Ordered Krasner Hyperrings

Saber Omidi, Bijan Davvaz*

Department of Mathematics, Yazd University, Yazd, Iran.

E-mail: omidi.saber@yahoo.com
E-mail: davvaz@yazd.ac.ir

Abstract. In this paper, we introduce the concept of Krasner hyperring
\((R, +, \cdot)\) together with a suitable partial order relation \(\leq\). Also, we con-
sider some Krasner hyperrings and define a binary relation on them which
become ordered Krasner hyperrings. By using the notion of pseudoorder
on an ordered Krasner hyperring \((R, +, \cdot, \leq)\), we obtain an ordered ring.
Moreover, we give some results on ordered Krasner hyperrings.

Keywords: Algebraic hyperstructure, Ordered ring, Ordered Krasner hyper-
ring, Strongly regular relation, Pseudoorder.

1. Introduction

Hyperstructure theory was introduced by Marty [19] in 1934, at the 8th
congress of Scandinavian Mathematicians. The notion of a hyperstructure and
hypergroup has been studied in the following decades and nowadays by many
mathematicians. A short review of the theory of hyperstructures appears in
[4, 5, 8, 9, 10, 23]. In [11], Heidari and Davvaz studied a semihypergroup
\((H, \circ)\) besides a binary relation \(\leq\), where \(\leq\) is a partial order relation such that
satisfies the monotone condition. Indeed, an ordered semihypergroup \((H, \circ, \leq)\)
is a semihypergroup \((H, \circ)\) together with a partial order \(\leq\) such that satisfies
the monotone condition as follows:

*Corresponding Author

Received 11 February 2015; Accepted 18 June 2017

©2017 Academic Center for Education, Culture and Research TM
Here, $z \cdot x \leq z \cdot y$ means that for any $a \in z \cdot x$ there exists $b \in z \cdot y$ such that $a \leq b$. The case $x \cdot z \leq y \cdot z$ is defined similarly. Indeed, the concept of ordered semihypergroups is a generalization of the concept of ordered semigroups. The concept of ordering hypergroups introduced by Chvalina [6] as a special class of hypergroups and studied by many authors, for example, see [7, 12, 13]. In [3], polygroups which are partially ordered are introduced and some properties and related results are given. In [14], Iampan studied some properties of ordered bi-ideals in ordered Γ-semigroups.

We can consider several definitions for a hyperring, by replacing at least one of the two operations by a hyperoperation. In general case, $(R, +, \cdot)$ is a hyperring if $+$ and \cdot are two hyperoperations such that $(R, +)$ is a hypergroup, (R, \cdot) is a semihypergroup and the hyperoperation \cdot is distributive over the hyperoperation $+$, which means that for all $x, y, z \in R$ we have: $x \cdot (y + z) = x \cdot y + x \cdot z$ and $(x + y) \cdot z = x \cdot z + y \cdot z$. We call $(R, +, \cdot)$ a hyperfield if $(R, +, \cdot)$ is a hyperring and (R, \cdot) is a hypergroup. There are different types of hyperrings. If only the addition $+$ is a hyperoperation and the multiplication \cdot is a usual operation, then we say that R is an additive hyperring. A special case of this type is the Krasner hyperring. For more details about hyperrings we refer to [10]. In the theory of hyperrings, fundamental relations make a connection between hyperrings and ordinary rings [22]. An equivalence relation ρ is called strongly regular over a hyperring R, if the quotient R/ρ is a ring. In 2013, Asokkumar [1] defined derivations in Krasner hyperrings and obtained some results in this respect.

2. Preliminaries

In this section, we recall some definitions and notations.

Let H be a non-empty set. Then a mapping $\circ : H \times H \rightarrow P^*(H)$ is called a hyperoperation on H, where $P^*(H)$ is the family of all non-empty subsets of H. The couple (H, \circ) is called a hypergroupoid. In the above definition, if A and B are two non-empty subsets of H and $x \in H$, then we define:

$$A \circ B = \bigcup_{a \in A} a \circ b, \quad x \circ A = \{x\} \circ A \quad \text{and} \quad A \circ x = A \circ \{x\}.$$

An element $e \in H$ is called an identity of (H, \circ) if $x \in x \circ e \cap e \circ x$, for all $x \in H$ and it is called a scalar identity of (H, \circ) if $x \circ e = e \circ x = \{x\}$, for all $x \in H$. If e is a scalar identity of (H, \circ), then e is the unique identity of (H, \circ). The hypergroupoid (H, \circ) is said to be commutative if $x \circ y = y \circ x$, for all $x, y \in H$. A hypergroupoid (H, \circ) is called a semihypergroup if for every $x, y, z \in H$, we have $x \circ (y \circ z) = (x \circ y) \circ z$ and is called a quasihypergroup if for every $x \in H$, $x \circ H = H = H \circ x$. This condition is called the reproduction
Ordered Krasner Hyperrings

Definition 2.1. [20] A canonical hypergroup is a non-empty set H endowed with an additive hyperoperation $+: H \times H \to P^*(H)$, satisfying the following properties:

1. For any $x, y, z \in H$, $x + (y + z) = (x + y) + z$,
2. For any $x, y \in H$, $x + y = y + x$,
3. There exists $0 \in H$ such that $0 + x = x + 0 = x$, for any $x \in H$,
4. For every $x \in H$, there exists a unique element $x' \in H$, such that $0 \in x + x'$ (we shall write $-x$ for x' and we call it the opposite of x),
5. $z \in x + y$ implies that $y \in -x + z$ and $x \in z - y$, that is $(H, +)$ is reversible.

Remark 2.2. Every canonical hypergroup is a hypergroup.

Definition 2.3. [10, 18] A Krasner hyperring is an algebraic hypersructure $(R, +, \cdot)$ which satisfies the following axioms:

1. $(R, +)$ is a canonical hypergroup,
2. (R, \cdot) is a semigroup having zero as a bilaterally absorbing element, i.e., $x \cdot 0 = 0 \cdot x = 0$,
3. The multiplication is distributive with respect to the hyperoperation $+$.

A Krasner hyperring R is called commutative (with unit element) if (R, \cdot) is a commutative semigroup (with unit element). A Krasner hyperring R is called a Krasner hyperfield, if $(R \setminus \{0\}, \cdot)$ is a group. A Krasner hyperring R is called a hyperdomain, if R is a commutative hyperring with unit element and $a \cdot b = 0$ implies that $a = 0$ or $b = 0$ for all $a, b \in R$. A subhyperring of a Krasner hyperring $(R, +, \cdot)$ is a non-empty subset A of R which forms a Krasner hyperring containing 0 under the hyperoperation $+$ and the operation \cdot on R, that is, A is a canonical subhypergroup of $(R, +)$ and $A \cdot A \subseteq A$. Then a non-empty subset A of R is a subhyperring of $(R, +, \cdot)$ if and only if, for all $x, y \in A$, $x + y \subseteq A$, $-x \in A$ and $x \cdot y \in A$. A non-empty subset I of $(R, +, \cdot)$ is called a left (resp. right) hyperideal of $(R, +, \cdot)$ if $(I, +)$ is a canonical subhypergroup of $(R, +)$ and for every $a \in I$ and $r \in R$, $r \cdot a \in I$ (resp. $a \cdot r \in I$). A hyperideal I of $(R, +, \cdot)$ is one which is a left as well as a right hyperideal of R, that is, $x + y \subseteq I$ and $-x \in I$, for all $x, y \in I$ and $x \cdot y, y \cdot x \in I$, for all $x \in I$ and $y \in R$.

Definition 2.4. [2, 15] An ordered ring is a ring $(R, +, \cdot)$, together with a compatible partial order, i.e., a partial order \leq on the underlying set R that is compatible with the ring operations in the sense that it satisfies:

1. For all $a, b, c \in R$, $a \leq b$ implies $a + c \leq b + c$.

(2) For all \(a, b \in R \), \(0 \leq a \) and \(0 \leq b \), we have \(0 \leq a \cdot b \).

Remark 2.5. It is an easy consequence of (1) and (2) above that if \(a, b, c \in R \) with \(a \leq b \) and \(0 \leq c \), then \(a \cdot c \leq b \cdot c \) and \(c \cdot a \leq c \cdot b \).

3. Ordered Krasner Hyperrings

In this section, we introduce the notion of ordered Krasner hyperring, giving several examples that illustrate the significance of this new hyperstructure and some related results are given.

Definition 3.1. An algebraic hypersstructure \((R, +, \cdot, \leq)\) is called an ordered Krasner hyperring if \((R, +, \cdot)\) is a Krasner hyperring with a partial order relation \(\leq\), such that for all \(a, b, c \in R\):

1. If \(a \leq b\), then \(a + c \leq b + c\), meaning that for any \(x \in a + c\), there exists \(y \in b + c\) such that \(x \leq y\).
2. If \(a \leq b\) and \(0 \leq c\), then \(a \cdot c \leq b \cdot c\) and \(c \cdot a \leq c \cdot b\).

Note that the concept of ordered Krasner hyperrings is a generalization of the concept of ordered rings. Indeed, every ordered ring is an ordered Krasner hyperring.

Remark 3.2. An ordered Krasner hyperring \(R\) is positive if \(0 \leq x\) for any \(x \in R\).

If we remove the restriction \(0 \leq c\) from (2), then Definition 3.1 is equivalent to positive ordered Krasner hyperring.

Definition 3.3. An ordered Krasner hyperfield is an ordered Krasner hyperring \(R\), where \(R\) is also a Krasner hyperfield.

Definition 3.4. An ordered hyperdomain is an ordered Krasner hyperring \(R\), where \(R\) is a commutative hyperring with unit element and \(a \cdot b = 0\) implies that \(a = 0\) or \(b = 0\) for all \(a, b \in R\).

Example 3.5. Let \((R, +, \cdot)\) be a Krasner hyperring. Define a partial order on \(R\) by

\[
x \leq_R y \text{ if and only if } x = y \text{ for all } x, y \in R.
\]

Then, \((R, +, \cdot, \leq_R)\) forms an ordered Krasner hyperring.

Example 3.6. Let \(R = \{a, b, c\}\) be a set with the hyperoperation \(\oplus\) and the binary operation \(\odot\) defined as follow:

\[
\begin{array}{c|ccc}
\oplus & a & b & c \\
\hline
a & a & b & c \\
b & b & b & \{a, b, c\} \\
c & c & \{a, b, c\} & c \\
\end{array}
\quad
\begin{array}{c|ccc}
\odot & a & b & c \\
\hline
a & a & a & a \\
b & a & b & c \\
c & a & b & c \\
\end{array}
\]
Then, \((R, \oplus, \odot)\) is a Krasner hyperring \([10]\). We have \((R, \oplus, \odot, \leq)\) is an ordered Krasner hyperring where the order relation \(\leq\) is defined by:
\[
\leq := \{(a, a), (b, b), (c, c), (a, b), (a, c)\}.
\]
The covering relation and the figure of \(R\) are given by:
\[
\leq := \{(a, b), (a, c)\},
\]
\[
\begin{array}{ccc}
 b & \bowtie & c \\
 \downarrow & & \downarrow \\
 a & & a
\end{array}
\]

Example 3.7. Define the hyperoperation \(\oplus\) on the unit interval \([0,1]\) by
\[
x \oplus y = \begin{cases}
 \max\{x, y\}, & x \neq y \\
 [0, x] & x = y
\end{cases}
\]
Then, \((\{0,1\}, \oplus, \cdot)\) is a Krasner hyperring where \(\cdot\) is the usual multiplication \([17]\). Consider \([0,1]\) as a poset with the natural ordering. Thus, \((\{0,1\}, \oplus, \cdot, \leq)\) is an ordered Krasner hyperring.

Example 3.8. Define the hyperoperation \(\boxplus\) on the set \(\{0,1\}\) by
\[
0 \boxplus 0 = \{0\}, \quad 1 \boxplus 0 = 0 \boxplus 1 = \{1\}, \quad 1 \boxplus 1 = \{0,1\}.
\]
Then, \((\{0,1\}, \boxplus, \cdot)\) is a Krasner hyperring where \(\cdot\) is the usual multiplication \([21]\). Consider \((\{0,1\}, \boxplus, \cdot)\) as a poset with the natural ordering. Thus, \((\{0,1\}, \boxplus, \cdot, \leq)\) is an ordered Krasner hyperring.

Example 3.9. Let \((Q^+, +, \cdot)\) be the canonical hypergroup defined on \(Q^+ = \{x \in Q \mid x \geq 0\}, \forall x, x + x = \{y \mid y \leq x\}\), if \(x \neq y\), \(x + y = \max\{x, y\}\) where max is intended with respect to the natural order. If one considers in \(Q^+\) as product the ordinary multiplication \(\cdot\), then \((Q^+, +, \cdot)\) has the structure of Krasner hyperring. We define \(\leq\) the natural ordering on \(Q^+\), then \((Q^+, +, \cdot, \leq)\) is an ordered Krasner hyperring.

Definition 3.10. Let \((R_1, +_1, \cdot_1, \leq_1)\) and \((R_2, +_2, \cdot_2, \leq_2)\) be two ordered Krasner hyperrings. A homomorphism from \(R_1\) into \(R_2\) is a function \(\varphi : R_1 \to R_2\) such that we have:

1. \(\varphi(a +_1 b) \leq \varphi(a) +_2 \varphi(b)\),
2. \(\varphi(a \cdot_1 b) = \varphi(a) \cdot_2 \varphi(b)\),
3. If \(a \leq_1 b\), then \(\varphi(a) \leq_2 \varphi(b)\).

Also \(\varphi\) is called a good (strong) homomorphism if in the previous condition (1), the equality is valid. An isomorphism from \((R_1, +_1, \cdot_1, \leq_1)\) into \((R_2, +_2, \cdot_2, \leq_2)\) is a bijective good homomorphism from \((R_1, +_1, \cdot_1, \leq_1)\) onto
Let \((R_2, +_2, ·_2, ≤_2)\). The kernel of \(ϕ\), \(\ker ϕ\), is defined by \(\ker ϕ = \{x \in R_1 | ϕ(x) = 0_2\}\) where \(0_2\) is the zero of \((R_2, +_2, ·_2)\). In fact \(\ker ϕ\) may be empty.

Example 3.11. Let \(([0, 1], ⊕, ·, ≤)\) be the ordered Krasner hyperring defined as in Example 3.7 and \((\{0, 1\}, ⊕, ·, ≤)\) be the ordered Krasner hyperring defined as in Example 3.8. Define \(ϕ : [0, 1] → [0, 1]\) by \(ϕ(0) = 0\) and \(ϕ(x) = 1\), for all \(x \in (0, 1]\). Then we have

\[
ϕ(x ⊕ y) = \begin{cases}
ϕ(\{0\}) = \{0\} = 0 \oplus 0 = ϕ(x) \oplus ϕ(y), & x = y = 0 \\
ϕ(\{x\}) = \{1\} = 1 \oplus 0 = ϕ(x) \oplus ϕ(y), & x > y = 0 \\
ϕ(\{x\}) = \{1\} ⊊ \{0, 1\} = 1 \oplus 1 = ϕ(x) \oplus ϕ(y), & x > y > 0 \\
ϕ(\{0, x\}) = \{0, 1\} = 1 \oplus 1 = ϕ(x) \oplus ϕ(y), & x = y > 0
\end{cases}
\]

and

\[
ϕ(x · y) = ϕ(x) · ϕ(y) = \begin{cases}
0, & x = 0 or y = 0 \\
1, & x ≠ 0 and y ≠ 0
\end{cases}
\]

and

\(if \ x ≤_{[0,1]} y, then \ ϕ(x) ≤_{[0,1]} ϕ(y).\)

It follows that \(ϕ\) is a homomorphism from \(([0, 1], ⊕, ·, ≤)\) into \((\{0, 1\}, ⊕, ·, ≤)\) which is not a good (strong) homomorphism.

Example 3.12. Let \(([0, 1], ⊕, ·, ≤)\) be the ordered Krasner hyperring defined as in Example 3.7. Define \(ϕ : [0, 1] → [0, 1]\) by \(ϕ(x) = 1\), for all \(x \in [0, 1]\). Since \(1 ⊕ 1 = [0, 1]\) and \(1 · 1 = 1\) and \(x ≤_{[0,1]} y\) implies \(ϕ(x) ≤_{[0,1]} ϕ(y)\), it follows that \(ϕ\) is a homomorphism from the ordered Krasner hyperring \(([0, 1], ⊕, ·, ≤)\) into itself. Notice that \(\ker ϕ = \emptyset\). Thus, the kernel of an ordered Krasner hyperring homomorphism may be empty.

Let \((R_1, +_1, ·_1)\) and \((R_2, +_2, ·_2)\) be two Krasner hyperrings. Then \((R_1 × R_2, +, ·)\) is a Krasner hyperring, where the hyperoperation + and operation · defined as follows:

\[
(x_1, x_2) + (y_1, y_2) = \{(a, b) | a ∈ x_1 +_1 y_1, b ∈ x_2 +_2 y_2\},
\]

\[
(x_1, x_2) · (y_1, y_2) = (x_1 ·_1 y_1, x_2 ·_2 y_2).
\]

The lexicographical order defined on \(R_1 × R_2\) as follows: \((x_1, x_2) ≤ (y_1, y_2)\) if and only if \(x_1 <_1 y_1\) or \(x_1 = y_1\) and \(x_2 ≤_2 y_2\). In the following, we prove that \((R_1 × R_2, +, ·, ≤)\) is an ordered Krasner hyperring and is called the direct product of ordered Krasner hyperrings \((R_1, +_1, ·_1, ≤_1)\) and \((R_2, +_2, ·_2, ≤_2)\).

Theorem 3.13. Let \((R_1, +_1, ·_1, ≤_1)\) and \((R_2, +_2, ·_2, ≤_2)\) be two ordered Krasner hyperrings. Then \((R_1 × R_2, +, ·, ≤)\) is an ordered Krasner hyperring.

Proof. Suppose that \((x_1, x_2) ≤ (y_1, y_2)\) for \((x_1, x_2), (y_1, y_2) ∈ R_1 × R_2\) and \((t_1, t_2) ∈ (a_1, a_2) + (x_1, x_2)\) for \((a_1, a_2) ∈ R_1 × R_2\). Then \(t_1 ∈ a_1 +_1 x_1\) and \(t_2 ∈ a_2 +_2 x_2\). Since \((x_1, x_2) ≤ (y_1, y_2)\), we have two cases:
Case 1. $x_1 < 1 y_1$. Then $t_1 \in a_1 + 1 x_1 \leq 1 a_1 + 1 y_1$, so there exists $s_1 \in a_1 + 1 y_1$ such that $t_1 \leq s_1$. Now, if $s_2 \in a_2 + 2 y_2$, then $(t_1, t_2) \leq (s_1, s_2) \in (a_1, a_2) + (y_1, y_2)$.

Case 2. $x_1 = y_1$ and $x_2 < 2 y_2$. Then $t_2 \in a_2 + 2 x_2 \leq 2 a_2 + 2 y_2$, so there exists $s_2 \in a_2 + 2 y_2$ such that $t_2 \leq s_2$. Thus $(t_1, t_2) \leq (t_1, s_2) \in (a_1, a_2) + (y_1, y_2)$.

Now, suppose that $(x_1, x_2) \leq (y_1, y_2)$ for $(x_1, x_2), (y_1, y_2) \in R_1 \times R_2$ and $(t_1, t_2) = (a_1, a_2) \cdot (x_1, x_2)$ for $(a_1, a_2) \in R_1 \times R_2$. Then $t_1 = a_1 \cdot x_1$ and $t_2 = a_2 \cdot x_2$. Since $(x_1, x_2) \leq (y_1, y_2)$, so we have two cases:

Case 1. $x_1 < 1 y_1$. Then $t_1 = a_1 \cdot x_1 \leq 1 a_1 \cdot y_1 = s_1$. Now, if $s_2 \in a_2 + 2 y_2$, then $(t_1, t_2) \leq (s_1, s_2) \in (a_1, a_2) + (y_1, y_2)$.

Case 2. $x_1 = y_1$ and $x_2 < 2 y_2$. Then $a_2 \cdot x_2 \leq 2 a_2 \cdot y_2$. Thus $(a_1, a_2) \cdot (x_1, x_2) \leq (a_1, a_2) \cdot (y_1, y_2)$ for $(a_1, a_2) \in R_1 \times R_2$. Therefore, $(R_1 \times R_2, +, \cdot, \leq)$ is an ordered Krasner hyperring.

\[\square \]

Definition 3.14. Let $(R, +, \cdot, \leq)$ be an ordered Krasner hyperring. A non-empty subset I of R is called a hyperideal of R if it satisfies the following conditions:

1. $(I, +)$ is a canonical subhypergroup of $(R, +)$;
2. $x \cdot y \in I$ and $y \cdot x \in I$ for all $x \in I$ and $y \in R$;
3. When $x \in I$ and $y \in R$ such that $y \leq x$, imply that $y \in I$.

Theorem 3.15. Suppose that φ is a homomorphism from an ordered Krasner hyperring $(R, +, \cdot, \leq)$ into a positive ordered Krasner hyperring $(T, \oplus, \odot, \preceq)$. Then, $\ker \varphi$ is a hyperideal of R.

Proof. Let $r \in \ker \varphi$. Then we have $\varphi(r) = 0$. Since φ is a homomorphism, it follows that $\{ \varphi(0) \} = \varphi(0) \oplus 0 = \varphi(0) \oplus \varphi(r) \supseteq \varphi(0 + r) = \varphi(r) = \{ \varphi(r) \}$. This implies that $\varphi(0) = \varphi(r) = 0$. Thus we have $0 \in \ker \varphi$. Since $0 \in \ker \varphi$, it follows that $\ker \varphi \neq 0$.

Let $x, y \in \ker \varphi$. Then $\varphi(x) = 0 = \varphi(y)$. By Definition 3.10, we have $\varphi(x + y) \subseteq \varphi(x) \oplus \varphi(y) = 0 \oplus 0 = \{ 0 \}$. Hence $x + y \subseteq \ker \varphi$. Now, let $x \in \ker \varphi$. Since $0 \in x - x$, it follows that $\varphi(0) \in \varphi(x - x) \subseteq \varphi(x) \oplus \varphi(-x)$. So, $0 \in \varphi(x) \oplus \varphi(-x)$. Thus, $\varphi(-x)$ is the inverse of $\varphi(x)$ in the canonical hypergroup (T, \oplus). Therefore, $\varphi(-x) = -\varphi(x)$. So, $\varphi(-x) = -0 = 0$. Hence $-x \in \ker \varphi$. Now, let $z \in R$ and $x \in \ker \varphi$. Then $\varphi(z \cdot x) = \varphi(z) \odot \varphi(x) = \varphi(z) \odot 0 = 0$ and $\varphi(x \cdot z) = \varphi(x) \odot \varphi(z) = 0 \odot \varphi(z) = 0$. Thus we have $z \cdot x, x \cdot z \in \ker \varphi$. Now, let $x \in \ker \varphi$, $r \in R$ and $r \leq x$. Since $x \in \ker \varphi$, it follows that $\varphi(x) = 0$. By Definition 3.10, we have $\varphi(r) \preceq \varphi(x) = 0$. Since T is positive, we get $\varphi(r) = 0$. Therefore, $r \in \ker \varphi$. This proves that $\ker \varphi$ is a hyperideal of R. \[\square \]

Definition 3.16. Suppose that $(R, +, \cdot, \leq)$ is an ordered Krasner hyperring and $A \subseteq R$ is a subhyperring. Then A is convex if for all $a \in A$ and all $r \in R$, the inequality $-a \leq r \leq a$ implies $r \in A$.
Example 3.17. Let \([0,1], \oplus, \cdot, \leq\) be the ordered Krasner hyperring defined as in Example 3.7. We can see that 0 is the zero of \([0,1], \oplus, \cdot\) and for every \(x \in [0,1]\), \(x\) is the inverse of \(x\) in \([0,1], \oplus\). The set \(A = \{[0,a] | a \in [0,1]\} \cup \{(0,a) | a \in (0,1)\}\) is of all canonical subhypergroups of the canonical hypergroup \([0,1], \oplus\). We can see that \(A\) is the set of all subhyperrings of \(R\). Now, let \(a \in A, r \in R\), \(-a \leq r \leq a\). Then, we have \(a \leq r \leq a\), that implies \(r = a \in A\). Therefore, \(A\) is convex.

Remark 3.18. A relation \(\rho^*\) is the transitive closure of a binary relation \(\rho\) if
(1) \(\rho^*\) is transitive,
(2) \(\rho \subseteq \rho^*\),
(3) For any relation \(\rho'\), if \(\rho \subseteq \rho'\) and \(\rho'\) is transitive, then \(\rho^* \subseteq \rho'\), that is, \(\rho^*\) is the smallest relation that satisfies (1) and (2).

Definition 3.19. [22] Let \((R, +, \cdot)\) be a hyperring. We define the relation \(\gamma\) as follows: \(x\gamma y \iff \exists n \in \mathbb{N}, \exists k_i \in \mathbb{N}, \exists (x_{i1}, \cdots, x_{ik_i}) \in R^{k_i}, 1 \leq i \leq n\), such that
\[
\{x,y\} \subseteq \sum_{i=1}^{n} \left(\prod_{j=1}^{k_i} x_{ij} \right).
\]

Theorem 3.20. [22] Let \(R\) be a hyperring and \(\gamma^*\) be the transitive closure of \(\gamma\). Then, we have:
(1) \(\gamma^*\) is a strongly regular relation both on \((R, +)\) and \((R, \cdot)\).
(2) The quotient \(R/\gamma^*\) is a ring.
(3) The relation \(\gamma^*\) is the smallest equivalence relation such that the quotient \(R/\gamma^*\) is a ring.

Question. Let \((R, +, \cdot, \leq)\) be an ordered Krasner hyperring. Is there a strongly regular relation \(\rho\) on \(R\) for which \(R/\rho\) is an ordered ring?

Our main aim in the next section is reply to the above question.

4. Main Results

The notion of pseudoorder on an ordered semigroup \((S, \cdot, \leq)\) was introduced and studied by Kehayopulu and Tsingelis [16]. Now, we extend this concept for ordered Krasner hyperrings. We begin this section with the following definition.

Definition 4.1. Let \((R, +, \cdot, \leq)\) be an ordered Krasner hyperring. A relation \(\rho\) on \(R\) is called pseudoorder if the following conditions hold:
(1) \(\leq \subseteq \rho\);
(2) \(a \rho b\) and \(b \rho c\) imply \(a \rho c\);
(3) \(a \rho b\) implies \(a + \alpha \overline{b} + c\) and \(c + a \overline{c} + b\), for all \(c \in R\);
(4) \(a \rho b\) implies \(a \cdot \rho b \cdot c\) and \(c \cdot \rho a c \cdot b\), for all \(c \in R\).
Theorem 4.2. Let \((R, +, \cdot, \leq)\) be an ordered Krasner hyperring and \(\rho\) be a pseudoorder on \(R\). Then there exists a strongly regular relation \(\rho^*\) on \(R\) such that \(R/\rho^*\) is an ordered ring.

Proof. Suppose that \(\rho^*\) is the relation on \(R\) defined as follows:

\[
\rho^* = \{ (a, b) \in R \times R \mid a \rho b \text{ and } b a \rho \}.
\]

First we show that \(\rho^*\) is a strongly regular relation on \((R, +)\) and \((R, \cdot)\). Clearly, \((a, a) \in \leq \rho\), so \(a \rho^* a\). If \((a, b) \in \rho^*\), then \(a \rho b\) and \(b a \rho\). Hence, \((b, a) \in \rho^*\). If \((a, b) \in \rho^*\) and \((b, c) \in \rho^*\), then \(a \rho b\), \(b \rho a\), \(b \rho c\) and \(c \rho b\). Hence, \(a \rho c\) and \(c \rho a\), which imply that \((a, c) \in \rho^*\). Thus \(\rho^*\) is an equivalence relation. Now, let \(a \rho^* b\) and \(c \in R\). Then \(a \rho b\) and \(b \rho a\). Since \(\rho\) is pseudoorder on \(R\), by conditions (3) and (4) of Definition 4.1, we conclude that

\[
\begin{align*}
& a + c \rho a + b = a + c \rho b + c, \\
& b + c \rho b + c, \\
& a \cdot c \rho b \cdot c + c \cdot a \rho c \cdot b, \\
& b \cdot c \rho a \cdot c + c \cdot b \rho b \cdot a.
\end{align*}
\]

Hence, for every \(x \in a + c\) and \(y \in b + c\), we have \(x \rho y\) which imply that \(x \rho^* y\). So, \(a + c \rho^* b + c\). Thus \(\rho^*\) is a strongly regular relation on \((R, +)\). Clearly, \(\rho^*\) is a strongly regular relation on \((R, \cdot)\). Hence \(R/\rho^*\) with the following operations is a ring:

\[
\rho^*(x) \oplus \rho^*(y) = \rho^*(z), \quad \text{for all } z \in \rho^*(x) + \rho^*(y);
\]

\[
\rho^*(x) \odot \rho^*(y) = \rho^*(x \cdot y).
\]

Now, we define a relation \(\leq\) on \(R/\rho^*\) as follows:

\[
\leq := \{ (\rho^*(x), \rho^*(y)) \in R/\rho^* \times R/\rho^* \mid \exists a \in \rho^*(x), \exists b \in \rho^*(y) \text{ such that } (a, b) \in \rho \}.
\]

We show that

\[
\rho^*(x) \leq \rho^*(y) \iff x \rho y.
\]

Let \(\rho^*(x) \leq \rho^*(y)\). We show that for every \(a \in \rho^*(x)\) and \(b \in \rho^*(y)\), \(a \rho b\). Since \(\rho^*(x) \leq \rho^*(y)\), there exist \(x' \in \rho^*(x)\) and \(y' \in \rho^*(y)\) such that \(x' \rho y'\). Since \(a \in \rho^*(x)\) and \(x' \in \rho^*(x)\), we obtain \(a \rho x'\), and so \(a \rho x'\) and \(x' \rho a\). Since \(b \in \rho^*(y)\) and \(y' \in \rho^*(y)\), we obtain \(b \rho y'\), and so \(b \rho y'\) and \(y' \rho b\). Now, we have \(a x' \rho \) and \(x' y' \rho b\), which imply that \(a \rho b\). Since \(x \in \rho^*(x)\) and \(y \in \rho^*(y)\), we conclude that \(x \rho y\). Conversely, let \(x \rho y\). Since \(x \in \rho^*(x)\) and \(y \in \rho^*(y)\), we have \(\rho^*(x) \leq \rho^*(y)\).

Finally, we prove that \((R/\rho^*, \oplus, \odot, \leq)\) is an ordered ring. Suppose that \(\rho^*(x) \in R/\rho^*\), where \(x \in R\). Then, \((x, x) \in \leq \rho\). Hence, \(\rho^*(x) \leq \rho^*(x)\). Let
\(\rho^*(x) \preceq \rho^*(y) \) and \(\rho^*(y) \preceq \rho^*(x) \). Then, \(x \rho y \) and \(y \rho x \). Thus, \(x \rho^*y \), which means that \(\rho^*(x) = \rho^*(y) \). Now, let \(\rho^*(x) \preceq \rho^*(y) \) and \(\rho^*(y) \preceq \rho^*(z) \). Then, \(x \rho y \) and \(y \rho z \). So, \(x \rho z \). This implies that \(\rho^*(x) \preceq \rho^*(z) \).

Now, let \(\rho^*(x) \preceq \rho^*(y) \) and \(\rho^*(z) \in R/\rho^* \). Then \(x \rho y \) and \(z \in R \). By conditions (3) and (4) of Definition 4.1, we have \(x + z \rho y + z, x \cdot z \rho y \cdot z \) and \(z \cdot x \rho z \cdot y \). So, for all \(a \in x + z \) and \(b \in y + z \), we have \(a \rho b \). This implies that \(\rho^*(a) \preceq \rho^*(b) \). Hence, \(\rho^*(x) \oplus \rho^*(z) \preceq \rho^*(y) \oplus \rho^*(z) \). Similarly, we get, \(\rho^*(z) \oplus \rho^*(x) \preceq \rho^*(z) \oplus \rho^*(y) \). By the similar argument, we can show that \(\rho^*(x) \circ \rho^*(z) \preceq \rho^*(y) \circ \rho^*(z) \) and \(\rho^*(z) \circ \rho^*(x) \preceq \rho^*(y) \circ \rho^*(z) \).

Theorem 4.3. Let \((R, +, \cdot, \preceq) \) be an ordered Krasner hyperring and \(\rho \) be a pseudoorder on \(R \). Let \(\mathcal{X} = \{ \theta \mid \theta \) is pseudoorder on \(R \) such that \(\rho \subseteq \theta \} \). Let \(\mathcal{Y} \) be the set of all pseudoorder on \(R/\rho^* \). Then, \(\text{card}(\mathcal{X}) = \text{card}(\mathcal{Y}) \).

Proof. For \(\theta \in \mathcal{X} \), we define a relation \(\theta' \) on \(R/\rho^* \) as follows:

\[
\theta' := \{(\rho^*(x), \rho^*(y)) \in R/\rho^* \times R/\rho^* \mid \exists a \in \rho^*(x), \exists b \in \rho^*(y) \text{ such that } (a, b) \in \theta \}.
\]

First, we show that

\[
(\rho^*(x), \rho^*(y)) \in \theta' \iff (x, y) \in \theta.
\]

Let \((\rho^*(x), \rho^*(y)) \in \theta' \). We show that for every \(a \in \rho^*(x) \) and \(b \in \rho^*(y) \), \((a, b) \in \theta \). Since \((\rho^*(x), \rho^*(y)) \in \theta' \), there exist \(x' \in \rho^*(x) \) and \(y' \in \rho^*(y) \) such that \((x', y') \in \theta \). Since \(a \rho x' \) and \(x \rho^*x' \), we have \(a \rho^*x' \). So, \(a \rho x' \). Since \(\rho \subseteq \theta \), it follows that \(a \theta x' \). Similarly, we obtain \(y' \theta b \). Now, we have \(a \theta x', x' \theta y' \) and \(y' \theta b \). Thus we have \(a \theta b \). Since \(x \in \rho^*(x) \) and \(y \in \rho^*(y) \), we conclude that \((x, y) \in \theta \). Conversely, let \((x, y) \in \theta \). Since \(x \in \rho^*(x) \) and \(y \in \rho^*(y) \), we obtain \((\rho^*(x), \rho^*(y)) \in \theta' \).

Now, let \((\rho^*(x), \rho^*(y)) \in \mathcal{X} \). Then by Theorem 4.2, \((x, y) \in \mathcal{X} \). This implies that \((\rho^*(x), \rho^*(y)) \in \theta' \). Hence, \(\theta \subseteq \theta' \). Now, suppose that \((\rho^*(x), \rho^*(y)) \in \theta' \) and \((\rho^*(y), \rho^*(z)) \in \theta' \). Then, \((x, y) \in \theta \) and \((y, z) \in \theta \) which imply that \((x, y) \in \theta \). Thus we have \((\rho^*(x), \rho^*(z)) \in \theta' \). Also, if \((\rho^*(x), \rho^*(y)) \in \theta' \) and \(\rho^*(z) \in R/\rho^* \), then \((x, y) \in \theta \) and \(z \in R \). Thus \(x + z \rho y + z, x \cdot z \rho y \cdot z \) and \(z \cdot x \rho z \cdot y \). So, for all \(a \in x + z \) and \(a' = x \cdot z \) and for all \(b \in y + z \) and \(b' = y \cdot z \), we have \(a \theta b \) and \(a \theta b' \). This implies that \(\theta' \rho^*(a) = \theta' \rho^*(b) \) and \(\theta' \rho^*(a') = \theta' \rho^*(b') \) and so \(\theta' \rho^*(x) \oplus \rho^*(z) \). Similarly, we obtain \(\theta' \rho^*(z) \oplus \rho^*(x) \). Therefore, if \(\theta \in \mathcal{X} \), then \(\theta' \) is a pseudoorder on \(R/\rho^* \).

Now, we define the map \(\psi : \mathcal{X} \to \mathcal{Y} \) by \(\psi(\theta) = \theta' \). Let \(\theta_1, \theta_2 \in \mathcal{X} \) and \(\theta_1 = \theta_2 \). Suppose that \((\rho^*(x), \rho^*(y)) \in \theta_1 \) is an arbitrary element. Then, \((x, y) \in \theta_1 \) and so \((x, y) \in \theta_2 \). This implies that \((\rho^*(x), \rho^*(y)) \in \theta_2 \). Thus we
have \(\theta_1' \subseteq \theta_2' \). Similarly, we obtain \(\theta_2' \subseteq \theta_1' \). Therefore, \(\psi \) is well defined.

Let \(\theta_1, \theta_2 \in \mathcal{X} \) and \(\theta_1' = \theta_2' \). Suppose that \((x, y) \in \theta_1 \) is an arbitrary element. Then, \((\rho^*(x), \rho^*(y)) \in \theta_1' \) and so \((\rho^*(x), \rho^*(y)) \in \theta_2' \). This implies that \((x, y) \in \theta_2 \). Thus we have \(\theta_1 \subseteq \theta_2 \). Similarly, we obtain \(\theta_2 \subseteq \theta_1 \). Therefore, \(\psi \) is one to one.

Finally, we prove that \(\psi \) is onto. Consider \(\Sigma \in \mathcal{Y} \). We define a relation \(\theta \) on \(R \) as follows:

\[
\theta = \{(x, y) \mid (\rho^*(x), \rho^*(y)) \in \Sigma \}.
\]

We show that \(\theta \) is a pseudoorder on \(R \) and \(\rho \subseteq \theta \). Suppose that \((x, y) \in \rho \). By Theorem 4.2, \((\rho^*(x), \rho^*(y)) \in \Sigma\subseteq \Sigma \), and so \((x, y) \in \theta \). If \((x, y) \in \Sigma \), then \((x, y) \in \rho \subseteq \theta \). Hence, \(\rho \subseteq \theta \). Let \((x, y) \in \theta \) and \((y, z) \in \theta \). Then, \((\rho^*(x), \rho^*(y)) \in \Sigma \) and \((\rho^*(y), \rho^*(z)) \in \Sigma \). So, \((\rho^*(x), \rho^*(z)) \in \Sigma \). This implies that \((x, z) \in \theta \).

Now, let \((x, y) \in \theta \) and \((z, w) \in \theta \). Then, \((\rho^*(x), \rho^*(y)) \in \Sigma \) and \((\rho^*(z), \rho^*(w)) \in \Sigma \). Thus, \((\rho^*(x) \circ \rho^*(z), \rho^*(y) \circ \rho^*(w)) \in \Sigma \). Therefore, for all \(a \in x + z \) and \(a' = x \cdot z \) and for all \(b \in y + z \) and \(b' = y \cdot z \), we have \((\rho^*(a), \rho^*(b)) \in \Sigma \) and \((\rho^*(a'), \rho^*(b')) \in \Sigma \). This means that \((a, b) \in \theta \) and \((a', b') \in \theta \). Therefore, \(x + z\theta y + z \) and \(x \cdot z \theta y \cdot z \). Similarly, we obtain \(z \cdot x \theta y \cdot z \). Now, obviously we have \(\theta' = \Sigma \).

\begin{proof}
\end{proof}

\textbf{Remark 4.4.} In Theorem 4.3, it is easy to see that \(\theta_1 \subseteq \theta_2 \) if and only if \(\theta_1' \subseteq \theta_2' \).

\textbf{Remark 4.5.} Let \((R, +, \leq_R)\) and \((T, \forall, \circ, \leq_T)\) be two ordered rings and \(\varphi : R \rightarrow T \) a homomorphism. We denote by \(k \) the pseudoorder on \(R \) defined by \(k = \{(a, b) \mid \varphi(a) \leq_T \varphi(b) \} \). Then, we have \(\ker \varphi = k^* \).

\textbf{Corollary 4.6.} Let \((R, +, \leq_R)\) and \((T, \forall, \circ, \leq_T)\) be two ordered rings and \(\varphi : R \rightarrow T \) a homomorphism. Then, \(R/\ker \varphi \cong \text{Im} \varphi \).

Let \((R, +, \leq_R)\) be an ordered Krasner hyperring, \(\rho, \theta \) be pseudoorders on \(R \) such that \(\rho \subseteq \theta \). We define a relation \(\theta/\rho \) on \(R/\rho^* \) as follows:

\[
\theta/\rho := \{(\rho^*(a), \rho^*(b)) \in R/\rho^* \times R/\rho^* \mid \exists x \in \rho^*(a), \exists y \in \rho^*(b) \text{ such that } (x, y) \in \theta \}.
\]

Then, we can see that

\[
(\rho^*(a), \rho^*(b)) \in \theta/\rho \Leftrightarrow (a, b) \in \theta.
\]

\textbf{Theorem 4.7.} Let \((R, +, \leq_R)\) be an ordered Krasner hyperring, \(\rho, \theta \) be pseudoorders on \(R \) such that \(\rho \subseteq \theta \). Then,

1. \(\theta/\rho \) is a pseudoorder on \(R/\rho^* \).
2. \((R/\rho^*)/(\theta/\rho)^* \cong R/\theta^* \).

\textbf{Proof.} (1): If \((\rho^*(a), \rho^*(b)) \in \leq_{\rho^*}, \) then \((a, b) \in \rho \). So, \((a, b) \in \theta \) which implies that \((\rho^*(a), \rho^*(b)) \in \theta/\rho \). Thus, \(\leq_{\rho^*} \subseteq \theta/\rho \). Let \((\rho^*(a), \rho^*(b)) \in \theta/\rho \) and
(\rho^*(b), \rho^*(c)) \in \theta/\rho. Then (a, b) \in \theta and (b, c) \in \theta. Hence, (a, c) \in \theta and so (\rho^*(a), \rho^*(c)) \in \theta/\rho. Now, let (\rho^*(a), \rho^*(b)) \in \theta/\rho and \rho^*(c) \in R/\rho^*.

Then, (a, b) \in \theta. Since \theta is a pseudoorder on R, we obtain \rho^*(c) \in \theta/\rho. Hence, for all x \in a + c and x' = a \cdot c and for all y \in b + c and y' = b \cdot c, we have (x, y) \in \theta and (x', y') \in \theta. This implies that (\rho^*(x), \rho^*(y)) \in \theta/\rho and (\rho^*(x'), \rho^*(y')) \in \theta/\rho. Since \rho^* is a strongly regular relation on R, \rho^*(x) = \rho^*(a) \oplus \rho^*(c), \rho^*(y) = \rho^*(b) \oplus \rho^*(c), \rho^*(x') = \rho^*(a) \odot \rho^*(c) and \rho^*(y') = \rho^*(b) \odot \rho^*(c). So, we obtain (\rho^*(a) \oplus \rho^*(c) \odot \rho^*(b)) \in \theta/\rho and (\rho^*(a) \odot \rho^*(c) \odot \rho^*(b)) \in \theta/\rho. Similarly, we obtain (\rho^*(c) \odot \rho^*(a) \oplus \rho^*(b)) \in \theta/\rho and (\rho^*(c) \oplus \rho^*(a) \odot \rho^*(b)) \in \theta/\rho. Therefore, \theta/\rho is a pseudoorder on R/\rho^*.

(2): We define the map \psi : R/\rho^* \to R/\theta^* by \psi(\rho^*(a)) = \theta^*(a). If \rho^*(a) = \rho^*(b), then (a, b) \in \rho^*. Hence, by the definition of \rho^*, (a, b) \in \rho \subseteq \theta and (b, a) \in \rho \subseteq \theta. This implies that (a, b) \in \theta^* and so \theta^*(a) = \theta^*(b). Thus, \theta is well defined. For all \rho^*(x), \rho^*(y) \in R/\rho^*, we have

\rho^*(x) \oplus \rho^*(y) = \rho^*(z), for all z \in x + y,
\rho^*(x) \ominus \rho^*(y) = \rho^*(z), for all z \in x + y,
\rho^*(x) \odot \rho^*(y) = \rho^*(x \cdot y),
\rho^*(x) \otimes \rho^*(y) = \theta^*(x \cdot y).

Thus,

\psi(\rho^*(x) \oplus \rho^*(y)) = \psi(\rho^*(z)) = \rho^*(z), for all z \in x + y
= \rho^*(z), for all z \in x + y
= \rho^*(x) \oplus \rho^*(y)
= \psi(\rho^*(x)) \oplus \psi(\rho^*(y)),

and

\psi(\rho^*(x) \odot \rho^*(y)) = \psi(\rho^*(x \cdot y)) = \theta^*(x \cdot y)
= \rho^*(x) \odot \rho^*(y)
= \psi(\rho^*(x)) \otimes \psi(\rho^*(y)),

and if \rho^*(x) \preceq_\rho \rho^*(y), then (x, y) \in \rho. So, (x, y) \in \theta and this implies that \theta^*(x) \preceq_\theta \theta^*(y). Therefore, \psi is a homomorphism. It is easy to see that \psi is onto, since

\text{Im} \psi = \{\psi(\rho^*(x)) \mid x \in R\} = \{\theta^*(x) \mid x \in R\} = R/\theta^*.

So, by Corollary 4.6, we obtain

\frac{R/\rho^*}{\ker \psi} \cong \text{Im} \psi = R/\theta^*.

Suppose that

k := \{(\rho^*(x), \rho^*(y)) \mid \psi(\rho^*(x)) \preceq_\theta \psi(\rho^*(y)).

Then,

\[(\rho^*(x), \rho^*(y)) \in k \iff \psi(\rho^*(x)) \preceq_\theta \psi(\rho^*(y))\]
\[\iff \theta^*(x) \preceq_\theta \theta^*(y)\]
\[\iff (x, y) \in \theta\]
\[\iff (\rho^*(x), \rho^*(y)) \in \theta/\rho.\]

Hence, \(k = \theta/\rho\) and by Remark 4.5, we have \(k^* = (\theta/\rho)^* = \ker \psi.\)

Definition 4.8. Let \((R, +, \cdot, \leq_R)\) and \((T, \psi, \circ, \leq_T)\) be two ordered Krasner hyperrings, \(\rho_1, \rho_2\) be two pseudoorders on \(R \times T,\) respectively, and the map \(f : R \rightarrow T\) be a homomorphism. Then, \(f\) is called a \((\rho_1, \rho_2)\)-homomorphism if \((a, b) \in \rho_1 \Rightarrow (f(a), f(b)) \in \rho_2.\)

Lemma 4.9. Let \((R, +, \cdot, \leq_R)\) and \((T, \psi, \circ, \leq_T)\) be two ordered Krasner hyperrings, \(\rho_1, \rho_2\) be two pseudoorders on \(R \times T,\) respectively, and the map \(f : R \rightarrow T\) be a \((\rho_1, \rho_2)\)-homomorphism. Then, the map \(\overline{f} : R/\rho_1 \rightarrow T/\rho_2\) defined by

\[\overline{f}(\rho_1^*(x)) = \rho_2^*(f(x)),\]

for all \(x \in R\) is a homomorphism of rings.

Proof. Suppose that \(\rho_1^*(x) = \rho_1^*(y).\) Then we have \((x, y) \in \rho_1.\) Since \(f\) is a \((\rho_1, \rho_2)\)-homomorphism, it follows that \((f(x), f(y)) \in \rho_2.\) This implies that \(\rho_2^*(f(x)) = \rho_2^*(f(y))\) or \(\overline{f}(\rho_1^*(x)) = \overline{f}(\rho_1^*(y)).\) Therefore, \(\overline{f}\) is well defined. Now, we show that \(\overline{f}\) is a homomorphism. Suppose that \(\rho_1^*(x), \rho_1^*(y)\) be two arbitrary elements of \(R/\rho_1^*.\) Then,

\[\overline{f}(\rho_1^*(x) \oplus \rho_1^*(y)) = \overline{f}(\rho_1^*(z)) = \rho_2^*(f(z)),\]

for all \(z \in x + y.\) Since \(z \in x + y,\) it follows that \(f(z) \in f(x) \cup f(y).\) Since \(\rho_2^*\) is a strongly regular relation, we obtain \(\rho_2^*(f(z)) = \rho_2^*(f(x)) \ominus \rho_2^*(f(y)).\) Thus we have

\[\overline{f}(\rho_1^*(x) \ominus \rho_1^*(y)) = \rho_2^*(f(x)) \ominus \rho_2^*(f(y)) = \overline{f}(\rho_1^*(x)) \ominus \overline{f}(\rho_1^*(y)).\]

Now, suppose that \(\rho_1^*(x), \rho_1^*(y)\) be two arbitrary elements of \(R/\rho_1^*.\) Then,

\[\overline{f}(\rho_1^*(x) \odot \rho_1^*(y)) = \overline{f}(\rho_1^*(z)) = \rho_2^*(f(z)),\]

for \(z = x \odot y.\) Since \(z = x \odot y,\) it follows that \(f(z) = f(x) \odot f(y).\) Since \(\rho_2^*\) is a strongly regular relation, we obtain \(\rho_2^*(f(z)) = \rho_2^*(f(x)) \odot \rho_2^*(f(y)).\) Thus, we have

\[\overline{f}(\rho_1^*(x) \odot \rho_1^*(y)) = \rho_2^*(f(x)) \odot \rho_2^*(f(y)) = \overline{f}(\rho_1^*(x)) \odot \overline{f}(\rho_1^*(y)).\]

\[\square\]

Theorem 4.10. Let \((R, +, \cdot, \leq_R)\) and \((T, \psi, \circ, \leq_T)\) be two ordered Krasner hyperrings, \(\rho_1, \rho_2\) be two pseudoorders on \(R \times T,\) respectively, and the map \(f : R \rightarrow T\) be a \((\rho_1, \rho_2)\)-homomorphism. Then, the relation \(\rho_f\) defined by

\[\rho_f := \{(\rho_1^*(x), \rho_1^*(y)) \mid \rho_2^*(f(x)) \leq_T \rho_2^*(f(y))\}\]

is a pseudoorder on \(R/\rho_1^*.)
Proof. Suppose that \((\rho_1^*(x), \rho_1^*(y)) \in \leq_T\). By Lemma 4.9, \(\mathcal{F}\) is a homomorphism. Since \(\rho_1^*(x) \leq_R \rho_1^*(y)\), it follows that \(\mathcal{F}(\rho_1^*(x)) \leq_T \mathcal{F}(\rho_1^*(y))\). Thus we have \(\rho_2^*(f(x)) \leq_T \rho_2^*(f(y))\). This means that \((\rho_1^*(x), \rho_1^*(y)) \in \rho_f\).

Let \((\rho_1^*(x), \rho_1^*(y)) \in \rho_f\) and \((\rho_1^*(y), \rho_1^*(z)) \in \rho_f\). Then, we have \(\rho_2^*(f(x)) \leq_T \rho_2^*(f(y))\) and \(\rho_2^*(f(y)) \leq_T \rho_2^*(f(z))\). So, \(\rho_2^*(f(x)) \leq_T \rho_2^*(f(z))\). This implies that \((\rho_1^*(y), \rho_1^*(z)) \in \rho_f\). Therefore, we have \((\rho_1^*(x) \circ \rho_1^*(z), \rho_1^*(y) \circ \rho_1^*(z)) \in \rho_f\). Similarly, we obtain \((\rho_1^*(z) \circ \rho_1^*(x), \rho_1^*(z) \circ \rho_1^*(y)) \in \rho_f\). Now, let \((\rho_1^*(x), \rho_1^*(y)) \in \rho_f\) and \((\rho_1^*(y), \rho_1^*(z)) \in R/\rho_1^*\).

We show that \((\rho_1^*(x) \circ \rho_1^*(z), \rho_1^*(y) \circ \rho_1^*(z)) \in \rho_f\). Since \((\rho_1^*(x), \rho_1^*(y)) \in \rho_f\), it follows that \(\mathcal{F}(\rho_1^*(x)) \leq_T \mathcal{F}(\rho_1^*(y))\). Thus, by the definition of ordered Krasner hyperring, we get \(\mathcal{F}(\rho_1^*(y)) \leq_T \mathcal{F}(\rho_1^*(z)) \leq_T \mathcal{F}(\rho_1^*(z)) \leq_T \mathcal{F}(\rho_1^*(x))\). So, \(\mathcal{F}(\rho_1^*(y)) \leq_T \mathcal{F}(\rho_1^*(x) \circ \rho_1^*(z)) \leq_T \mathcal{F}(\rho_1^*(y) \circ \rho_1^*(z))\). Hence, for all \(u \in x + z\) and for all \(v \in y + z\), we have \(\mathcal{F}(\rho_1^*(u)) \leq_T \mathcal{F}(\rho_1^*(v))\). This implies that \((\rho_1^*(u), \rho_1^*(v)) \in \rho_f\).

Therefore, we have \((\rho_1^*(x) \circ \rho_1^*(z), \rho_1^*(y) \circ \rho_1^*(z)) \in \rho_f\). Similarly, we obtain \((\rho_1^*(z) \circ \rho_1^*(x), \rho_1^*(z) \circ \rho_1^*(y)) \in \rho_f\). Now, let \((\rho_1^*(x), \rho_1^*(y)) \in \rho_f\) and \((\rho_1^*(y), \rho_1^*(z)) \in R/\rho_1^*\).

We show that \((\rho_1^*(x) \circ \rho_1^*(z), \rho_1^*(y) \circ \rho_1^*(z)) \in \rho_f\). Since \((\rho_1^*(x), \rho_1^*(y)) \in \rho_f\), it follows that \(\mathcal{F}(\rho_1^*(x)) \leq_T \mathcal{F}(\rho_1^*(y))\). Thus, by the definition of ordered Krasner hyperring, we get \(\mathcal{F}(\rho_1^*(y)) \leq_T \mathcal{F}(\rho_1^*(z)) \leq_T \mathcal{F}(\rho_1^*(z)) \leq_T \mathcal{F}(\rho_1^*(x))\). So, \(\mathcal{F}(\rho_1^*(y)) \leq_T \mathcal{F}(\rho_1^*(x) \circ \rho_1^*(z)) \leq_T \mathcal{F}(\rho_1^*(y) \circ \rho_1^*(z))\). Hence, \(\mathcal{F}(\rho_1^*(x) \circ \rho_1^*(z)) \leq_T \mathcal{F}(\rho_1^*(y) \circ \rho_1^*(z))\). This implies that \((\rho_1^*(x) \circ \rho_1^*(z), \rho_1^*(y) \circ \rho_1^*(z)) \in \rho_f\). Similarly, we obtain \((\rho_1^*(z) \circ \rho_1^*(x), \rho_1^*(z) \circ \rho_1^*(y)) \in \rho_f\).

\(\square\)

Corollary 4.11. Let us follow the notations and definitions used in Lemma 4.9 and Theorem 4.10. We have \(\ker \mathcal{F} = \rho_f\).

Proof. It is straightforward. \(\square\)

Corollary 4.12. Let \((R, +, \cdot, \leq_R)\) and \((T, \cup, \circ, \leq_T)\) be two ordered Krasner hyperrings, \(\rho_1, \rho_2\) be two pseudoorders on \(R, T\), respectively, and the map \(f : R \to T\) be a \((\rho_1, \rho_2)\)-homomorphism. Then, the following diagram is commutative.

\[
\begin{array}{ccc}
R & \xrightarrow{f} & T \\
\downarrow \varphi_R & & \downarrow \varphi_T \\
R/\rho_1^* & \xrightarrow{\phi} & T/\rho_2^*
\end{array}
\]

Proof. It is straightforward. \(\square\)

Open Problem. Is there a regular relation \(\rho\) on an ordered Krasner hyperring \((R, +, \cdot, \leq_R)\) for which \(R/\rho\) is an ordered Krasner hyperring?

Acknowledgments

The authors wish to thank the anonymous reviewers for their specific and useful comments.
References