Iranian Journal of Mathematical Sciences and Informatics

Vol. 12, No. 2 (2017), pp 35-49
DOI: 10.7508/ijmsi.2017.2.003

Ordered Krasner Hyperrings

Saber Omidi, Bijan Davvaz*
Department of Mathematics, Yazd University, Yazd, Iran.
E-mail: omidi.saber@yahoo.com
E-mail: davvaz@yazd.ac.ir

Abstract

In this paper, we introduce the concept of Krasner hyperring $(R,+, \cdot)$ together with a suitable partial order relation \leq. Also, we consider some Krasner hyperrings and define a binary relation on them which become ordered Krasner hyperrings. By using the notion of pseudoorder on an ordered Krasner hyperring $(R,+, \cdot, \leq)$, we obtain an ordered ring. Moreover, we give some results on ordered Krasner hyperrings.

Keywords: Algebraic hyperstructure, Ordered ring, Ordered Krasner hyperring, Strongly regular relation, Pseudoorder.

2000 Mathematics subject classification: 16Y99.

1. Introduction

Hyperstructure theory was introduced by Marty [19] in 1934, at the 8th congress of Scandinavian Mathematicians. The notion of a hyperstructure and hypergroup has been studied in the following decades and nowadays by many mathematicians. A short review of the theory of hyperstructures appears in $[4,5,8,9,10,23]$. In [11], Heidari and Davvaz studied a semihypergroup (H, \circ) besides a binary relation \leq, where \leq is a partial order relation such that satisfies the monotone condition. Indeed, an ordered semihypergroup (H, \circ, \leq) is a semihypergroup (H, \circ) together with a partial order \leq such that satisfies the monotone condition as follows:

[^0]$$
x \leq y \Rightarrow z \circ x \leq z \circ y \text { and } x \circ z \leq y \circ z \text {, for all } x, y, z \in H
$$

Here, $z \circ x \leq z \circ y$ means that for any $a \in z \circ x$ there exists $b \in z \circ y$ such that $a \leq b$. The case $x \circ z \leq y \circ z$ is defined similarly. Indeed, the concept of ordered semihypergroups is a generalization of the concept of ordered semigroups. The concept of ordering hypergroups introduced by Chvalina [6] as a special class of hypergroups and studied by many authors, for example, see [7, 12, 13]. In [3], polygroups which are partially ordered are introduced and some properties and related results are given. In [14], Iampan studied some properties of ordered bi-ideals in ordered Γ-semigroups.

We can consider several definitions for a hyperring, by replacing at least one of the two operations by a hyperoperation. In general case, $(R,+, \cdot)$ is a hyperring if + and \cdot are two hyperoperations such that $(R,+)$ is a hypergroup, (R, \cdot) is a semihypergroup and the hyperoperation \cdot is distributive over the hyperoperation + , which means that for all x, y, z of R we have: $x \cdot(y+z)=$ $x \cdot y+x \cdot z$ and $(x+y) \cdot z=x \cdot z+y \cdot z$. We call $(R,+, \cdot)$ a hyperfield if $(R,+, \cdot)$ is a hyperring and (R, \cdot) is a hypergroup. There are different types of hyperrings. If only the addition + is a hyperoperation and the multiplication \cdot is a usual operation, then we say that R is an additive hyperring. A special case of this type is the Krasner hyperring. For more details about hyperrings we refer to [10]. In the theory of hyperrings, fundamental relations make a connection between hyperrings and ordinary rings [22]. An equivalence relation ρ is called strongly regular over a hyperring R, if the quotient R / ρ is a ring. In 2013, Asokkumar [1] defined derivations in Krasner hyperrings and obtained some results in this respect.

2. Preliminaries

In this section, we recall some definitions and notations.
Let H be a non-empty set. Then a mapping $\circ: H \times H \rightarrow \mathcal{P}^{*}(H)$ is called a hyperoperation on H, where $\mathcal{P}^{*}(H)$ is the family of all non-empty subsets of H. The couple (H, \circ) is called a hypergroupoid. In the above definition, if A and B are two non-empty subsets of H and $x \in H$, then we define:

$$
A \circ B=\bigcup_{\substack{a \in A \\ b \in B}} a \circ b, x \circ A=\{x\} \circ A \text { and } A \circ x=A \circ\{x\}
$$

An element $e \in H$ is called an identity of (H, \circ) if $x \in x \circ e \cap e \circ x$, for all $x \in H$ and it is called a scalar identity of (H, \circ) if $x \circ e=e \circ x=\{x\}$, for all $x \in H$. If e is a scalar identity of (H, \circ), then e is the unique identity of (H, \circ). The hypergroupoid (H, \circ) is said to be commutative if $x \circ y=y \circ x$, for all $x, y \in H$. A hypergroupoid (H, \circ) is called a semihypergroup if for every $x, y, z \in H$, we have $x \circ(y \circ z)=(x \circ y) \circ z$ and is called a quasihypergroup if for every $x \in H, x \circ H=H=H \circ x$. This condition is called the reproduction
axiom. The couple (H, \circ) is called a hypergroup if it is a semihypergroup and a quasihypergroup.

Definition 2.1. [20] A canonical hypergroup is a non-empty set H endowed with an additive hyperoperation $+: H \times H \rightarrow \mathcal{P}^{*}(H)$, satisfying the follwing properties:
(1) for any $x, y, z \in H, x+(y+z)=(x+y)+z$,
(2) for any $x, y \in H, x+y=y+x$,
(3) there exists $0 \in H$ such that $0+x=x+0=x$, for any $x \in H$,
(4) for every $x \in H$, there exists a unique element $x^{\prime} \in H$, such that $0 \in x+x^{\prime}$ (we shall write $-x$ for x^{\prime} and we call it the opposite of x),
(5) $z \in x+y$ implies that $y \in-x+z$ and $x \in z-y$, that is $(H,+)$ is reversible.

Remark 2.2. Every canonical hypergroup is a hypergroup.
Definition 2.3. [10, 18] A Krasner hyperring is an algebraic hypersructure $(R,+, \cdot)$ which satisfies the following axioms:
(1) $(R,+)$ is a canonical hypergroup,
(2) (R, \cdot) is a semigroup having zero as a bilaterally absorbing element, i.e., $x \cdot 0=0 \cdot x=0$,
(3) The multiplication is distributive with respect to the hyperoperation $+$.

A Krasner hyperring R is called commutative (with unit element) if (R, \cdot) is a commutative semigroup (with unit element). A Krasner hyperring R is called a Krasner hyperfield, if ($R \backslash\{0\}, \cdot)$ is a group. A Krasner hyperring R is called a hyperdomain, if R is a commutative hyperring with unit element and $a \cdot b=0$ implies that $a=0$ or $b=0$ for all $a, b \in R$. A subhyperring of a Krasner hyperring $(R,+, \cdot)$ is a non-empty subset A of R which forms a Krasner hyperring containing 0 under the hyperoperation + and the operation \cdot on R, that is, A is a canonical subhypergroup of $(R,+)$ and $A \cdot A \subseteq A$. Then a nonempty subset A of R is a subhyperring of $(R,+, \cdot)$ if and only if, for all $x, y \in A$, $x+y \subseteq A,-x \in A$ and $x \cdot y \in A$. A non-empty subset I of $(R,+, \cdot)$ is called a left (resp. right) hyperideal of $(R,+, \cdot)$ if $(I,+)$ is a canonical subhypergroup of $(R,+)$ and for every $a \in I$ and $r \in R, r \cdot a \in I$ (resp. $a \cdot r \in I$). A hyperideal I of $(R,+, \cdot)$ is one which is a left as well as a right hyperideal of R, that is, $x+y \subseteq I$ and $-x \in I$, for all $x, y \in I$ and $x \cdot y, y \cdot x \in I$, for all $x \in I$ and $y \in R$.

Definition 2.4. [2, 15] An ordered ring is a ring $(R,+, \cdot)$, together with a compatible partial order, i.e., a partial order \leq on the underlying set R that is compatible with the ring operations in the sense that it satisfies:
(1) For all $a, b, c \in R, a \leq b$ implies $a+c \leq b+c$.
(2) For all $a, b \in R, 0 \leq a$ and $0 \leq b$, we have $0 \leq a \cdot b$.

Remark 2.5. It is an easy consequence of (1) and (2) above that if $a, b, c \in R$ with $a \leq b$ and $0 \leq c$, then $a \cdot c \leq b \cdot c$ and $c \cdot a \leq c \cdot b$.

3. Ordered Krasner Hyperrings

In this section, we introduce the notion of ordered Krasner hyperring, giving several examples that illustrate the significance of this new hyperstructure and some related results are given.

Definition 3.1. An algebraic hypersructure $(R,+, \cdot, \leq)$ is called an ordered Krasner hyperring if $(R,+, \cdot)$ is a Krasner hyperring with a partial order relation \leq, such that for all a, b and c in R :
(1) If $a \leq b$, then $a+c \leq b+c$, meaning that for any $x \in a+c$, there exists $y \in b+c$ such that $x \leq y$.
(2) If $a \leq b$ and $0 \leq c$, then $a \cdot c \leq b \cdot c$ and $c \cdot a \leq c \cdot b$.

Note that the concept of ordered Krasner hyperrings is a generalization of the concept of ordered rings. Indeed, every ordered ring is an ordered Krasner hyperring.

Remark 3.2. An ordered Krasner hyperring R is positive if $0 \leq x$ for any $x \in R$.
If we remove the restriction $0 \leq c$ from (2), then Definition 3.1 is equivalent to positive ordered Krasner hyperring.

Definition 3.3. An ordered Krasner hyperfield is an ordered Krasner hyperring R, where R is also a Krasner hyperfield.

Definition 3.4. An ordered hyperdomain is an ordered Krasner hyperring R, where R is a commutative hyperring with unit element and $a \cdot b=0$ implies that $a=0$ or $b=0$ for all $a, b \in R$.

Example 3.5. Let $(R,+, \cdot)$ be a Krasner hyperring. Define a partial order on R by

$$
x \leq_{R} y \text { if and only if } x=y \text { for all } x, y \in R
$$

Then, $\left(R,+, \cdot, \leq_{R}\right)$ forms an ordered Krasner hyperring.
Example 3.6. Let $R=\{a, b, c\}$ be a set with the hyperoperation \oplus and the binary operation \odot defined as follow:

\oplus	a	b	c
a	a	b	c
b	b	b	$\{a, b, c\}$
c	c	$\{a, b, c\}$	c

\odot	a	b	c
a	a	a	a
b	a	b	c
c	a	b	c

Then, (R, \oplus, \odot) is a Krasner hyperring [10]. We have (R, \oplus, \odot, \leq) is an ordered Krasner hyperring where the order relation \leq is defined by:

$$
\leq:=\{(a, a),(b, b),(c, c),(a, b),(a, c)\} .
$$

The covering relation and the figure of R are given by:

$$
\prec=\{(a, b),(a, c)\} .
$$

Example 3.7. Define the hyperoperation \oplus on the unit interval $[0,1]$ by

$$
x \oplus y= \begin{cases}\{\max \{x, y\}\}, & x \neq y \\ {[0, x]} & x=y\end{cases}
$$

Then, $([0,1], \oplus, \cdot)$ is a Krasner hyperring where \cdot is the usual multiplication $[17]$. Consider $[0,1]$ as a poset with the natural ordering. Thus, $([0,1], \oplus, \cdot, \leq)$ is an ordered Krasner hyperring.

Example 3.8. Define the hyperoperation \boxplus on the set $\{0,1\}$ by

$$
0 \boxplus 0=\{0\}, 1 \boxplus 0=0 \boxplus 1=\{1\}, 1 \boxplus 1=\{0,1\} .
$$

Then, $(\{0,1\}, \boxplus, \cdot)$ is a Krasner hyperring where \cdot is the usual multiplication [21]. Consider $(\{0,1\}, \boxplus, \cdot)$ as a poset with the natural ordering. Thus, $(\{0,1\}, \boxplus, \cdot, \leq)$ is an ordered Krasner hyperring.

Example 3.9. Let $\left(\mathbb{Q}^{+},+, \cdot\right)$ be the canonical hypergroup defined on $\mathbb{Q}^{+}=$ $\{x \in \mathbb{Q} \mid x \geq 0\}, \forall x, x+x=\{y \mid y \leq x\}$, if $x \neq y, x+y=\max \{x, y\}$ where \max is intended with respect to the natural order. If one considers in \mathbb{Q}^{+} as product the ordinary multiplication \cdot, then $\left(\mathbb{Q}^{+},+, \cdot\right)$ has the structure of Krasner hyperring. We define \leq the natural ordering on \mathbb{Q}^{+}, then $\left(\mathbb{Q}^{+},+, \cdot, \leq\right)$ is an ordered Krasner hyperring.

Definition 3.10. Let $\left(R_{1},+_{1}, \cdot{ }_{1}, \leq_{1}\right)$ and $\left(R_{2},+_{2}, \cdot{ }_{2}, \leq_{2}\right)$ be two ordered Krasner hyperrings. A homomorphism from R_{1} into R_{2} is a function $\varphi: R_{1} \rightarrow R_{2}$ such that we have:
(1) $\varphi\left(a+{ }_{1} b\right) \subseteq \varphi(a)+{ }_{2} \varphi(b)$,
(2) $\varphi(a \cdot 1 b)=\varphi(a) \cdot{ }_{2} \varphi(b)$,
(3) If $a \leq_{1} b$, then $\varphi(a) \leq_{2} \varphi(b)$.

Also φ is called a good (strong) homomorphism if in the previous condition (1), the equality is valid. An isomorphism from $\left(R_{1},+_{1}, \cdot{ }_{1}, \leq_{1}\right)$ into $\left(R_{2},+_{2}, \cdot{ }_{2}, \leq_{2}\right)$ is a bijective good homomophism from $\left(R_{1},+_{1}, \cdot{ }^{\prime}, \leq_{1}\right)$ onto
$\left(R_{2},{ }_{2},{ }_{2}, \leq_{2}\right)$. The kernel of $\varphi, \operatorname{ker} \varphi$, is defined by $\operatorname{ker} \varphi=\left\{x \in R_{1} \mid \varphi(x)=\right.$ $\left.0_{2}\right\}$ where 0_{2} is the zero of $\left(R_{2},+{ }_{2}, \cdot{ }_{2}\right)$. In fact $\operatorname{ker} \varphi$ may be empty.

Example 3.11. Let $([0,1], \oplus, \cdot, \leq)$ be the ordered Krasner hyperring defined as in Example 3.7 and $(\{0,1\}, \boxplus, \cdot, \leq)$ be the ordered Krasner hyperring defined as in Example 3.8. Define $\varphi:[0,1] \longrightarrow\{0,1\}$ by $\varphi(0)=0$ and $\varphi(x)=1$, for all $x \in(0,1]$. Then we have

$$
\varphi(x \oplus y)= \begin{cases}\varphi(\{0\})=\{0\}=0 \boxplus 0=\varphi(x) \boxplus \varphi(y), & x=y=0 \\ \varphi(\{x\})=\{1\}=1 \boxplus 0=\varphi(x) \boxplus \varphi(y), & x>y=0 \\ \varphi(\{x\})=\{1\} \varsubsetneqq\{0,1\}=1 \boxplus 1=\varphi(x) \boxplus \varphi(y), & x>y>0 \\ \varphi([0, x])=\{0,1\}=1 \boxplus 1=\varphi(x) \boxplus \varphi(y), & x=y>0\end{cases}
$$

and

$$
\varphi(x \cdot y)=\varphi(x) \cdot \varphi(y)= \begin{cases}0, & x=0 \text { or } y=0 \\ 1, & x \neq 0 \text { and } y \neq 0\end{cases}
$$

and

$$
\text { if } x \leq_{[0,1]} y \text {, then } \varphi(x) \leq_{\{0,1\}} \varphi(y) \text {. }
$$

It follows that φ is a homomorphism from $([0,1], \oplus, \cdot)$ into $(\{0,1\}, \boxplus, \cdot)$ which is not a good (strong) homomorphism.

Example 3.12. Let $([0,1], \oplus, \cdot, \leq)$ be the ordered Krasner hyperring defined as in Example 3.7. Define $\varphi:[0,1] \longrightarrow[0,1]$ by $\varphi(x)=1$, for all $x \in[0,1]$. Since $1 \oplus 1=[0,1]$ and $1 \cdot 1=1$ and $x \leq_{[0,1]} y$ implies $\varphi(x) \leq_{[0,1]} \varphi(y)$, it follows that φ is a homomorphism from the ordered Krasner hyperring $([0,1], \oplus, \cdot, \leq)$ into itself. Notice that $\operatorname{ker} \varphi=\emptyset$. Thus, the kernel of an ordered Krasner hyperring homomorphism may be empty.

Let $\left(R_{1},+_{1}, \cdot{ }_{1}\right)$ and $\left(R_{2},+_{2}, \cdot{ }_{2}\right)$ be two Krasner hyperrings. Then $\left(R_{1} \times\right.$ $\left.R_{2},+, \cdot\right)$ is a Krasner hyperring, where the hyperoperation + and operation \cdot defined as follows:

$$
\begin{gathered}
\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)=\left\{(a, b) \mid a \in x_{1}+{ }_{1} y_{1}, b \in x_{2}+{ }_{2} y_{2}\right\}, \\
\left(x_{1}, x_{2}\right) \cdot\left(y_{1}, y_{2}\right)=\left(x_{1} \cdot y_{1}, x_{2} \cdot x_{2} y_{2}\right) .
\end{gathered}
$$

The lexicographical order defined on $R_{1} \times R_{2}$ as follows: $\left(x_{1}, x_{2}\right) \leq\left(y_{1}, y_{2}\right)$ if and only if $x_{1}<_{1} y_{1}$ or $x_{1}=y_{1}$ and $x_{2}<_{2} y_{2}$. In the following, we prove that ($R_{1} \times R_{2},+, \cdot, \leq$) is an ordered Krasner hyperring and is called the direct product of ordered Krasner hyperrings $\left(R_{1},+_{1},{ }_{1}, \leq_{1}\right)$ and $\left(R_{2},+_{2}, \cdot{ }_{2}, \leq_{2}\right)$.

Theorem 3.13. Let $\left(R_{1},+_{1}, \cdot{ }_{1}, \leq_{1}\right)$ and $\left(R_{2},+_{2}, \cdot{ }_{2}, \leq_{2}\right)$ be two ordered Krasner hyperrings. Then $\left(R_{1} \times R_{2},+, \cdot, \leq\right)$ is an ordered Krasner hyperring.

Proof. Suppose that $\left(x_{1}, x_{2}\right) \leq\left(y_{1}, y_{2}\right)$ for $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in R_{1} \times R_{2}$ and $\left(t_{1}, t_{2}\right) \in\left(a_{1}, a_{2}\right)+\left(x_{1}, x_{2}\right)$ for $\left(a_{1}, a_{2}\right) \in R_{1} \times R_{2}$. Then $t_{1} \in a_{1}+{ }_{1} x_{1}$ and $t_{2} \in a_{2}+{ }_{2} x_{2}$. Since $\left(x_{1}, x_{2}\right) \leq\left(y_{1}, y_{2}\right)$, So we have two cases:

Case 1. $x_{1}<_{1} y_{1}$. Then $t_{1} \in a_{1}+{ }_{1} x_{1} \leq_{1} a_{1}+{ }_{1} y_{1}$, so there exists $s_{1} \in a_{1}+{ }_{1} y_{1}$ such that $t_{1} \leq 1 s_{1}$. Now, if $s_{2} \in a_{2}+{ }_{2} y_{2}$, then $\left(t_{1}, t_{2}\right) \leq\left(s_{1}, s_{2}\right) \in\left(a_{1}, a_{2}\right)+$ $\left(y_{1}, y_{2}\right)$.
Case 2. $x_{1}=y_{1}$ and $x_{2}<_{2} y_{2}$. Then $t_{2} \in a_{2}+{ }_{2} x_{2} \leq_{2} a_{2}+{ }_{2} y_{2}$, so there exists $s_{2} \in a_{2}+{ }_{2} y_{2}$ such that $t_{2} \leq_{2} s_{2}$. Thus $\left(t_{1}, t_{2}\right) \leq\left(t_{1}, s_{2}\right) \in\left(a_{1}, a_{2}\right)+\left(y_{1}, y_{2}\right)$.

Now, suppose that $\left(x_{1}, x_{2}\right) \leq\left(y_{1}, y_{2}\right)$ for $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in R_{1} \times R_{2}$ and $\left(t_{1}, t_{2}\right)=\left(a_{1}, a_{2}\right) \cdot\left(x_{1}, x_{2}\right)$ for $\left(a_{1}, a_{2}\right) \in R_{1} \times R_{2}$. Then $t_{1}=a_{1} \cdot x_{1}$ and $t_{2}=a_{2} \cdot 2 x_{2}$. Since $\left(x_{1}, x_{2}\right) \leq\left(y_{1}, y_{2}\right)$, so we have two cases:
Case 1. $x_{1}<_{1} y_{1}$. Then $t_{1}=a_{1} \cdot 1 x_{1} \leq_{1} a_{1} \cdot 1 y_{1}=s_{1}$. Now, if $s_{2}=a_{2} \cdot{ }_{2} y_{2}$, then $\left(t_{1}, t_{2}\right) \leq\left(s_{1}, s_{2}\right)=\left(a_{1}, a_{2}\right) \cdot\left(y_{1}, y_{2}\right)$.
Case 2. $x_{1}=y_{1}$ and $x_{2}<_{2} y_{2}$. Then $a_{2} \cdot_{2} x_{2} \leq_{2} a_{2} \cdot_{2} y_{2}$. Thus $\left(a_{1}, a_{2}\right)$. $\left(x_{1}, x_{2}\right) \leq\left(a_{1}, a_{2}\right) \cdot\left(y_{1}, y_{2}\right)$ for $\left(a_{1}, a_{2}\right) \in R_{1} \times R_{2}$. Therefore, $\left(R_{1} \times R_{2},+, \cdot, \leq\right)$ is an ordered Krasner hyperring.

Definition 3.14. Let $(R,+, \cdot, \leq)$ be an ordered Krasner hyperring. A nonempty subset I of R is called a hyperideal of R if it satisfies the following conditions:
(1) $(I,+)$ is a canonical subhypergroup of $(R,+)$;
(2) $x \cdot y \in I$ and $y \cdot x \in I$ for all $x \in I$ and $y \in R$;
(3) When $x \in I$ and $y \in R$ such that $y \leq x$, imply that $y \in I$.

Theorem 3.15. Suppose that φ is a homomorphism from an ordered Krasner hyperring $(R,+, \cdot, \leq)$ into a positive ordered Krasner hyperring $(T, \oplus, \odot, \preceq)$. Then, ker φ is a hyperideal of R.

Proof. Let $r \in \operatorname{ker} \varphi$. Then we have $\varphi(r)=0$. Since φ is a homomorphism, it follows that $\{\varphi(0)\}=\varphi(0) \oplus 0=\varphi(0) \oplus \varphi(r) \supseteq \varphi(0+r)=\varphi(\{r\})=\{\varphi(r)\}$. This implies that $\varphi(0)=\varphi(r)=0$. Thus we have $0 \in \operatorname{ker} \varphi$. Since $0 \in \operatorname{ker} \varphi$, it follows that $\operatorname{ker} \varphi \neq \emptyset$.

Let $x, y \in \operatorname{ker} \varphi$. Then $\varphi(x)=0=\varphi(y)$. By Definition 3.10, we have $\varphi(x+y) \subseteq \varphi(x) \oplus \varphi(y)=0 \oplus 0=\{0\}$. Hence $x+y \subseteq \operatorname{ker} \varphi$. Now, let $x \in \operatorname{ker} \varphi$. Since $0 \in x-x$, it follows that $\varphi(0) \in \varphi(x-x) \subseteq \varphi(x) \oplus \varphi(-x)$. So, $0 \in$ $\varphi(x) \oplus \varphi(-x)$. Thus, $\varphi(-x)$ is the inverse of $\varphi(x)$ in the canonical hypergroup (T, \oplus). Therefore, $\varphi(-x)=-\varphi(x)$. So, $\varphi(-x)=-0=0$. Hence $-x \in \operatorname{ker} \varphi$. Now, let $z \in R$ and $x \in \operatorname{ker} \varphi$. Then $\varphi(z \cdot x)=\varphi(z) \odot \varphi(x)=\varphi(z) \odot 0=0$ and $\varphi(x \cdot z)=\varphi(x) \odot \varphi(z)=0 \odot \varphi(z)=0$. Thus we have $z \cdot x, x \cdot z \in k e r \varphi$. Now, let $x \in \operatorname{ker} \varphi, r \in R$ and $r \leq x$. Since $x \in \operatorname{ker} \varphi$, it follows that $\varphi(x)=0$. By Definition 3.10, we have $\varphi(r) \preceq \varphi(x)=0$. Since T is positive, we get $\varphi(r)=0$. Therefore, $r \in \operatorname{ker} \varphi$. This proves that $\operatorname{ker} \varphi$ is a hyperideal of R.

Definition 3.16. Suppose that $(R,+, \cdot, \leq)$ is an ordered Krasner hyperring and $A \subseteq R$ is a subhyperring. Then A is convex if for all $a \in A$ and all $r \in R$, the inequality $-a \leq r \leq a$ implies $r \in A$.

Example 3.17. Let $([0,1], \oplus, \cdot, \leq)$ be the ordered Krasner hyperring defined as in Example 3.7. We can see that 0 is the zero of $([0,1], \oplus, \cdot)$ and for every $x \in[0,1], x$ is the inverse of x in $([0,1], \oplus)$. The set $A=\{[0, a] \mid a \in[0,1]\} \cup$ $\{[0, a) \mid a \in(0,1]\}$ is of all canonical subhypergroups of the canonical hypergroup $([0,1], \oplus)$. We can see that A is the set of all subhyperrings of R. Now, let $a \in A, r \in R,-a \leq r \leq a$. Then, we have $a \leq r \leq a$, that implies $r=a \in A$. Therefore, A is convex.

Remark 3.18. A relation ρ^{*} is the transitive closure of a binary relation ρ if
(1) ρ^{*} is transitive,
(2) $\rho \subseteq \rho^{*}$,
(3) For any relation ρ^{\prime}, if $\rho \subseteq \rho^{\prime}$ and ρ^{\prime} is transitive, then $\rho^{*} \subseteq \rho^{\prime}$, that is, ρ^{*} is the smallest relation that satisfies (1) and (2).

Definition 3.19. [22] Let $(R,+, \cdot)$ be a hyperring. We define the relation γ as follows: $x \gamma y \Leftrightarrow \exists n \in \mathbb{N}, \exists k_{i} \in \mathbb{N}, \exists\left(x_{i 1}, \cdots, x_{i k_{i}}\right) \in R^{k_{i}}, 1 \leq i \leq n$, such that

$$
\{x, y\} \subseteq \sum_{i=1}^{n}\left(\prod_{j=1}^{k_{i}} x_{i j}\right)
$$

Theorem 3.20. [22] Let R be a hyperring and γ^{*} be the transitive closure of γ. Then, we have:
(1) γ^{*} is a strongly regular relation both on $(R,+)$ and (R, \cdot).
(2) The quotient R / γ^{*} is a ring.
(3) The relation γ^{*} is the smallest equivalence relation such that the quotient R / γ^{*} is a ring.

Question. Let $(R,+, \cdot, \leq)$ be an ordered Krasner hyperring. Is there a strongly regular relation ρ on R for which R / ρ is an ordered ring?

Our main aim in the next section is reply to the above question.

4. Main Results

The notion of pseudoorder on an ordered semigroup (S, \cdot, \leq) was introduced and studied by Kehayopulu and Tsingelis [16]. Now, we extend this concept for ordered Krasner hyperrings. We begin this section with the following definition.

Definition 4.1. Let $(R,+, \cdot, \leq)$ be an ordered Krasner hyperring. A relation ρ on R is called pseudoorder if the following conditions hold:
(1) $\leq \subseteq \rho$;
(2) $a \rho b$ and $b \rho c$ imply $a \rho c$;
(3) $a \rho b$ implies $a+c \overline{\bar{\rho}} b+c$ and $c+a \overline{\bar{\rho}} c+b$, for all $c \in R$;
(4) $a \rho b$ implies $a \cdot c \rho b \cdot c$ and $c \cdot a \rho c \cdot b$, for all $c \in R$.

Theorem 4.2. Let $(R,+, \cdot, \leq)$ be an ordered Krasner hyperring and ρ be a pseudoorder on R. Then there exists a strongly regular relation ρ^{*} on R such that R / ρ^{*} is an ordered ring.

Proof. Suppose that ρ^{*} is the relation on R defined as follows:

$$
\rho^{*}=\{(a, b) \in R \times R \mid a \rho b \text { and } b \rho a\} .
$$

First we show that ρ^{*} is a strongly regular relation on $(R,+)$ and (R, \cdot). Clearly, $(a, a) \in \leq \subseteq \rho$, so $a \rho^{*} a$. If $(a, b) \in \rho^{*}$, then $a \rho b$ and $b \rho a$. Hence, $(b, a) \in \rho^{*}$. If $(a, b) \in \rho^{*}$ and $(b, c) \in \rho^{*}$, then $a \rho b, b \rho a, b \rho c$ and $c \rho b$. Hence, $a \rho c$ and $c \rho a$, which imply that $(a, c) \in \rho^{*}$. Thus ρ^{*} is an equivalence relation. Now, let $a \rho^{*} b$ and $c \in R$. Then $a \rho b$ and $b \rho a$. Since ρ is pseudoorder on R, by conditions (3) and (4) of Definition 4.1, we conclude that

$$
\begin{gathered}
a+c \overline{\bar{\rho}} b+c \\
b+c \overline{\bar{\rho}} a+c \\
a \cdot c \rho b \cdot c, c \cdot a \rho c \cdot b \\
b \cdot c \rho a \cdot c, c \cdot b \rho c \cdot a
\end{gathered}
$$

Hence, for every $x \in a+c$ and $y \in b+c$, we have $x \rho y$ and $y \rho x$ which imply that $x \rho^{*} y$. So, $a+c \overline{\overline{\rho^{*}}} b+c$. Thus ρ^{*} is a strongly regular relation on $(R,+)$. Clearly, ρ^{*} is a strongly regular relation on (R, \cdot). Hence R / ρ^{*} with the following operations is a ring:

$$
\begin{gathered}
\rho^{*}(x) \oplus \rho^{*}(y)=\rho^{*}(z), \text { for all } z \in \rho^{*}(x)+\rho^{*}(y) \\
\rho^{*}(x) \odot \rho^{*}(y)=\rho^{*}(x \cdot y)
\end{gathered}
$$

Now, we define a relation \preceq on R / ρ^{*} as follows:

$$
\begin{gathered}
\preceq:=\left\{\left(\rho^{*}(x), \rho^{*}(y)\right) \in R / \rho^{*} \times R / \rho^{*} \mid \exists a \in \rho^{*}(x), \exists b \in \rho^{*}(y)\right. \text { such that } \\
(a, b) \in \rho\} .
\end{gathered}
$$

We show that

$$
\rho^{*}(x) \preceq \rho^{*}(y) \Leftrightarrow x \rho y .
$$

Let $\rho^{*}(x) \preceq \rho^{*}(y)$. We show that for every $a \in \rho^{*}(x)$ and $b \in \rho^{*}(y), a \rho b$. Since $\rho^{*}(x) \preceq \rho^{*}(y)$, there exist $x^{\prime} \in \rho^{*}(x)$ and $y^{\prime} \in \rho^{*}(y)$ such that $x^{\prime} \rho y^{\prime}$. Since $a \in \rho^{*}(x)$ and $x^{\prime} \in \rho^{*}(x)$, we obtain $a \rho^{*} x^{\prime}$, and so $a \rho x^{\prime}$ and $x^{\prime} \rho a$. Since $b \in \rho^{*}(y)$ and $y^{\prime} \in \rho^{*}(y)$, we obtain $b \rho^{*} y^{\prime}$, and so $b \rho y^{\prime}$ and $y^{\prime} \rho b$. Now, we have $a \rho x^{\prime}, x^{\prime} \rho y^{\prime}$ and $y^{\prime} \rho b$, which imply that $a \rho b$. Since $x \in \rho^{*}(x)$ and $y \in \rho^{*}(y)$, we conclude that $x \rho y$. Conversely, let $x \rho y$. Since $x \in \rho^{*}(x)$ and $y \in \rho^{*}(y)$, we have $\rho^{*}(x) \preceq \rho^{*}(y)$.

Finally, we prove that $\left(R / \rho^{*}, \oplus, \odot, \preceq\right)$ is an ordered ring. Suppose that $\rho^{*}(x) \in R / \rho^{*}$, where $x \in R$. Then, $(x, x) \in \leq \subseteq \rho$. Hence, $\rho^{*}(x) \preceq \rho^{*}(x)$. Let
$\rho^{*}(x) \preceq \rho^{*}(y)$ and $\rho^{*}(y) \preceq \rho^{*}(x)$. Then, $x \rho y$ and $y \rho x$. Thus, $x \rho^{*} y$, which means that $\rho^{*}(x)=\rho^{*}(y)$. Now, let $\rho^{*}(x) \preceq \rho^{*}(y)$ and $\rho^{*}(y) \preceq \rho^{*}(z)$. Then, $x \rho y$ and $y \rho z$. So, $x \rho z$. This implies that $\rho^{*}(x) \preceq \rho^{*}(z)$.

Now, let $\rho^{*}(x) \preceq \rho^{*}(y)$ and $\rho^{*}(z) \in R / \rho^{*}$. Then $x \rho y$ and $z \in R$. By conditions (3) and (4) of Definition 4.1, we have $x+z \overline{\bar{\rho}} y+z, x \cdot z \rho y \cdot z$ and $z \cdot x \rho z \cdot y$. So, for all $a \in x+z$ and $b \in y+z$, we have $a \rho b$. This implies that $\rho^{*}(a) \preceq \rho^{*}(b)$. Hence, $\rho^{*}(x) \oplus \rho^{*}(z) \preceq \rho^{*}(y) \oplus \rho^{*}(z)$. Similarly, we get, $\rho^{*}(z) \oplus \rho^{*}(x) \preceq \rho^{*}(z) \oplus \rho^{*}(y)$. By the similar argument, we can show that $\rho^{*}(x) \odot \rho^{*}(z) \preceq \rho^{*}(y) \odot \rho^{*}(z)$ and $\rho^{*}(z) \odot \rho^{*}(x) \preceq \rho^{*}(z) \odot \rho^{*}(y)$.

Theorem 4.3. Let $(R,+, \cdot, \leq)$ be an ordered Krasner hyperring and ρ be a pseudoorder on R. Let $\mathcal{X}=\{\theta \mid \theta$ is pseudoorder on R such that $\rho \subseteq \theta\}$. Let \mathcal{Y} be the set of all pseudoorder on R / ρ^{*}. Then, $\operatorname{card}(\mathcal{X})=\operatorname{card}(\mathcal{Y})$.

Proof. For $\theta \in \mathcal{X}$, we define a relation θ^{\prime} on R / ρ^{*} as follows:

$$
\begin{gathered}
\theta^{\prime}:=\left\{\left(\rho^{*}(x), \rho^{*}(y)\right) \in R / \rho^{*} \times R / \rho^{*} \mid \exists a \in \rho^{*}(x), \exists b \in \rho^{*}(y)\right. \text { such that } \\
(a, b) \in \theta\} .
\end{gathered}
$$

First, we show that

$$
\left(\rho^{*}(x), \rho^{*}(y)\right) \in \theta^{\prime} \Leftrightarrow(x, y) \in \theta
$$

Let $\left(\rho^{*}(x), \rho^{*}(y)\right) \in \theta^{\prime}$. We show that for every $a \in \rho^{*}(x)$ and $b \in \rho^{*}(y)$, $(a, b) \in \theta$. Since $\left(\rho^{*}(x), \rho^{*}(y)\right) \in \theta^{\prime}$, there exist $x^{\prime} \in \rho^{*}(x)$ and $y^{\prime} \in \rho^{*}(y)$ such that $\left(x^{\prime}, y^{\prime}\right) \in \theta$. Since $a \rho^{*} x$ and $x \rho^{*} x^{\prime}$, we have $a \rho^{*} x^{\prime}$. So, $a \rho x^{\prime}$. Since $\rho \subseteq \theta$, it follows that $a \theta x^{\prime}$. Similarly, we obtain $y^{\prime} \theta b$. Now, we have $a \theta x^{\prime}, x^{\prime} \theta y^{\prime}$ and $y^{\prime} \theta b$. Thus we have $a \theta b$. Since $x \in \rho^{*}(x)$ and $y \in \rho^{*}(y)$, we conclude that $(x, y) \in \theta$. Conversely, let $(x, y) \in \theta$. Since $x \in \rho^{*}(x)$ and $y \in \rho^{*}(y)$, we obtain $\left(\rho^{*}(x), \rho^{*}(y)\right) \in \theta^{\prime}$.

Now, let $\left(\rho^{*}(x), \rho^{*}(y)\right) \in \preceq$. Then by Theorem 4.2, $(x, y) \in \rho \subseteq \theta$. This implies that $\left(\rho^{*}(x), \rho^{*}(y)\right) \in \theta^{\prime}$. Hence, $\preceq \subseteq \theta^{\prime}$. Now, suppose that $\left(\rho^{*}(x), \rho^{*}(y)\right) \in$ θ^{\prime} and $\left(\rho^{*}(y), \rho^{*}(z)\right) \in \theta^{\prime}$. Then, $(x, y) \in \theta$ and $(y, z) \in \theta$ which imply that $(x, z) \in \theta$. Thus we have $\left(\rho^{*}(x), \rho^{*}(z)\right) \in \theta^{\prime}$. Also, if $\left(\rho^{*}(x), \rho^{*}(y)\right) \in \theta^{\prime}$ and $\rho^{*}(z) \in R / \rho^{*}$, then $(x, y) \in \theta$ and $z \in R$. Thus $x+z \overline{\bar{\theta}} y+z, x \cdot z \theta y \cdot z$ and $z \cdot x \theta z \cdot y$. So, for all $a \in x+z$ and $a^{\prime}=x \cdot z$ and for all $b \in y+z$ and $b^{\prime}=y \cdot z$, we have $a \theta b$ and $a^{\prime} \theta b^{\prime}$. This implies that $\theta^{\prime}\left(\rho^{*}(a)\right)=\theta^{\prime}\left(\rho^{*}(b)\right)$ and $\theta^{\prime}\left(\rho^{*}\left(a^{\prime}\right)\right)=\theta^{\prime}\left(\rho^{*}\left(b^{\prime}\right)\right)$ and so $\theta^{\prime}\left(\rho^{*}(x) \oplus \rho^{*}(z)\right)=\theta^{\prime}\left(\rho^{*}(y) \oplus \rho^{*}(z)\right)$ and $\theta^{\prime}\left(\rho^{*}(x) \odot \rho^{*}(z)\right)=\theta^{\prime}\left(\rho^{*}(y) \odot \rho^{*}(z)\right)$. Thus, $\left(\rho^{*}(x) \oplus \rho^{*}(z)\right) \theta^{\prime}\left(\rho^{*}(y) \oplus \rho^{*}(z)\right)$ and $\left(\rho^{*}(x) \odot \rho^{*}(z)\right) \theta^{\prime}\left(\rho^{*}(y) \odot \rho^{*}(z)\right)$. Similarly, we obtain $\left(\rho^{*}(z) \oplus \rho^{*}(x)\right) \theta^{\prime}\left(\rho^{*}(z) \oplus\right.$ $\left.\rho^{*}(y)\right)$ and $\left(\rho^{*}(z) \odot \rho^{*}(x)\right) \theta^{\prime}\left(\rho^{*}(z) \odot \rho^{*}(y)\right)$. Therefore, if $\theta \in \mathcal{X}$, then θ^{\prime} is a pseudoorder on R / ρ^{*}.

Now, we define the $\operatorname{map} \psi: \mathcal{X} \rightarrow \mathcal{Y}$ by $\psi(\theta)=\theta^{\prime}$. Let $\theta_{1}, \theta_{2} \in \mathcal{X}$ and $\theta_{1}=\theta_{2}$. Suppose that $\left(\rho^{*}(x), \rho^{*}(y)\right) \in \theta_{1}^{\prime}$ is an arbitrary element. Then, $(x, y) \in \theta_{1}$ and so $(x, y) \in \theta_{2}$. This implies that $\left(\rho^{*}(x), \rho^{*}(y)\right) \in \theta_{2}^{\prime}$. Thus we
have $\theta_{1}^{\prime} \subseteq \theta_{2}^{\prime}$. Similarly, we obtain $\theta_{2}^{\prime} \subseteq \theta_{1}^{\prime}$. Therefore, ψ is well defined.
Let $\theta_{1}, \theta_{2} \in \mathcal{X}$ and $\theta_{1}^{\prime}=\theta_{2}^{\prime}$. Suppose that $(x, y) \in \theta_{1}$ is an arbitrary element. Then, $\left(\rho^{*}(x), \rho^{*}(y)\right) \in \theta_{1}^{\prime}$ and so $\left(\rho^{*}(x), \rho^{*}(y)\right) \in \theta_{2}^{\prime}$. This implies that $(x, y) \in \theta_{2}$. Thus we have $\theta_{1} \subseteq \theta_{2}$. Similarly, we obtain $\theta_{2} \subseteq \theta_{1}$. Therefore, ψ is one to one.

Finally, we prove that ψ is onto. Consider $\Sigma \in \mathcal{Y}$. We define a relation θ on R as follows:

$$
\theta=\left\{(x, y) \mid\left(\rho^{*}(x), \rho^{*}(y)\right) \in \Sigma\right\}
$$

We show that θ is a pseudoorder on R and $\rho \subseteq \theta$. Suppose that $(x, y) \in$ ρ. By Theorem 4.2, $\left(\rho^{*}(x), \rho^{*}(y)\right) \in \preceq \subseteq \Sigma$, and so $(x, y) \in \theta$. If $(x, y) \in \leq$, then $(x, y) \in \rho \subseteq \theta$. Hence, $\leq \subseteq \theta$. Let $(x, y) \in \theta$ and $(y, z) \in \theta$. Then, $\left(\rho^{*}(x), \rho^{*}(y)\right) \in \Sigma$ and $\left(\rho^{*}(y), \rho^{*}(z)\right) \in \Sigma$. So, $\left(\rho^{*}(x), \rho^{*}(z)\right) \in \Sigma$. This implies that $(x, z) \in \theta$.

Now, let $(x, y) \in \theta$ and $z \in R$. Then, $\left(\rho^{*}(x), \rho^{*}(y)\right) \in \Sigma$ and $\rho^{*}(z) \in R / \rho^{*}$. Thus, $\left(\rho^{*}(x) \oplus \rho^{*}(z), \rho^{*}(y) \oplus \rho^{*}(z)\right) \in \Sigma$ and $\left(\rho^{*}(x) \odot \rho^{*}(z), \rho^{*}(y) \odot \rho^{*}(z)\right) \in \Sigma$. Therefore, for all $a \in x+z$ and $a^{\prime}=x \cdot z$ and for all $b \in y+z$ and $b^{\prime}=y \cdot z$, we have $\left(\rho^{*}(a), \rho^{*}(b)\right) \in \Sigma$ and $\left(\rho^{*}\left(a^{\prime}\right), \rho^{*}\left(b^{\prime}\right)\right) \in \Sigma$. This means that $(a, b) \in \theta$ and $\left(a^{\prime}, b^{\prime}\right) \in \theta$. Therefore, $x+z \bar{\theta} y+z$ and $x \cdot z \theta y \cdot z$. Similarly, we obtain $z \cdot x \theta z \cdot y$. Now, obviously we have $\theta^{\prime}=\Sigma$.

Remark 4.4. In Theorem 4.3, it is easy to see that $\theta_{1} \subseteq \theta_{2}$ if and only if $\theta_{1}^{\prime} \subseteq \theta_{2}^{\prime}$.
Remark 4.5. Let $\left(R,+, \cdot, \leq_{R}\right)$ and $\left(T, \uplus, \diamond, \leq_{T}\right)$ be two ordered rings and φ : $R \rightarrow T$ a homomorphism. We denote by k the pseudoorder on R defined by $k=\left\{(a, b) \mid \varphi(a) \leq_{T} \varphi(b)\right\}$. Then, we have $\operatorname{ker} \varphi=k^{*}$.

Corollary 4.6. Let $\left(R,+, \cdot, \leq_{R}\right)$ and $\left(T, \uplus, \diamond, \leq_{T}\right)$ be two ordered rings and $\varphi: R \rightarrow T$ a homomorphism. Then, $R / \operatorname{ker} \varphi \cong \operatorname{Im} \varphi$.

Let $\left(R,+, \cdot, \leq_{R}\right)$ be an ordered Krasner hyperring, ρ, θ be pseudoorders on R such that $\rho \subseteq \theta$. We define a relation θ / ρ on R / ρ^{*} as follows:

$$
\begin{gathered}
\theta / \rho:=\left\{\left(\rho^{*}(a), \rho^{*}(b)\right) \in R / \rho^{*} \times R / \rho^{*} \mid \exists x \in \rho^{*}(a), \exists y \in \rho^{*}(b)\right. \text { such that } \\
(x, y) \in \theta\} .
\end{gathered}
$$

Then, we can see that

$$
\left(\rho^{*}(a), \rho^{*}(b)\right) \in \theta / \rho \Leftrightarrow(a, b) \in \theta
$$

Theorem 4.7. Let $\left(R,+, \cdot, \leq_{R}\right)$ be an ordered Krasner hyperring, ρ, θ be pseudoorders on R such that $\rho \subseteq \theta$. Then,
(1) θ / ρ is a pseudoorder on R / ρ^{*}.
(2) $\left(R / \rho^{*}\right) /(\theta / \rho)^{*} \cong R / \theta^{*}$.

Proof. (1): If $\left(\rho^{*}(a), \rho^{*}(b)\right) \in \preceq_{\rho}$, then $(a, b) \in \rho$. So, $(a, b) \in \theta$ which implies that $\left(\rho^{*}(a), \rho^{*}(b)\right) \in \theta / \rho$. Thus, $\preceq{ }_{\rho} \subseteq \theta / \rho$. Let $\left(\rho^{*}(a), \rho^{*}(b)\right) \in \theta / \rho$ and
$\left(\rho^{*}(b), \rho^{*}(c)\right) \in \theta / \rho$. Then $(a, b) \in \theta$ and $(b, c) \in \theta$. Hence, $(a, c) \in \theta$ and so $\left(\rho^{*}(a), \rho^{*}(c)\right) \in \theta / \rho$. Now, let $\left(\rho^{*}(a), \rho^{*}(b)\right) \in \theta / \rho$ and $\rho^{*}(c) \in R / \rho^{*}$. Then, $(a, b) \in \theta$. Since θ is a pseudoorder on R, we obtain $a+c \overline{\bar{\theta}} b+c$, $a \cdot c \theta b \cdot c$ and $c \cdot a \theta c \cdot b$. Hence, for all $x \in a+c$ and $x^{\prime}=a \cdot c$ and for all $y \in b+c$ and $y^{\prime}=b \cdot c$, we have $(x, y) \in \theta$ and $\left(x^{\prime}, y^{\prime}\right) \in \theta$. This implies that $\left(\rho^{*}(x), \rho^{*}(y)\right) \in \theta / \rho$ and $\left(\rho^{*}\left(x^{\prime}\right), \rho^{*}\left(y^{\prime}\right)\right) \in \theta / \rho$. Since ρ^{*} is a strongly regular relation on $R, \rho^{*}(x)=\rho^{*}(a) \oplus \rho^{*}(c), \rho^{*}(y)=\rho^{*}(b) \oplus \rho^{*}(c), \rho^{*}\left(x^{\prime}\right)=\rho^{*}(a) \odot \rho^{*}(c)$ and $\rho^{*}\left(y^{\prime}\right)=\rho^{*}(b) \odot \rho^{*}(c)$. So, we obtain $\left(\rho^{*}(a) \oplus \rho^{*}(c), \rho^{*}(b) \oplus \rho^{*}(c)\right) \in \theta / \rho$ and $\left(\rho^{*}(a) \odot \rho^{*}(c), \rho^{*}(b) \odot \rho^{*}(c)\right) \in \theta / \rho$. Similarly, we obtain $\left(\rho^{*}(c) \oplus \rho^{*}(a), \rho^{*}(c) \oplus\right.$ $\left.\rho^{*}(b)\right) \in \theta / \rho$ and $\left(\rho^{*}(c) \odot \rho^{*}(a), \rho^{*}(c) \odot \rho^{*}(b)\right) \in \theta / \rho$. Therefore, θ / ρ is a pseudoorder on R / ρ^{*}.
(2): We define the map $\psi: R / \rho^{*} \rightarrow R / \theta^{*}$ by $\psi\left(\rho^{*}(a)\right)=\theta^{*}(a)$. If $\rho^{*}(a)=\rho^{*}(b)$, then $(a, b) \in \rho^{*}$. Hence, by the definition of $\rho^{*},(a, b) \in \rho \subseteq \theta$ and $(b, a) \in \rho \subseteq \theta$. This implies that $(a, b) \in \theta^{*}$ and so $\theta^{*}(a)=\theta^{*}(b)$. Thus, θ is well defined. For all $\rho^{*}(x), \rho^{*}(y) \in R / \rho^{*}$, we have

$$
\begin{aligned}
& \rho^{*}(x) \oplus \rho^{*}(y)=\rho^{*}(z), \text { for all } z \in x+y, \\
& \theta^{*}(x) \uplus \theta^{*}(y)=\theta^{*}(z), \text { for all } z \in x+y, \\
& \rho^{*}(x) \odot \rho^{*}(y)=\rho^{*}(x \cdot y) \\
& \theta^{*}(x) \otimes \theta^{*}(y)=\theta^{*}(x \cdot y)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\psi\left(\rho^{*}(x) \oplus \rho^{*}(y)\right) & =\psi\left(\rho^{*}(z)\right), \text { for all } z \in x+y \\
& =\theta^{*}(z), \text { for all } z \in x+y \\
& =\theta^{*}(x) \boxplus \theta^{*}(y) \\
& =\psi\left(\rho^{*}(x)\right) \boxplus \psi\left(\rho^{*}(y)\right),
\end{aligned}
$$

and

$$
\begin{aligned}
\psi\left(\rho^{*}(x) \odot \rho^{*}(y)\right) & =\psi\left(\rho^{*}(x \cdot y)\right) \\
& =\theta^{*}(x \cdot y) \\
& =\theta^{*}(x) \otimes \theta^{*}(y) \\
& =\psi\left(\rho^{*}(x)\right) \otimes \psi\left(\rho^{*}(y)\right)
\end{aligned}
$$

and if $\rho^{*}(x) \preceq_{\rho} \rho^{*}(y)$, then $(x, y) \in \rho$. So, $(x, y) \in \theta$ and this implies that $\theta^{*}(x) \preceq_{\theta} \theta^{*}(y)$. Therefore, ψ is a homomorphism. It is easy to see that ψ is onto, since

$$
\operatorname{Im} \psi=\left\{\psi\left(\rho^{*}(x)\right) \mid x \in R\right\}=\left\{\theta^{*}(x) \mid x \in R\right\}=R / \theta^{*}
$$

So, by Corollary 4.6, we obtain

$$
\left(R / \rho^{*}\right) / \operatorname{ker} \psi \cong \operatorname{Im} \psi=R / \theta^{*}
$$

Suppose that

$$
k:=\left\{\left(\rho^{*}(x), \rho^{*}(y)\right) \mid \psi\left(\rho^{*}(x)\right) \preceq_{\theta} \psi\left(\rho^{*}(y)\right) .\right.
$$

Then,

$$
\begin{aligned}
\left(\rho^{*}(x), \rho^{*}(y)\right) \in k & \Leftrightarrow \psi\left(\rho^{*}(x)\right) \preceq_{\theta} \psi\left(\rho^{*}(y)\right) \\
& \Leftrightarrow \theta^{*}(x) \preceq_{\theta} \theta^{*}(y) \\
& \Leftrightarrow(x, y) \in \theta \\
& \Leftrightarrow\left(\rho^{*}(x), \rho^{*}(y)\right) \in \theta / \rho
\end{aligned}
$$

Hence, $k=\theta / \rho$ and by Remark 4.5, we have $k^{*}=(\theta / \rho)^{*}=k e r \psi$.
Definition 4.8. Let $\left(R,+, \cdot, \leq_{R}\right)$ and $\left(T, \uplus, \diamond, \leq_{T}\right)$ be two ordered Krasner hyperrings, ρ_{1}, ρ_{2} be two pseudoorders on R, T, respectively, and the map $f: R \rightarrow T$ be a homomorphism. Then, f is called a $\left(\rho_{1}, \rho_{2}\right)$-homomorphism if

$$
(a, b) \in \rho_{1} \Rightarrow(f(a), f(b)) \in \rho_{2}
$$

Lemma 4.9. Let $\left(R,+, \cdot, \leq_{R}\right)$ and $\left(T, \uplus, \diamond, \leq_{T}\right)$ be two ordered Krasner hyperrings, ρ_{1}, ρ_{2} be two pseudoorders on R, T, respectively, and the map $f: R \rightarrow T$ be a $\left(\rho_{1}, \rho_{2}\right)$-homomorphism. Then, the map $\bar{f}: R / \rho_{1}^{*} \rightarrow T / \rho_{2}^{*}$ defined by

$$
\bar{f}\left(\rho_{1}^{*}(x)\right)=\rho_{2}^{*}(f(x)), \text { for all } x \in R
$$

is a homomorphism of rings.
Proof. Suppose that $\rho_{1}^{*}(x)=\rho_{1}^{*}(y)$. Then we have $(x, y) \in \rho_{1}$. Since f is a (ρ_{1}, ρ_{2})-homomorphism, it follows that $(f(x), f(y)) \in \rho_{2}$. This implies that $\rho_{2}^{*}(f(x))=\rho_{2}^{*}(f(y))$ or $\bar{f}\left(\rho_{1}^{*}(x)\right)=\bar{f}\left(\rho_{1}^{*}(y)\right)$. Therefore, \bar{f} is well defined. Now, we show that \bar{f} is a homomorphism. Suppose that $\rho_{1}^{*}(x), \rho_{1}^{*}(y)$ be two arbitrary elements of R / ρ_{1}^{*}. Then,

$$
\bar{f}\left(\rho_{1}^{*}(x) \oplus \rho_{1}^{*}(y)\right)=\bar{f}\left(\rho_{1}^{*}(z)\right)=\rho_{2}^{*}(f(z)), \text { for all } z \in x+y
$$

Since $z \in x+y$, it follows that $f(z) \in f(x) \uplus f(y)$. Since ρ_{2}^{*} is a strongly regular relation, we obtain $\rho_{2}^{*}(f(z))=\rho_{2}^{*}(f(x)) \boxplus \rho_{2}^{*}(f(y))$. Thus we have

$$
\bar{f}\left(\rho_{1}^{*}(x) \oplus \rho_{1}^{*}(y)\right)=\rho_{2}^{*}(f(x)) \boxplus \rho_{2}^{*}(f(y))=\bar{f}\left(\rho_{1}^{*}(x)\right) \boxplus \bar{f}\left(\rho_{1}^{*}(y)\right)
$$

Now, suppose that $\rho_{1}^{*}(x), \rho_{1}^{*}(y)$ be two arbitrary elements of R / ρ_{1}^{*}. Then,

$$
\bar{f}\left(\rho_{1}^{*}(x) \odot \rho_{1}^{*}(y)\right)=\bar{f}\left(\rho_{1}^{*}(z)\right)=\rho_{2}^{*}(f(z)), \text { for } z=x \cdot y
$$

Since $z=x \cdot y$, it follows that $f(z)=f(x) \diamond f(y)$. Since ρ_{2}^{*} is a strongly regular relation, we obtain $\rho_{2}^{*}(f(z))=\rho_{2}^{*}(f(x)) \otimes \rho_{2}^{*}(f(y))$. Thus, we have

$$
\bar{f}\left(\rho_{1}^{*}(x) \odot \rho_{1}^{*}(y)\right)=\rho_{2}^{*}(f(x)) \otimes \rho_{2}^{*}(f(y))=\bar{f}\left(\rho_{1}^{*}(x)\right) \otimes \bar{f}\left(\rho_{1}^{*}(y)\right)
$$

Theorem 4.10. Let $\left(R,+, \cdot, \leq_{R}\right)$ and $\left(T, \uplus, \diamond, \leq_{T}\right)$ be two ordered Krasner hyperrings, ρ_{1}, ρ_{2} be two pseudoorders on R, T, respectively, and the map f : $R \rightarrow T$ be a $\left(\rho_{1}, \rho_{2}\right)$-homomorphism. Then, the relation ρ_{f} defined by

$$
\rho_{f}:=\left\{\left(\rho_{1}^{*}(x), \rho_{1}^{*}(y)\right) \mid \rho_{2}^{*}(f(x)) \preceq_{T} \rho_{2}^{*}(f(y))\right\}
$$

is a pseudoorder on R / ρ_{1}^{*}.

Proof. Suppose that $\left(\rho_{1}^{*}(x), \rho_{1}^{*}(y)\right) \in \preceq_{R}$. By Lemma 4.9, \bar{f} is a homomorphism. Since $\rho_{1}^{*}(x) \preceq_{R} \rho_{1}^{*}(y)$, it follows that $\bar{f}\left(\rho_{1}^{*}(x)\right) \preceq_{T} \bar{f}\left(\rho_{1}^{*}(y)\right)$. Thus we have $\rho_{2}^{*}(f(x)) \preceq_{T} \rho_{2}^{*}(f(y))$. This means that $\left(\rho_{1}^{*}(x), \rho_{1}^{*}(y)\right) \in \rho_{f}$.

Let $\left(\rho_{1}^{*}(x), \rho_{1}^{*}(y)\right) \in \rho_{f}$ and $\left(\rho_{1}^{*}(y), \rho_{1}^{*}(z)\right) \in \rho_{f}$. Then, we have $\rho_{2}^{*}(f(x)) \preceq_{T}$ $\rho_{2}^{*}(f(y))$ and $\rho_{2}^{*}(f(y)) \preceq_{T} \rho_{2}^{*}(f(z))$. So, $\rho_{2}^{*}(f(x)) \preceq_{T} \rho_{2}^{*}(f(z))$. This implies that $\left(\rho_{1}^{*}(x), \rho_{1}^{*}(z)\right) \in \rho_{f}$. Now, let $\left(\rho_{1}^{*}(x), \rho_{1}^{*}(y)\right) \in \rho_{f}$ and $\rho_{1}^{*}(z) \in R / \rho_{1}^{*}$. We show that $\left(\rho_{1}^{*}(x) \oplus \rho_{1}^{*}(z), \rho_{1}^{*}(y) \oplus \rho_{1}^{*}(z)\right) \in \rho_{f}$. Since $\left(\rho_{1}^{*}(x), \rho_{1}^{*}(y)\right) \in \rho_{f}$, it follows that $\bar{f}\left(\rho_{1}^{*}(x)\right) \preceq_{T} \bar{f}\left(\rho_{1}^{*}(y)\right)$. Thus, by the definition of ordered Krasner hyperring, we get $\bar{f}\left(\rho_{1}^{*}(x)\right) \boxplus \bar{f}\left(\rho_{1}^{*}(z)\right) \preceq_{T} \bar{f}\left(\rho_{1}^{*}(y)\right) \boxplus \bar{f}\left(\rho_{1}^{*}(z)\right)$. So, $\bar{f}\left(\rho_{1}^{*}(x) \oplus \rho_{1}^{*}(z)\right) \preceq_{T} \bar{f}\left(\rho_{1}^{*}(y) \oplus \rho_{1}^{*}(z)\right)$. Hence, for all $u \in x+z$ and for all $v \in y+z$, we have $\bar{f}\left(\rho_{1}^{*}(u)\right) \preceq_{T} \bar{f}\left(\rho_{1}^{*}(v)\right)$. This implies that $\left(\rho_{1}^{*}(u), \rho_{1}^{*}(v)\right) \in \rho_{f}$. Therefore, we have $\left(\rho_{1}^{*}(x) \oplus \rho_{1}^{*}(z), \rho_{1}^{*}(y) \oplus \rho_{1}^{*}(z)\right) \in \rho_{f}$. Similarly, we obtain $\left(\rho_{1}^{*}(z) \oplus \rho_{1}^{*}(x), \rho_{1}^{*}(z) \oplus \rho_{1}^{*}(y)\right) \in \rho_{f}$. Now, we show that $\left(\rho_{1}^{*}(x) \odot \rho_{1}^{*}(z), \rho_{1}^{*}(y) \odot\right.$ $\left.\rho_{1}^{*}(z)\right) \in \rho_{f}$. Since $\left(\rho_{1}^{*}(x), \rho_{1}^{*}(y)\right) \in \rho_{f}$, we have $\bar{f}\left(\rho_{1}^{*}(x)\right) \preceq_{T} \bar{f}\left(\rho_{1}^{*}(y)\right)$. Thus, by the definition of ordered Krasner hyperring, we get $\bar{f}\left(\rho_{1}^{*}(x)\right) \otimes \bar{f}\left(\rho_{1}^{*}(z)\right) \preceq_{T}$ $\bar{f}\left(\rho_{1}^{*}(y)\right) \otimes \bar{f}\left(\rho_{1}^{*}(z)\right)$. So, $\bar{f}\left(\rho_{1}^{*}(x) \odot \rho_{1}^{*}(z)\right) \preceq_{T} \bar{f}\left(\rho_{1}^{*}(y) \odot \rho_{1}^{*}(z)\right)$. Hence, $\bar{f}\left(\rho_{1}^{*}(x\right.$. $z)) \preceq_{T} \bar{f}\left(\rho_{1}^{*}(y \cdot z)\right)$. This implies that $\left(\rho_{1}^{*}(x \cdot z), \rho_{1}^{*}(y \cdot z)\right) \in \rho_{f}$. Therefore, we have $\left(\rho_{1}^{*}(x) \odot \rho_{1}^{*}(z), \rho_{1}^{*}(y) \odot \rho_{1}^{*}(z)\right) \in \rho_{f}$. Similarly, we obtain $\left(\rho_{1}^{*}(z) \odot\right.$ $\left.\rho_{1}^{*}(x), \rho_{1}^{*}(z) \odot \rho_{1}^{*}(y)\right) \in \rho_{f}$.

Corollary 4.11. Let us follow the notations and definitions used in Lemma 4.9 and Theorem 4.10. We have $k e r \bar{f}=\rho_{f}^{*}$.

Proof. It is straightforward.
Corollary 4.12. Let $\left(R,+, \cdot, \leq_{R}\right)$ and $\left(T, \uplus, \diamond, \leq_{T}\right)$ be two ordered Krasner hyperrings, ρ_{1}, ρ_{2} be two pseudoorders on R, T, respectively, and the map $f: R \rightarrow T$ be a $\left(\rho_{1}, \rho_{2}\right)$-homomorphism. Then, the following diagram is commutative.

Proof. It is straightforward.
Open Problem. Is there a regular relation ρ on an ordered Krasner hyperring $\left(R,+, \cdot, \leq_{R}\right)$ for which R / ρ is an ordered Krasner hyperring?

Acknowledgments

The authors wish to thank the anonymous reviewers for their specific and useful comments.

References

1. A. Asokkumar, Derivations in Hyperrings and Prime Hyperrings, Iranian Journal of Mathematical Sciences and Informatics, 8(1), (2013), 1-13.
2. F. W. Anderson, Lattice-Ordered Rings of Quotients, Canad. J. Math., 17, (1965), 434448.
3. M. Bakhshi, R. A. Borzooei, Ordered Polygroups, Ratio Math., 24, (2013), 31-40.
4. P. Corsini, Prolegomena of Hypergroup Theory, Second edition, Aviani editor, Italy, 1993.
5. P. Corsini, V. Leoreanu, Applications of Hyperstructure Theory, Advances in Mathematics, 5, Kluwer Academic Publishers, Dordrecht, 2003.
6. J. Chvalina, Commutative Hypergroups in the Sence of Marty and Ordered Sets, Proc. Internat. Conf. Olomouck (Czech Rep.), (1994), 19-30.
7. J. Chvalina, J. Moucka, Hypergroups Determined by Orderings with Regular Endomorphism Monoids, Ital. J. Pure Appl. Math., 16, (2004), 227-242.
8. B. Davvaz, Some Results on Congruences in Semihypergroups, Bull. Malays. Math. Sci. Soc., 23(2), (2000), 53-58.
9. B. Davvaz, Polygroup Theory and Related Systems, World Sci. Publ., Co. Pte. Ltd., Hackensack, NJ, 2013.
10. B. Davvaz, V. Leoreanu-Fotea, Hyperring Theory and Applications, International Academic Press, Palm Harbor, USA, 2007.
11. D. Heidari, B. Davvaz, On Ordered Hyperstructures, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 73(2), (2011), 85-96.
12. S. Hoskova, Representation of Quasi-Order Hypergroups, Glob. J. Pure Appl. Math., 1, (2005), 173-176.
13. S. Hoskova, Upper Order Hypergroups as a Reflective Subcategory of Subquasiorder Hypergroups, Ital. J. Pure Appl. Math., 20, (2006), 215-222.
14. A. Iampan, Characterizing Ordered Bi-Ideals in Ordered Γ-Semigroups, Iranian Journal of Mathematical Sciences and Informatics, 4(1), (2009), 17-25.
15. D. G. Johnson, A Structure Theory for a Class of Lattice-Ordered Rings, Acta Math., 104, (1960), 163-215.
16. N. Kehayopulu, M. Tsingelis, Pseudoorder in Ordered Semigroups, Semigroup Forum, 50, (1995), 389-392.
17. Y. Kemprasit, Multiplicative Interval Semigroups on \mathbb{R} Admitting Hyperring Structure, Ital. J. Pure Appl. Math., 11, (2002), 205-212.
18. M. Krasner, A Class of Hyperrings and Hyperfields, Internat. J. Math. and Math. Sci., 6(2), (1983), 307-312.
19. F. Marty, Sur Une Generalization de la Notion de Groupe, $8^{i e m}$ congress Math. Scandinaves, Stockholm, (1934), 45-49.
20. J. Mittas, Hypergroups Canoniques, Math. Balkanica, 2, (1972), 165-179.
21. W. Phanthawimol, Y. Punkla, K. Kwakpatoon and Y. Kemprasit, On Homomorphisms of Krasner Hyperrings, Analele Stiintifice ale Universitatii, AL.I. CUZA, Mathematica, Tomul LVII, (2011), 239-246.
22. T. Vougiouklis, The Fundamental Relation in Hyperrings, The General Hyperfields, in: Proc. Fourth Int. Congress on Algebraic Hyperstructures and Applications (AHA 1990), World Scientific, 1991, 203-211.
23. T. Vougiouklis, Hyperstructures and Their Representations, 115, Hadronic Press Inc., Florida, 1994.

[^0]: * Corresponding Author

 Received 11 February 2015; Accepted 18 June 2017
 (C)2017 Academic Center for Education, Culture and Research TM

