\Gamma_I(R)$, is the simple graph whose vertex set is $\{x \in R \setminus I \mid xy \in I, \text{ for some } y \in R \setminus I\}$, with two distinct vertices x and y are adjacent if and only if $xy \in I$. In this paper, we state a relation between zero-divisor graph of R with respect to an ideal and almost prime ideals of R. We then use this result to give a graphical characterization for $SPAP$-rings.

Keywords: $SPAP$-ring, Almost prime ideal, Zero-divisor graph with respect to an ideal.

1. INTRODUCTION

Throughout this paper, all rings are assumed to be commutative with identity. A graph (simple graph) G is an ordered pair of disjoint sets (V,E) such that $V = V(G)$ is the vertex set of G and $E = E(G)$ is its edge set. A graph F is called a subgraph of a graph G if $V(F) \subseteq V(G)$ and $E(F) \subseteq E(G)$. A subgraph F of G is said to be an induced subgraph of G if each edge of G having its ends in $V(F)$ is also an edge of F. A graph in which each pair of distinct vertices is joined by an edge is called complete. There have been several studies concerning the assignment a graph to a ring, a group, a semigroup or a module, for more information see [1], [8] and [12]. The
concept of the zero-divisor graph of a commutative ring R was first introduced by Beck [6]. The zero-divisor graph of a commutative ring R is defined to be the graph $\Gamma(R)$, whose vertices are the non-zero zero-divisors of R, and where x is adjacent to y if $xy = 0$. In [10] Redmond has generalized the notion of the zero-divisor graph. For a given ideal I of a commutative ring R, he defined the zero-divisor graph of R with respect to I, denoted by $\Gamma_I(R)$, is the simple graph whose vertex set is $\{x \in R \setminus I \mid xy \in I\text{, for some } y \in R \setminus I\}$, with two distinct vertices x and y joined by an edge when $xy \in I$. Clearly $\Gamma_0(R) = \Gamma(R)$. Bhatwadekar and Sharma [7] defined a proper ideal I of an integral domain R to be almost prime if for all $a,b \in R$, $ab \in I \setminus I^2$, then either $a \in I$ or $b \in I$. Anderson and Bataineh [3], use this definition for an arbitrary commutative ring and stated a necessary and sufficient condition for a commutative Noetherian ring under which every proper ideal of R is a product of almost prime ideals. Then Rostami and Nekooei [11], considered SPAP-rings and characterized the structure of SPAP-rings, in special cases. Also, they showed that SPAP-rings are quasi-Frobenius (a Noetherian self-injective ring), and SPAP-rings are an applicative class of rings in Coding Theory, for more information see [11].

In the next section, we state a relation between zero-divisor graph with respect to an ideal of R and almost prime ideals of R. Then we state the concept of the intersection graph of ideals of R, and we give a graphical characterization for SPAP-rings.

2. MAIN RESULTS

A proper ideal I in a ring R is called almost prime if for all $a,b \in R$, $ab \in I \setminus I^2$ either $a \in I$ or $b \in I$. Also, a proper ideal I of a ring R is called weakly prime if for all $a,b \in R$ with $0 \neq ab \in I$, either $a \in I$ or $b \in I$. Clearly, every weakly prime ideal is almost prime. The following lemma which plays an important role in this paper gives a graphical characterization for almost prime ideals.

Lemma 2.1. Let I be a proper ideal of R. Then I is an almost prime ideal of R if and only if $\Gamma_I(R)$ is an induced subgraph of $\Gamma_{I^2}(R)$.

Proof. Let I be an almost prime ideal of R and $x \in V(\Gamma_I(R))$, then $x \in R \setminus I$, and there exists $y \in R \setminus I$ such that $xy \in I$. Thus $x,y \notin I^2$. Now if $xy \notin I^2$, then we have $xy \in I \setminus I^2$, this gives $x \in I$ or $y \in I$, a contradiction. Thus $xy \in I^2$ and so $x \in V(\Gamma_{I^2}(R))$. Now let $x,y \in V(\Gamma_I(R))$ be adjacent in $\Gamma_I(R)$, so $xy \in I$, if $xy \notin I^2$, then we have $xy \in I \setminus I^2$, this gives $x \in I$ or $y \in I$, a contradiction. Therefore, x and y are adjacent in $\Gamma_{I^2}(R)$. Thus $E(\Gamma_I(R)) \subseteq E(\Gamma_{I^2}(R))$. Clearly, each edge of $\Gamma_{I^2}(R)$ having its ends in $\Gamma_I(R)$ is also an edge of $\Gamma_I(R)$. Therefore, $\Gamma_I(R)$ is an induced subgraph of $\Gamma_{I^2}(R)$. Conversely, let $\Gamma_I(R)$ be an induced subgraph of $\Gamma_{I^2}(R)$ and $ab \in I \setminus I^2$, if
If $a, b \notin I$ then, a and b are adjacent in $\Gamma_I(R)$ and so a and b are adjacent in $\Gamma_{I^2}(R)$, thus $ab \in I^2$, a contradiction. Therefore, either $a \in I$ or $b \in I$. \hfill \Box

The following lemma is a similar result for weakly prime ideals.

Lemma 2.2. Let I be a proper ideal of R. Then I is a weakly prime ideal of R if and only if $\Gamma_I(R)$ is an induced subgraph of $\Gamma(R)$.

Proof. Let I be a weakly prime ideal of R and $x \in V(\Gamma_I(R))$. Then $x \in R \setminus I$, and there exists $y \in R \setminus I$ such that $xy \notin I$. If $xy \neq 0$, we have $0 \neq xy \in I$, this gives $x \in I$ or $y \in I$, a contradiction. Thus $xy = 0$, and so $x \in V(\Gamma(R))$. Now, let $x, y \in V(\Gamma_I(R))$ be adjacent in $\Gamma_I(R)$, thus $xy \in I$. Repeating the previous argument leads to $xy = 0$. Hence x, y are adjacent in $\Gamma(R)$. Clearly, each edge of $\Gamma(R)$ having its ends in $\Gamma_I(R)$ is also an edge of $\Gamma_I(R)$. Therefore $\Gamma_I(R)$ is an induced subgraph of $\Gamma(R)$. Conversely, let $\Gamma_I(R)$ be an induced subgraph of $\Gamma(R)$ and $0 \neq ab \in I$ for $a, b \in R$, if $a \notin I$ and $b \notin I$ then, a and b are adjacent in $\Gamma_I(R)$, thus a and b are adjacent in $\Gamma(R)$. This gives $ab = 0$, a contradiction. Thus either $a \in I$ or $b \in I$. \hfill \Box

Lemma 2.3. Let I be a proper ideal of R. Then I is a prime ideal of R if and only if $\Gamma_I(R) = \emptyset$.

Proof. The proof is straightforward. \hfill \Box

Now let I be a prime ideal of R. Thus $\Gamma_I(R) = \emptyset$ and so $\Gamma_I(R) = \emptyset$ is an induced subgraph of $\Gamma_{I^2}(R)$ and $\Gamma(R)$, this is a graphical verification for the fact that “prime ideals are almost prime and weakly prime”.

Definition 2.4. A local ring (R, m) is called special product of almost prime ideals ring ($SPAP$-ring), if for each $x \in m \setminus m^2$, $<x^2> = m^2$ and $m^3 = 0$.

$SPAP$-rings were first introduced in [3] by D. D. Anderson and M. Bataineh. In [3], D. D. Anderson and M. Bataineh used $SPAP$-rings to characteriz Noetherian rings whose proper ideals are a product of almost prime ideals. In general, an $SPAP$-ring is not Noetherian, see [3, Example 20]. For an $SPAP$-ring (R, m), m is the unique prime ideal of R, thus R is a Noetherian ring if and only if R is an Artinian ring if and only if m is a finitely generated ideal of R.

Before proceeding, we mention the definition of the intersection graph of ideals of a ring which helps us to give a characterization for $SPAP$-rings.

Definition 2.5. Let R be a ring, the intersection graph of ideals of R, denoted by $G(R)$, is the graph whose vertices are proper non-trivial ideals of R and two distinct vertices are adjacent if and only if the corresponding ideals of R have a non-trivial (non-zero)intersection.
Lemma 2.6. [5, Theorem 2.11.] Let \((R, m)\) be an Artinian local ring. Then the intersection graph of ideals of \(R\) is complete if and only if \(R\) has a unique minimal ideal.

For more information about intersection graph of ideals of \(R\), see [2, 5]. In the remainder of this section, we characterize Artinian local rings which \(\Gamma_I(R)\) is an induced subgraph of \(\Gamma_J(R)\) for all non-minimal ideals \(I\) of \(R\), and the intersection graph of ideal of \(R\) is complete.

Lemma 2.7. Let \((R, m)\) be an Artinian local ring and \(\Gamma_I(R)\) is an induced subgraph of \(\Gamma_J(R)\), for every non-minimal ideal \(I\) of \(R\). Then \(m^2\) is a minimal ideal of \(R\) or \(m^2 = 0\).

Proof. Let \(m^2\) be a non-minimal ideal of \(R\). Then by Lemma 2.1, \(m^2\) is an almost prime ideal of \(R\). We show that \(m^2\) must be zero in this case. For this purpose, we show that \(m^2 = m^3 = m^4\) and the Nakayama’s Lemma gives \(m^2 = 0\). If for all \(x, y \in m\), \(xy \in m^4\), we have \(m^2 \subseteq m^3\), thus \(m^2 = m^3 = m^4\).

Now let there exist \(x, y \in m\) such that \(xy \notin m^4\), so \(xy \in m^2 \setminus m^4 = m^2 \setminus (m^2)^2\), since \(m^2\) is almost prime, only one of the following cases happens:

\(x \in m^2\) and \(y \notin m^2\) or \(x \notin m^2\) and \(y \in m^2\). Suppose \(x \in m^2\) and \(y \notin m^2\).

Since \(y^2 \in m^2\), \(y \notin m^2\) and \(m^2\) is almost prime, we must have \(y^2 \notin m^4\).

Repeating the previous argument and \(y, x + y \notin m^2\) and \(y(x + y) \in m^2\) leads to \(y(x + y) \in m^4\). Thus \(xy + y^2 = y(x + y), y^2 \in m^4\), so \(xy \in m^4\), a contradiction. Thus \(m^2\) is zero or a minimal ideal. □

Now we mention the definition of a class of rings which are important in the rest of this paper.

Definition 2.8. A commutative ring \(R\) is called special principal ideal ring (SPIR), if it is a principal ideal ring with unique prime ideal and that prime ideal is nilpotent.

Mori [9] has shown that a ring has the property that every ideal is a product of prime ideals if and only if it is a finite direct product of Dedekind domains and special principal ideal rings (SPIRs)(For more information about special principal ideal ring see [9]). In the next lemma, we state a relation between SPAP-rings and SPIR rings.

Lemma 2.9. Let \((R, m)\) be an SPIR ring such that \(\Gamma_I(R)\) is an induced subgraph of \(\Gamma_J(R)\), for every non-minimal ideal \(I\) and \(m^2\) is the unique minimal ideal of \(R\). Then \((R, m)\) is an SPAP-ring.

Proof. Since \(R\) is an SPIR ring, \(m = \langle x \rangle\) for some \(x \in m\). Now let \(0 \neq J \neq m^2\) be an ideal of \(R\). If \(J = J^2\), Nakayama’s Lemma gives \(J = 0\), a contradiction. So \(J \neq J^2\), thus we can select \(y \in J \setminus J^2 \subseteq m\) such that \(J = \langle y \rangle\). Thus \(y = rx \in J \setminus J^2\), for some \(r \in R\). Since \(J \neq m^2\), Lemma
2.1 gives J is an almost prime ideal of R and since $y = rx \in J \setminus J^2$, we have $x \in J$ or $r \in J$. If $x \in J$, then $J = m$ and if $r \in J \subseteq m$, then we have $J = <y> = <rx> \subseteq m^2$ and since m^2 is the unique minimal ideal of R, $J = 0$ or $J = m^2$, a contradiction. This means, the set of all ideals of R is $\{0, m^2, m, R\}$. Now if $m = m^2$, we have $m = 0$, a contradiction. Thus $m \neq m^2$. If $a \in m \setminus m^2$, since the set of all ideals of R is $\{0, m^2, m, R\}$, we have $m = <a>$, so $m^2 = <a^2>$. Now if $m^3 \neq 0$, we have $m^2 = m^4$, and Nakayama’s Lemma gives $m = 0$, a contradiction. Thus $m^3 = 0$. This completes the proof. □

D. D. Anderson and M. Bataineh in [3], by using SPAP-rings, characterized Noetherian rings whose proper ideals are a product of almost prime ideals. Actually, they stated the following theorem.

Theorem 2.10. [3, Theorem 22]. Let R be a Noetherian ring. Then every proper ideal of R is a product of almost prime ideals if and only if R is a finite direct product of Dedekind domains, SPIRs, and (Noetherian) SPAP-rings.

Proposition 2.11. Let (R, m) be an Artinian local ring such that $\Gamma_I(R)$ is an induced subgraph of $\Gamma_{I^2}(R)$, for every non-minimal ideal I of R and the intersection graph of ideal of R is complete. If $m^2 \neq 0$ then R is an SPAP-ring.

Proof. Since the intersection graph of ideals of R is complete, by Lemma 2.6, R has a unique minimal ideal. Since $m^2 \neq 0$, Lemma 2.7 gives, m^2 is the unique minimal ideal of R. Now let I be an arbitrary proper ideal of R, if I is a non-minimal ideal of R, then $\Gamma_I(R)$ is an induced subgraph of $\Gamma_{I^2}(R)$, so I is an almost prime ideal of R, by Lemma 2.1, and if I is a minimal ideal of R, then $I = m^2$. Therefore, in all cases I is finite product of almost prime ideals (note that m is prime and so is almost prime), thus by Theorem 2.10, R is a finite direct product of Dedekind domains, SPIR rings, and SPAP-rings. Since R is a local ring, this direct product must have a single ring. Let R be a Dedekind domain. Since m^2 is a minimal ideal of R, we have $m^3 = 0$ or $m^2 = m^3$, in both cases, we have $m^2 = 0$. Thus R is not a Dedekind domain and Lemma 2.9, completes the proof. □

An R-module M is said to be a multiplication R-module if for each submodule N of M there exists an ideal I of R such that $N = IM$. Clearly, every cyclic module is multiplication module, see [4] for more information. After stating the main result, we require the following three lemmas.

Lemma 2.12. Let (R, m) be an SPAP-ring. If $m^2 \neq 0$, then m^2 is a minimal ideal of R.

If \(m = m^2 \), then \(m^2 = m^3 = 0 \), a contradiction. Therefore \(m \neq m^2 \), thus there exists \(y \in m \setminus m^2 \). So \(m^2 = \langle y^2 \rangle \). Therefore, \(m^2 \) is a cyclic \(R \)-module and so it is a multiplication \(R \)-module. Now if \(J \) is a submodule (ideal of \(R \)) of \(m^2 \), there exists an ideal \(K \) of \(R \), such that \(J = Kn^2 \). If \(K = R \), then \(J = m^2 \) and if \(K \neq R \) then \(J = Kn^2 \subseteq m^3 = 0 \), hence \(J = 0 \). Therefore \(m^2 \) is a minimal ideal of \(R \).

Lemma 2.13. Let \((R, m) \) be an SPAP-ring. If \(m^2 \neq 0 \) and \(I \) is a proper ideal of \(R \), then \(I = 0 \) or \(I = m^2 \) or \(I^2 = m^2 \).

Proof. Since \(m^2 \neq 0 \), by Lemma 2.12, \(m^2 \) is a minimal ideal of \(R \). Now let \(I \) be a proper ideal of \((R, m) \). If \(I \subseteq m^2 \), then \(I = 0 \) or \(I = m^2 \). If \(I \nsubseteq m^2 \), then there exists \(y \in I \setminus m^2 \). So \(m^2 = \langle y^2 \rangle \), hence \(m^2 = \langle y^2 \rangle \subseteq I^2 \subseteq m^2 \). Thus \(I^2 = m^2 \).

By combining the above two lemmas, we have the following lemma.

Lemma 2.14. Let \((R, m) \) be an SPAP-ring. If \(m^2 \neq 0 \), then \(m^2 \) is the unique minimal ideal of \(R \).

Now we can state the main result of this paper.

Theorem 2.15. Let \((R, m) \) be an Artinian local ring with \(m^2 \neq 0 \). Then \(\Gamma_I(R) \) is an induced subgraph of \(\Gamma_{I^2}(R) \), for every non-minimal ideal \(I \) of \(R \) and the intersection graph of ideals of \(R \) is complete if and only if \(R \) is an SPAP-ring.

Proof. Let \(R \) be an SPAP-ring by Lemma 2.14, \(m^2 \) is the unique minimal ideal of \(R \), so by Lemma 2.6, the intersection graph of ideals of \(R \) is complete. Now let \(I \) be a proper ideal of \(R \), Lemma 2.13 gives \(I = 0 \) or \(I = m^2 \) or \(I^2 = m^2 \). If \(I \) is a non-zero non-minimal ideal of \(R \) and \(ab \in I \setminus I^2 \), for \(a, b \in R \), then \(ab \not\in I^2 = m^2 \), so \(a \) or \(b \) is not in \(m \), thus \(a \) or \(b \) is unit. Thus \(a \) or \(b \) must be in \(I \). This shows that \(I \) is an almost prime ideal of \(R \). Hence, by Lemma 2.1, \(\Gamma_I(R) \) is an induced subgraph of \(\Gamma_{I^2}(R) \). In general, the zero ideal is an almost prime of \(R \). Thus every non-minimal ideal of \(R \) is almost prime and so \(\Gamma_I(R) \) is an induced subgraph of \(\Gamma_{I^2}(R) \), for every non-minimal ideal \(I \) of \(R \).

The converse of theorem is valid by Proposition 2.11.

Example 2.16. Let \(k \) be an ordered field. Then for a non-empty set \(\{x_\alpha\}_{\alpha \in \Delta} \) of indeterminates. Define \(R = k[[\{x_\alpha\}_{\alpha \in \Delta}]] \), \(m = \langle \{x_\alpha\}_{\alpha \in \Delta} \rangle \), and \(J = \langle \{x_\alpha x_\beta, x_\alpha^2 - x_\beta^2 \}_{\alpha \neq \beta}, \{x_\alpha^3\}_{\alpha} \rangle \). Let \(\overline{R} = \frac{k}{J} \). Then \(\overline{R} \) is an SPAP-ring with \(\overline{m}^2 \neq 0 \) and \(\overline{m} \) is not principal for \(|\Delta| > 1 \), see [3, Example 20]. If \(\Delta \) is a finite set, then \(\overline{R} \) is a Noethrian SPAP-ring with \(\overline{m}^2 \neq 0 \), and thus \(\Gamma_{\overline{I}}(\overline{R}) \) is an induced subgraph of \(\Gamma_{\overline{I^2}}(\overline{R}) \), for every non-minimal ideal \(\overline{I} \) of \(\overline{R} \) and the intersection graph of ideals of \(\overline{R} \) is complete.
Theorem 2.17. Let \((R, m)\) be an Artinian local ring with \(m^2 \neq 0\), such that \(\Gamma_I(R)\) is an induced subgraph of \(\Gamma_{I^2}(R)\), for every non-minimal ideal \(I\) of \(R\) and the intersection graph of ideals of \(R\) is complete. If \(\text{char}(R) \neq p^2\), for any prime number \(p\) and \(\text{char}(\frac{R}{m}) \neq 2\), then there exists a regular local ring \((S, n)\), a positive integer number \(h\), and subset \(\{x_a\}_{a=1}^h\) of \(n\) such that \(R \cong S[K]\) in which \(K\) is minimally generated by the elements \(\{x_ix_j\}_{1 \leq i < j \leq h}, \{x_i^2\}_{2 \leq j \leq \tau}\) and \(\{x_i^2u_ix_j^2\}_{\tau + 1 \leq i \leq h}\), where the \(u_i\) are unit in \(R\) and \(\tau\) is the Cohen-Macaulay type of \(R\).

Proof. By Theorem 2.15 and [11, Proposition 6.3.].

ACKNOWLEDGMENTS

The author would like to express its sincere thanks to the referees for their valuable suggestions and comments.

REFERENCES