On the Zero-divisor Cayley Graph of a Finite Commutative Ring

A. R. Naghipour
Department of Mathematics, Shahrekord University, P.O. Box: 115, Shahrekord, Iran.
E-mail: naghipour@sci.sku.ac.ir

Abstract

Let R be a finite commutative ring. Let $Z(R)$ and $J(R)$ be the set of all zero-divisor elements and the Jacobson radical of R, respectively. The zero-divisor Cayley graph of R, denoted by $Z \mathbb{C} \mathbb{A}(R)$, is the graph obtained by setting all the elements of $Z(R)$ to be the vertices and defining distinct vertices x and y to be adjacent if and only if $x-y \in Z(R)$. The induced subgraph of $Z \mathbb{C} \mathbb{Y}(R)$ on the vertex set $Z(R) \backslash J(R)$ is denoted by $Z \mathbb{C} \mathbb{A}^{*}(R)$. In this paper, the basic properties of $Z \mathbb{C} \mathbb{Y}(R)$ and $Z \mathbb{C A} \mathbb{Y}^{*}(R)$ are investigated and some characterization results regarding connectedness, girth and planarity of $Z \mathbb{C} \mathbb{A} \mathbb{Y}(R)$ and $Z \mathbb{C} \mathbb{A} \mathbb{Y}^{*}(R)$ are given. Finally, we study the clique number of $Z \mathbb{C} \mathbb{A} \mathbb{Y}(R)$.

Keywords: Clique, Connectivity, Diameter, Girth, Planar graph.
2010 Mathematics subject classification: 13A99, 05C25, 05C40, 13M05, 16U60.

1. Introduction

The study of algebraic structures, using the properties of graph theory, tends to an exciting research topic in the last decade, see for example $[1,2,4,10]$. The Cayley graph introduced by Arthur Cayley in 1878 is a useful tool for connection between group theory and the theory of algebraic graphs. Let G be an abelian group and S be a subset of G. The Cayley graph $\mathbb{C} \mathbb{Y}(G, S)$ is

[^0]a graph whose vertices are elements of G and in which two distinct vertices x and y are joined by an edge if and only if $x-y \in S$. We refer the reader to [8] for general properties of Cayley graphs. Let R be a commutative ring with identity and R^{+}and $Z(R)$ be the additive group and the set of all zero-divisors of R, respectively. The authors in [1] have studied $\mathbb{C} \mathbb{A} \mathbb{Y}\left(R^{+}, Z(R)\right)$ and its subgraph $\operatorname{Reg} \mathbb{C} \mathbb{A}(R)$ the induced subgraph on the regular elements of R. We denote by $Z \mathbb{C} \mathbb{A} \mathbb{Y}(R)$ the induced subgraph on zero-divisor elements of R. In this paper, following [4], we are interested in studying $Z \mathbb{C} \mathbb{A} \mathbb{Y}(R)$.

Let $J(R)$ denote the Jacobson radical of R. It is easy to see that every $x \in J(R)$ is adjacent to each vertex of $Z \mathbb{C} \mathbb{A} \mathbb{Y}(R)$. Thus the main part of the graph $Z \mathbb{C} \mathbb{A} \mathbb{Y}(R)$ is the induced subgraph of $Z \mathbb{C} \mathbb{Y}(R)$ on the vertex set $Z(R) \backslash J(R)$. We denote it by $Z \mathbb{C} \mathbb{A} \mathbb{Y}^{*}(R)$. The graphs in Figure 1 are the zero-divisor Cayley graphs of the rings indicated. In the figures of this paper, the vertices in Jacobson radical are shown by circle.

Figure 1. The zero-divisor Cayley graphs of some specific rings.

The plan of the paper is as follows: In Section 2 of this paper, we bring some preliminaries and notations about graph and ring theory. In Section 3, we state some basic properties of $Z \mathbb{C} \mathbb{A} \mathbb{Y}(R)$. In Section 4, we study the connectivity, diameter and girth of $Z \mathbb{C} \mathbb{A} \mathbb{Y}(R)$ and $Z \mathbb{C} \mathbb{A}^{*}(R)$. In Section 5 , the planarity of $Z \mathbb{C A} \mathbb{Y}(R)$ and $Z \mathbb{C} \mathbb{A} \mathbb{Y}^{*}(R)$ are investigated. In the final section, we study the clique number of $Z \mathbb{C} \mathbb{A} \mathbb{Y}(R)$.

2. Preliminaries and Notations

The graphs in this paper are simple, that is they have no loops or multiple edges. For a graph G, let $V(G)$ denote the set of vertices, and let $E(G)$ denote the set of edges. For $x \in V(G)$ we denote by $N(x)$ the set of all vertices of G
adjacent to x. Also, the degree of x, denoted $d_{G}(x)$, is the size of $N(x)$. The maximum and minimum degree of vertices of G are denoted by $\Delta(G)$ and $\delta(G)$, respectively. The union of two simple graphs G and H is the graph $G \cup H$ with the vertex set $V(G) \cup V(H)$ and the edge set $E(G) \cup E(H)$. If $V(G)$ and $V(H)$ are disjoint, we refer to their union as a disjoint union, and denote it by $G+H$. The join of simple graphs G and H, written $G \vee H$, is the graph obtained from the disjoint union $G+H$ by adding edges joining every vertex of G to every vertex of H.

Let G be a graph. For two vertices x and y of G, a walk (path) of length n between x and y is an ordered list of (distinct) vertices $x=x_{0}, x_{1}, \ldots, x_{n}=y$ such that x_{i-1} is adjacent to x_{i} for $i=1, \ldots, n$. The distance between x and y, denoted by $d(x, y)$, is the length of shortest path between x and $y(d(x, x)=0$ and $d(x, y)=\infty$ if there is no path between x and $y)$. The largest distance among all distances between pairs of the vertices of a graph G is called the diameter of G and is denoted by $\operatorname{diam}(G)$. A cycle in G is a path that begins and ends at the same vertex. The girth of G, denoted by $\operatorname{gr}(G)$, is the length of a shortest cycle in $G(\operatorname{gr}(G)=\infty$ if G has no cycle). A graph G is called connected if for any vertices x and y of G there is a path between x and y. Otherwise, G is called disconnected (a singleton graph is connected with zero diameter). The null graph is the graph whose vertex set and edge set are empty.

A graph in which each pair of distinct vertices is joined by an edge is called a complete graph. We denote the complete graph on n vertices by K_{n}. A clique of a graph is a maximal complete subgraph and the number of vertices in the largest clique of graph G, denoted by $\omega(G)$, is called the clique number of G. The complement of a graph G, denoted by \bar{G}, is the graph with the same vertex set as G such that two vertices of \bar{G} are adjacent if and only if they are not adjacent in G.

For a set $X,|X|$ denotes the cardinal number of X. Also, $\mathbb{F}_{p^{n}}$ denotes the field with p^{n} elements and \mathbb{Z}_{n} denotes for the ring of integers modulo n. Following the literature, we write

$$
D_{2}(R)=\left\{\left.\left(\begin{array}{cc}
a & b \\
0 & a
\end{array}\right) \right\rvert\, a, b \in R\right\}
$$

In this paper, for convenience, we denote the elements $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ of $D_{2}(R)$ by A and B, respectively.

It is well known that every finite commutative ring can be expressed as a direct product of finite local rings, and this decomposition is unique up to permutations of such local rings (see [5, Theorem 8.7]). In this paper, we assume that R is a finite commutative ring with identity and we accept the following notations: Let $R=R_{1} \times \cdots \times R_{n}$ be a ring, where R_{i} s are local
rings. We set $e_{0}:=(0,0, \ldots, 0), e_{1}:=(1,0, \ldots, 0), e_{2}:=(0,1,0, \ldots, 0), \ldots$, $e_{n}:=(0, \ldots, 0,1)$.

For a ring R, we denote by $U(R)$ the set of all unit elements of R. We note that if R is a finite commutative ring, then $U(R)=R \backslash Z(R)$. In other words, the set of all zero-divisors and the set of all nonunit elements of R coincide. If $R=R_{1} \times \cdots \times R_{n}$, where R_{i} is a local ring with maximal ideal \mathfrak{m}_{i}, then

$$
Z(R)=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R \mid x_{i} \in \mathfrak{m}_{i} \text { for some } 1 \leq i \leq n\right\}
$$

This fact is frequently used in this paper.

3. Some Basic Properties of $Z \mathbb{C} \mathbb{A} \mathbb{Y}(R)$

In this section, we study the basic properties of $Z \mathbb{C} \mathbb{A}(R)$. We begin with the following proposition.

Proposition 3.1. The following are equivalent:
(1) $Z \mathbb{C} \mathbb{A}^{*}(R)$ is a null graph,
(2) $Z(R)=J(R)$,
(3) $Z \mathbb{C} \mathbb{A} \mathbb{Y}(R)$ is a complete graph,
(4) R is a local ring.

Proof. (1) $\Leftrightarrow(2)$ is trivial.
$(2) \Rightarrow(3)$ Suppose that $J(R)=Z(R)$. Then $Z(R)$ is an ideal and hence $Z \mathbb{C} \mathbb{A} \mathbb{Y}(R)$ is a complete graph.
$(3) \Rightarrow(4) \mathrm{By}[9$, Lemma 3.13], it is enough to show that $Z(R)$ is an ideal of R. It is easy to see that $Z(R)$ is closed under scalar multiplication. Now let $x, y \in Z(R)$. Since $Z \mathbb{C} \mathbb{A} \mathbb{Y}(R)$ is a complete graph, we have $x-y \in Z(R)$. So $Z(R)$ is an ideal of R.
$(4) \Rightarrow(2)$ Let R be a local ring with maximal ideal \mathfrak{m}. Then $J(R)=Z(R)=$ \mathfrak{m}.

In the rest of this section, we study the maximum and minimum degree of $Z \mathbb{C A} \mathbb{Y}(R)$.

Proposition 3.2. Let $R=R_{1} \times \cdots \times R_{n}$ be a ring, where R_{i} is a local ring with maximal ideal \mathfrak{m}_{i}. Let $\left(a_{1}, \ldots, a_{n}\right) \in Z(R)$ and $G=Z \mathbb{C} \mathbb{A}(R)$. Then $d_{G}\left(a_{1}, \ldots, a_{n}\right)=d_{G}\left(\delta_{1}, \ldots, \delta_{n}\right)$, where

$$
\delta_{i}= \begin{cases}1 & \text { if } a_{i} \in U\left(R_{i}\right) \\ 0 & \text { if } a_{i} \in \mathfrak{m}_{i} .\end{cases}
$$

Proof. Let $G=Z \mathbb{C A} \mathbb{Y}(R)$ and let $a=\left(a_{1}, \ldots, a_{k}, \alpha, \beta, a_{k+3}, \ldots, a_{n}\right)$ be an element of $Z(R)$, where $(\alpha, \beta) \in\left(\mathfrak{m}_{k+1}, U\left(R_{k+2}\right)\right)$. Then

$$
\begin{aligned}
d_{\bar{G}}(a)= & d_{\bar{G}}\left(a_{1}, \ldots, a_{k}, \alpha, \beta, a_{k+3}, \ldots, a_{n}\right) \\
= & \mid\left\{\left(d_{1}, \ldots, d_{k}, x, y, d_{k+3}, \ldots, d_{n}\right) \in Z(R) \mid d_{i}-a_{i} \in U\left(R_{i}\right)\right. \\
& \left.\quad \text { for } 1 \leq i \leq n \text { with } i \neq k+1, k+2, x-\alpha \in U\left(R_{k+1}\right), y-\beta \in U\left(R_{k+2}\right)\right\} \mid \\
= & \mid\left\{\left(d_{1}, \ldots, d_{k}, x, y, d_{k+3}, \ldots, d_{n}\right) \in Z(R) \mid d_{i}-a_{i} \in U\left(R_{i}\right)\right. \\
& \left.\quad \text { for } 1 \leq i \leq n \text { with } i \neq k+1, k+2, x \in U\left(R_{k+1}\right), y-1 \in U\left(R_{k+2}\right)\right\} \mid \\
= & d_{\bar{G}}\left(a_{1}, \ldots, a_{k}, 0,1, a_{k+3}, \ldots, a_{n}\right) .
\end{aligned}
$$

A similar argument works if $(\alpha, \beta) \in\left(U\left(R_{k+1}\right), \mathfrak{m}_{k+2}\right) \cup\left(\mathfrak{m}_{k+1}, \mathfrak{m}_{k+2}\right) \cup\left(U\left(R_{k+1}\right), U\left(R_{k+2}\right)\right)$. Now the assertion follows by repeating this argument.

Theorem 3.3. Let $R=R_{1} \times \cdots \times R_{n}$, where R_{i} is a local ring with maximal ideal \mathfrak{m}_{i}. Let $G=Z \mathbb{C} \mathbb{A} \mathbb{Y}(R)$ and $\delta=\left(\delta_{1}, \ldots, \delta_{n}\right) \in Z(R)$, where $\delta_{i} \in\{0,1\}$ for all $i=1,2, \ldots, n$. Then

$$
d_{G}(\delta)=|Z(R)|-|U(R)|-1+\left[\prod_{\substack{1 \leq i \leq n \\ \delta_{i} \leq 0}}\left(\left|R_{i}\right|-\left|\mathfrak{m}_{i}\right|\right) \prod_{\substack{1 \leq i \leq n \\ \delta_{i}=1}}\left(\left|R_{i}\right|-2\left|\mathfrak{m}_{i}\right|\right)\right] .
$$

Proof. Let $N:=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R \mid x_{i}-\delta_{i} \in U\left(R_{i}\right)\right.$ for all $\left.1 \leq i \leq n\right\}$. Then $N=\left\{\left(\delta_{1}+u_{1}, \delta_{2}+u_{2}, \ldots, \delta_{n}+u_{n}\right) \in R \mid u_{i} \in U\left(R_{i}\right)\right.$ for all $\left.1 \leq i \leq n\right\}$ and hence $|N|=|U(R)|$. On the other hand,

$$
\begin{aligned}
|N \cap U(R)| & =\mid\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in U(R) \mid x_{i}-\delta_{i} \in U\left(R_{i}\right) \text { for all } 1 \leq i \leq n\right\} \mid \\
& =\mid\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in U(R) \mid x_{i}-\delta_{i} \notin \mathfrak{m}_{i} \text { for all } 1 \leq i \leq n\right\} \mid \\
& =\mid\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R \mid x_{i}-\delta_{i} \notin \mathfrak{m}_{i} \text { and } x_{i} \notin \mathfrak{m}_{i} \text { for all } 1 \leq i \leq n\right\} \mid \\
& \left.\left.=\prod_{\substack{1 \leq i \leq n \\
\delta_{i}=0}}\left(\left|R_{i} / \mathfrak{m}_{i}\right|-1\right)\left|\mathfrak{m}_{i}\right|\right) \prod_{\substack{1 \leq i \leq n \\
\delta_{i}=1}}\left(\left|R_{i} / \mathfrak{m}_{i}\right|-2\right)\left|\mathfrak{m}_{i}\right|\right) \\
& =\prod_{\substack{1 \leq i \leq n \\
\delta_{i}=0}}\left(\left|R_{i}\right|-\left|\mathfrak{m}_{i}\right|\right) \prod_{\substack{1 \leq i \leq n \\
\delta_{i}=1}}\left(\left|R_{i}\right|-2\left|\mathfrak{m}_{i}\right|\right) .
\end{aligned}
$$

Since $N=(N \cap U(R)) \cup(N \cap Z(R))$ and $(N \cap U(R)) \cap(N \cap Z(R))=\emptyset$, we have

$$
\begin{aligned}
d_{\bar{G}}(\delta) & =\mid N \cap Z(R)) \mid \\
& =|N \backslash(N \cap U(R))| \\
& =|N|-|(N \cap U(R))| \\
& =|U(R)|-\left[\prod_{\substack{1 \leq i \leq n \\
\delta_{i}=0}}\left(\left|R_{i}\right|-\left|\mathfrak{m}_{i}\right|\right) \prod_{\substack{1 \leq i \leq n \\
\delta_{i}=1}}\left(\left|R_{i}\right|-2\left|\mathfrak{m}_{i}\right|\right)\right] .
\end{aligned}
$$

Now the assertion follows from the fact that $d_{G}(\delta)+d_{\bar{G}}(\delta)=|Z(R)|-1$.

The following result is an immediate consequence of the proof of Proposition 3.2 and Theorem 3.3.

Corollary 3.4. Let $R=F_{1} \times \cdots \times F_{n}$, where F_{i} s are fields and $\left|F_{i}\right|=p_{i}^{\alpha_{i}}$ and $p_{1}^{\alpha_{1}} \leq p_{2}^{\alpha_{2}} \leq \cdots \leq p_{n}^{\alpha_{n}}$. If $G=Z \mathbb{C} \mathbb{A} \mathbb{Y}(R)$, then

$$
\begin{aligned}
\Delta(G) & =d_{G}(0,0, \ldots, 0)=|Z(R)|-1 \\
\delta(G) & =d_{G}(1,1, \ldots, 1,0)=|Z(R)|-1-\left(p_{n}^{\alpha_{n}}-1\right)\left[\prod_{i=1}^{n-1}\left(p_{i}^{\alpha_{i}}-1\right)-\prod_{i=1}^{n-1}\left(p_{i}^{\alpha_{i}}-2\right)\right]
\end{aligned}
$$

4. Connectivity, Diameter and Girth

The following theorem determines the diameter of $Z \mathbb{C} \mathbb{A} \mathbb{Y}(R)$.
Theorem 4.1. Let R be a ring. Then $Z \mathbb{C} \mathbb{A}(R)$ is connected and

$$
\operatorname{diam}(Z \mathbb{C} \mathbb{A} \mathbb{Y}(R))= \begin{cases}0 & \text { if } R \text { is a field } \\ 1 & \text { if } R \text { is local which is not a field } \\ 2 & \text { otherwise }\end{cases}
$$

Proof. Let $R=R_{1} \times \cdots \times R_{n}$, where R_{i} 's are local rings. First suppose that $n=1$. In this case we may assume R is a local ring with maximal ideal \mathfrak{m}. If R is a field, then $Z \mathbb{C} \mathbb{A} \mathbb{Y}(R)$ has only one vertex and hence $\operatorname{diam}(Z \mathbb{C} \mathbb{A}(R))=0$. If $n=1$ and R is not a field, then $Z \mathbb{C} \mathbb{A} \mathbb{Y}(R) \cong K_{|\mathfrak{m}|}$. Hence $\operatorname{diam}(Z \mathbb{C} \mathbb{A} \mathbb{Y}(R))=$ 1.

Second suppose that $n \geq 2$. Let a, b be two distinct elements of $Z(R) \backslash J(R)$ and let $c \in J(R)$. Then $a, b \in N(c)$. It follows that $\operatorname{diam}(Z \mathbb{C} \mathbb{Y}(R)) \leq 2$. On the other hand, if $x=(1,0,0, \ldots, 0)$ and $y=(0,1,1, \ldots, 1)$, then x and y are not adjacent, and so $d(x, y) \geq 2$. Therefore $\operatorname{diam}(Z \mathbb{C} \mathbb{Y}(R))=2$ and the proof is complete.

In the following theorem, we completely characterize the girth of $Z \mathbb{C} \mathbb{Y}(R)$.
Theorem 4.2. Let R be a ring. Then $\operatorname{gr}(Z \mathbb{C} \mathbb{A} \mathbb{Y}(R)) \in\{3, \infty\}$ and $\operatorname{gr}(Z \mathbb{C} \mathbb{A} \mathbb{Y}(R))=$ ∞ if and only if R is isomorphic to the one of the following rings.

$$
\mathbb{F}_{p^{n}}, \mathbb{Z}_{4}, D_{2}\left(\mathbb{Z}_{2}\right), \mathbb{Z}_{2} \times \mathbb{Z}_{2}
$$

Proof. Let $R=R_{1} \times \cdots \times R_{n}$, where R_{i} 's are local rings. We consider the following cases:

Case 1: $n=1$. In this case we may assume R is a local ring with maximal ideal \mathfrak{m}. If $|\mathfrak{m}|=1$, then R is a field and hence $Z \mathbb{C} \mathbb{Y}(R)$ has only one vertex and hence $\operatorname{gr}(Z \mathbb{C} \mathbb{A} \mathbb{Y}(R))=\infty$ and $R=\mathbb{F}_{p^{n}}$. If $|\mathfrak{m}|=2$, then $Z \mathbb{C} \mathbb{A} \mathbb{Y}(R) \cong K_{2}$ and hence $\operatorname{gr}(Z \mathbb{C A} \mathbb{Y}(R))=\infty$. Since \mathfrak{m} is a nonzero finite dimensional vector space over the field R / \mathfrak{m}, we must have $|R / \mathfrak{m}| \leq|\mathfrak{m}|$ and hence $|R|=4$. Therefore $R=\mathbb{Z}_{4}$ or $R=D_{2}\left(\mathbb{Z}_{2}\right)$ (see [6, Page 687]). If $|\mathfrak{m}| \geq 3$, then every three distinct elements of \mathfrak{m} form a triangle and so $\operatorname{gr}(Z \mathbb{C} \mathbb{A} \mathbb{Y}(R))=3$.

Case 2: $n=2$. If $\left|R_{1}\right| \geq 3$, then $\left(r_{1}, 0\right),\left(r_{2}, 0\right),\left(r_{3}, 0\right)$, where r_{1}, r_{2}, r_{3} are distinct elements of R_{1}, form a triangle and so $\operatorname{gr}(Z \mathbb{C} \mathbb{Y}(R))=3$. A similar argument shows that if $\left|R_{2}\right| \geq 3$, then $\operatorname{gr}(Z \mathbb{C} \mathbb{Y}(R))=3$. Otherwise $R=R_{1} \times R_{2}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and hence $\operatorname{gr}(Z \mathbb{C A} \mathbb{Y}(R))=\infty$.

Case 3: $n \geq 3$. In this case, e_{1}, e_{2}, e_{3} form a triangle in $Z \mathbb{C A Y}(R)$ and so $\operatorname{gr}(Z \mathbb{C} \mathbb{Y} \mathbb{Y}(R))=3$.

Proposition 4.3. Let R be a ring such that $Z \mathbb{C A}^{*}(R)$ is not a null graph. Then the following are equivalent:
(1) $Z \mathbb{C} \mathbb{A}^{*}(R)$ is disconnected,
(2) R is a direct product of two local rings,
(3) $Z \mathbb{C} \mathbb{A}^{*}(R)$ is disjoint union of two complete graphs.

Proof. Let $R=R_{1} \times \cdots \times R_{n}$, where R_{i} is a local ring with maximal ideal \mathfrak{m}_{i}.
$(1) \Rightarrow(2)$ By Proposition 3.1, it is enough to show that $n \leq 2$. Suppose on the contrary that $n \geq 3$. Now let $a=\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, b_{2}, b_{3}, \ldots, b_{n}\right)$ be two arbitrary distinct vertices of $Z \mathbb{C A} \mathbb{Y}^{*}(R)$. Set $c=\left(1,0, a_{3}, \ldots, a_{n}\right)$ and $d=\left(1,0, b_{3}, \ldots, b_{n}\right)$. Then a, c, d, b is a walk and hence $Z \mathbb{C} \mathbb{A} \mathbb{Y}^{*}(R)$ is connected, which is a contradiction.
$(2) \Rightarrow(3)$ Let $R=R_{1} \times R_{2}$, where R_{1} and R_{2} are local rings with maximal ideals \mathfrak{m}_{1} and \mathfrak{m}_{2}, respectively. Then $Z \mathbb{C} \mathbb{A}^{*}(R)$ is disjoint union of two complete graphs with vertex sets $\mathfrak{m}_{1} \times U\left(R_{2}\right)$ and $U\left(R_{1}\right) \times \mathfrak{m}_{2}$.
$(3) \Rightarrow(1)$ is trivial.
In the following figures the graphs $Z \mathbb{C} \mathbb{A} \mathbb{Y}\left(\mathbb{F}_{m} \times \mathbb{F}_{n}\right), Z \mathbb{C} \mathbb{A} \mathbb{Y}\left(\mathbb{F}_{n} \times \mathbb{Z}_{4}\right)$ and $Z \mathbb{C} \mathbb{A} \mathbb{Y}\left(\mathbb{F}_{n} \times D_{2}\left(\mathbb{Z}_{2}\right)\right.$ are presented.

Figure 2. The graph $Z \mathbb{C} \mathbb{A} \mathbb{Y}\left(\mathbb{F}_{m} \times \mathbb{F}_{n}\right)=\left(K_{m-1}+K_{n-1}\right) \vee K_{1}$.

Figure 3. The graph $Z \mathbb{C} \mathbb{A} \mathbb{Y}\left(\mathbb{F}_{n} \times \mathbb{Z}_{4}\right)$, if $x=2$ and $y=3$; and the graph $Z \mathbb{C A Y}\left(\mathbb{F}_{n} \times D_{2}\left(\mathbb{Z}_{2}\right)\right)$, if $x=A$ and $y=B$.

We note that $Z \mathbb{C A} \mathbb{Y}\left(\mathbb{F}_{n} \times \mathbb{Z}_{4}\right)=Z \mathbb{C} \mathbb{A} \mathbb{Y}\left(\mathbb{F}_{n} \times D_{2}\left(\mathbb{Z}_{2}\right)\right)=\left(K_{2(n-1)}+K_{2}\right) \vee K_{2}$, by Figure 3.

The following theorem characterizes the diameter of $Z \mathbb{C} \mathbb{A}^{*}(R)$.
Theorem 4.4. Let R be a ring such that $Z \mathbb{C} \mathbb{A}^{*}(R)$ is not a null graph. Then $\operatorname{diam}\left(Z \mathbb{C} \mathbb{A}^{*}(R)\right) \in\{2, \infty\}$ and $\operatorname{diam}\left(Z \mathbb{C} \mathbb{A}^{*}(R)\right)=\infty$ if and only if R is a direct product of two local rings.

Proof. Let $R=R_{1} \times \cdots \times R_{n}$, where R_{i} is a local ring with maximal ideal \mathfrak{m}_{i}. Since $Z \mathbb{C} \mathbb{A}^{*}(R)$ is not a null graph, by Proposition 3.1, we have two following cases:

Case 1: $n=2$. In this case, Proposition 4.3 implies that $\operatorname{diam}\left(Z \mathbb{C A} \mathbb{Y}^{*}(R)\right)=$ ∞.

Case 2: $n \geq 3$. Let $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ be two arbitrary distinct vertices of $Z \mathbb{C} \mathbb{A}^{*}(R)$. Then there are $i, j \in\{1,2, \ldots, n\}$ such that $a_{i} \in \mathfrak{m}_{i}$ and $b_{j} \in \mathfrak{m}_{j}$. Let $k \in\{1,2, \ldots, n\} \backslash\{i, j\}$. Then a, e_{k}, b form a path in $Z \mathbb{C A} \mathbb{Y}^{*}(R)$ and so $\operatorname{diam}\left(Z \mathbb{C} \mathbb{A} \mathbb{Y}^{*}(R)\right) \leq 2$. On the other hand, if $x=(1,0, \ldots, 0)$ and $y=(0,1,1, \ldots, 1)$, then x and y are not adjacent, and so $d(x, y) \geq 2$. Therefore $\operatorname{diam}\left(Z \mathbb{C} \mathbb{A}^{*}(R)\right)=2$ and the proof is complete.

In the following theorem, we completely characterize the girth of $Z \mathbb{C A} \mathbb{Y}^{*}(R)$.
Theorem 4.5. Let R be a ring such that $Z \mathbb{C} \mathbb{A}^{*}(R)$ is not a null graph. Then $\operatorname{gr}\left(Z \mathbb{C} \mathbb{Y}^{*}(R)\right) \in\{3, \infty\}$ and $\operatorname{gr}\left(Z \mathbb{C} \mathbb{A} \mathbb{Y}^{*}(R)\right)=\infty$ if and only if $R \in$ $\left\{\mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{2} \times \mathbb{Z}_{3}, \mathbb{Z}_{3} \times \mathbb{Z}_{3}, \mathbb{Z}_{2} \times \mathbb{Z}_{4}, \mathbb{Z}_{2} \times D_{2}\left(\mathbb{Z}_{2}\right), \mathbb{Z}_{3} \times \mathbb{Z}_{4}, \mathbb{Z}_{3} \times D_{2}\left(\mathbb{Z}_{2}\right)\right\}$

Proof. Let $R=R_{1} \times \cdots \times R_{n}$, where R_{i} is a local ring with maximal ideal \mathfrak{m}_{i}. Since $Z \mathbb{C} \mathbb{A}^{*}(R)$ is not a null graph, we only have two following cases:

Case 1: $n=2$. If $\left|U\left(R_{1}\right)\right|=\left|R_{1} \backslash \mathfrak{m}_{1}\right| \geq 3$ or $\left|U\left(R_{2}\right)\right|=\left|R_{2} \backslash \mathfrak{m}_{2}\right| \geq 3$, then $Z \mathbb{C A} \mathbb{Y}^{*}(R)$ has a triangle and so $\operatorname{gr}\left(Z \mathbb{C A} \mathbb{Y}^{*}(R)\right)=3$. Now suppose that $\left|U\left(R_{1}\right)\right| \leq 2$ and $\left|U\left(R_{2}\right)\right| \leq 2$. Then [7, Corollary 4.5] implies that $R=$ $R_{1} \times R_{2}$, where $R_{1}, R_{2} \in\left\{\mathbb{Z}_{2}, \mathbb{Z}_{3}, \mathbb{Z}_{4}, D_{2}\left(\mathbb{Z}_{2}\right)\right\}$. In view of Figure 2, we have $\operatorname{gr}\left(Z \mathbb{C} \mathbb{A}^{*}(R)\right)=\infty$ if $R \in\left\{\mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{2} \times \mathbb{Z}_{3}, \mathbb{Z}_{3} \times \mathbb{Z}_{3}\right\}$. Figure 3 implies that $\operatorname{gr}\left(Z \mathbb{C} \mathbb{A}^{*}(R)\right)=\infty$ if $R \in\left\{\mathbb{Z}_{2} \times \mathbb{Z}_{4}, \mathbb{Z}_{3} \times \mathbb{Z}_{4}, \mathbb{Z}_{2} \times D_{2}\left(\mathbb{Z}_{2}\right), \mathbb{Z}_{3} \times D_{2}\left(\mathbb{Z}_{2}\right)\right\}$. If $R=\mathbb{Z}_{4} \times \mathbb{Z}_{4}$, then $(1,0),(3,0),(1,2)$ form a triangle in $Z \mathbb{C} \mathbb{Y}^{*}(R)$. If $R=D_{2}\left(\mathbb{Z}_{2}\right) \times D_{2}\left(\mathbb{Z}_{2}\right)$, then $(1,0),(B, 0),(1, A)$ form a triangle in $Z \mathbb{C} \mathbb{A}^{*}(R)$ and if $R=\mathbb{Z}_{4} \times D_{2}\left(\mathbb{Z}_{2}\right)$, then $(1,0),(3,0),(1, A)$ form a triangle in $Z \mathbb{C} \mathbb{A} \mathbb{Y}^{*}(R)$.

Case 2: $n \geq 3$. In this case, e_{1}, e_{2}, e_{3} form a triangle in $Z \mathbb{C} \mathbb{A} \mathbb{Y}^{*}(R)$ and so $\operatorname{gr}\left(Z \mathbb{C} \mathbb{A}^{*}(R)\right)=3$.

5. Planarity

A graph is said to be planar if it can be drawn in the plane such that its edges intersect only at their ends. A subdivision of an edge is obtained by inserting some new vertices of degree two into this edge. A remarkably simple characterization of planar graphs was given by Kuratowski in 1930. Kuratowski's Theorem says that a graph is planar if and only if it contains no subdivision of K_{5} or $K_{3,3}$ (see [11, Theorem 6.2.2]). We recall the following proposition.

Proposition 5.1. ([3, Proposition 2.1]) If R is a local ring with maximal ideal \mathfrak{m}, then there exists a prime number p such that $|R / \mathfrak{m}|,|R|$ and $|\mathfrak{m}|$ are all powers of p.

The following theorem gives a necessary and sufficient condition for the planarity of $Z \mathbb{C} \mathbb{A}^{*}(R)$.

Theorem 5.2. Let $R=R_{1} \times \cdots \times R_{n}$, where R_{i} is a local ring with maximal ideal \mathfrak{m}_{i}. Then $Z \mathbb{C} \mathbb{A}^{*}(R)$ is planar if and only if $Z \mathbb{C} \mathbb{Y}^{*}(R)$ is a null graph or R is isomorphic to one of the following rings:
(1) $R=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$,
(2) $R=R_{1} \times R_{2}$, where R_{1}, R_{2} are fields with $\left|R_{1}\right| \leq 5$ and $\left|R_{2}\right| \leq 5$.

Proof. By Proposition 3.1, $n \geq 2$. We consider the following cases:
Case 1: $n \geq 4$. In this case the set of vertices $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{1}+e_{2}\right\}$ is a clique and hence $Z \mathbb{C A} \mathbb{Y}^{*}(R)$ is not planar, by Kuratowski's Theorem.

Case 2: $n=3$. If $\left|R_{i}\right| \leq 2$ for all $i=1,2,3$, then $R=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and Figure 4 shows $Z \mathbb{C} \mathbb{A} \mathbb{Y}^{*}(R)$ is planar. Now suppose that $\left|R_{i}\right| \geq 3$ for some $1 \leq i \leq 3$, say $i=1$. Therefore $\left|U\left(R_{1}\right)\right| \geq 2$, by Proposition 5.1. Let H be the subgraph induced by the vertices $\{(1,0,0),(a, 0,0),(0,1,1),(0,0,1),(0,1,0),(1,1,0)\}$, where $a \in U\left(R_{1}\right) \backslash\{1\}$. Then it is easy to see that $K_{3,3}$ is a subgraph of H and hence $Z \mathbb{C} \mathbb{A}^{*}(R)$ is not planar, by Kuratowski's Theorem.

Case 3: $n=2$ and $R=R_{1} \times R_{2}$ with $\left|R_{i}\right|>5$ for some $1 \leq i \leq 2$. Without loss of generality, we may assume that $\left|R_{1}\right|>5$. By Proposition 5.1, we have $\left|R_{1} \backslash \mathfrak{m}_{1}\right| \geq 6$. Now the set $U\left(R_{1}\right) \times\{0\}$ has a clique of order 6 and hence $Z \mathbb{C A} \mathbb{Y}^{*}(R)$ is not planar, by Kuratowski's Theorem.

So, if $Z \mathbb{C} \mathbb{Y}^{*}(R)$ is planar, then $R=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or $R=R_{1} \times R_{2}$, where R_{1}, R_{2} are local rings with $\left|R_{1}\right| \leq 5$ and $\left|R_{2}\right| \leq 5$.

On the other hand, in view of Figures 2,3 and 4 , it is easy to see that if R is isomorphic to one of the above rings, then $Z \mathbb{C} \mathbb{A}^{*}(R)$ is planar. This completes the proof.

Figure 4. The graph $Z \mathbb{C} \mathbb{A}^{*}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$.
The following theorem gives a necessary and sufficient condition for the planarity of $Z \mathbb{C} \mathbb{A} \mathbb{Y}(R)$.

Theorem 5.3. Let R be a ring. Then $Z \mathbb{C} \mathbb{A} \mathbb{Y}(R)$ is planar if and only if R is isomorphic to one of the following rings: $\mathbb{F}_{p^{n}}, \mathbb{Z}_{4}, D_{2}\left(\mathbb{Z}_{2}\right), \mathbb{F}_{4}[x] /\left(x^{2}\right)$, $\mathbb{Z}_{4}[x] /\left(x^{2}+x+1\right), \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{2} \times \mathbb{Z}_{3}, \mathbb{Z}_{3} \times \mathbb{Z}_{3}, \mathbb{Z}_{2} \times \mathbb{Z}_{4}$ and $\mathbb{Z}_{2} \times D_{2}\left(\mathbb{Z}_{2}\right)$.
Proof. Let $R=R_{1} \times \cdots \times R_{n}$, where R_{i} 's are local rings. Let $Z \mathbb{C A Y}(R)$ be a planar graph. We consider the following cases:

Case 1: $n=1$. In this case, we may assume R is a local ring with maximal ideal \mathfrak{m}. If $\mathfrak{m}=0$, then R is a field and $Z \mathbb{C} \mathbb{A} \mathbb{Y}(R)$ has only one vertex and hence $Z \mathbb{C} \mathbb{A}(R)$ is planar. Now let $\mathfrak{m} \neq 0$. Since \mathfrak{m} is a nonzero finite dimensional vector space over the field R / \mathfrak{m}, we must have $|R / \mathfrak{m}| \leq|\mathfrak{m}|$. Since $Z \mathbb{C} \mathbb{A} \mathbb{Y}(R)$ is planar, Kuratowski's Theorem implies that $|\mathfrak{m}| \leq 4$ and hence $|R| \leq 16$. In view of $\left[6\right.$, Page 687], we have $R \in\left\{\mathbb{Z}_{4}, \mathbb{F}_{4}[x] /\left(x^{2}\right), \mathbb{Z}_{4}[x] /\left(x^{2}+x+1\right)\right\}$.

Case 2: $n=2$. If $\left|R_{1}\right| \geq 5$, then the set $R_{1} \times\{0\}$ contains a subgraph isomorphic to K_{5}. Thus by Kuratowski's Theorem, $Z \mathbb{C} \mathbb{A} \mathbb{Y}(R)$ is not planar. A similar argument shows that $\left|R_{2}\right| \leq 4$. Therefore [7, Corollary 4.5] implies that $R=R_{1} \times R_{2}$, where $R_{i} \in\left\{\mathbb{Z}_{2}, \mathbb{Z}_{3}, \mathbb{Z}_{4}, \mathbb{F}_{4}, D_{2}\left(\mathbb{Z}_{2}\right)\right\}$. We note that $Z \mathbb{C} \mathbb{Y}(R)$ is not planar if $R \in\left\{\mathbb{Z}_{4} \times \mathbb{Z}_{4}, \mathbb{Z}_{4} \times D_{2}\left(\mathbb{Z}_{2}\right), D_{2}\left(\mathbb{Z}_{2}\right) \times D_{2}\left(\mathbb{Z}_{2}\right)\right\}$, since $Z \mathbb{C} \mathbb{A} \mathbb{Y}(R)=$ $\left(K_{4}+K_{4}\right) \vee K_{4}$.

Case 3: $n \geq 3$. In this case the elements $e_{0}, e_{1}, e_{2}, e_{3}, e_{1}+e_{2}$ and $e_{2}+e_{3}$ obtain a graph $K_{3,3}$ in the structure of $Z \mathbb{C} \mathbb{A}(R)$. Thus by Kuratowski's Theorem, $Z \mathbb{C A} \mathbb{Y}(R)$ is not planar.

Let $R=\mathbb{F}_{4}[x] / I$ and $S=\mathbb{Z}_{4}[x] / J$, where $I=\left(x^{2}\right)$ and $J=\left(x^{2}+x+1\right)$. Since $Z(R)=\{I, x+I, a x+I, b x+I\}$, where a, b are distinct elements of $\mathbb{F}_{4} \backslash\{0,1\}$ and $Z(S)=\{J, 2+J, 2 x+J, 2+2 x+J\}$, we must have $Z \mathbb{C} \mathbb{Y}(R)=Z \mathbb{C} \mathbb{A} Y(S)=K_{4}$. We also have $Z \mathbb{C} \mathbb{A} \mathbb{Y}\left(\mathbb{F}_{p^{n}}\right)=K_{1}$ and $Z \mathbb{C} \mathbb{A} \mathbb{Y}\left(\mathbb{Z}_{4}\right)=Z \mathbb{C} \mathbb{Y}\left(D_{2}\left(\mathbb{Z}_{2}\right)\right)=K_{2}$. So, in view of Figures 2 and 3, it is easy to see that, if R is one of the rings that appears in the statement of the theorem, then $Z \mathbb{C} \mathbb{A} \mathbb{Y}(R)$ is a planar graph. This completes the proof.

6. Clique Number

In the following, we denote the set of maximal ideals of a ring R by $\max (R)$.
Lemma 6.1. Let R be a ring and $\mathfrak{m} \in \max (R)$. Then \mathfrak{m} is a clique of $Z \mathbb{C A Y}(R)$.

Proof. Every two vertices of \mathfrak{m} are adjacent. If x is a vertex of $Z \mathbb{C} \mathbb{Y}(R)$ such that x is adjacent to every vertex of \mathfrak{m}. Then

$$
x+\mathfrak{m} \subseteq \bigcup_{\mathfrak{m} \in \max (R)} \mathfrak{m}
$$

It follows form [9, Theorem 3.64] that

$$
R x+\mathfrak{m} \subseteq \bigcup_{\mathfrak{m} \in \max (R)} \mathfrak{m}
$$

By Prime Avoidance Theorem (see for example [9, Theorem 3.61]) there exists maximal ideal \mathfrak{m}_{0} of R such that $x+\mathfrak{m} \subseteq \mathfrak{m}_{0}$. Therefore $x \in \mathfrak{m}_{0}=\mathfrak{m}$. Hence \mathfrak{m} is a clique of $Z \mathbb{C} \mathbb{Y}(R)$.

Theorem 6.2. Let $G=Z \mathbb{C A} \mathbb{Y}\left(F_{1} \times \cdots \times F_{n}\right)$, where $F_{i} s$ are finite fields and $\left|F_{1}\right| \leq\left|F_{2}\right| \leq \cdots \leq\left|F_{n}\right|$. Then $\mathfrak{m}=0 \times F_{2} \times \cdots \times F_{n}$ is a largest clique of G. In particular $\omega(G)=|R| /\left|F_{1}\right|$.

Proof. Let $f_{i}: F_{1} \backslash\{0\} \longrightarrow F_{i} \backslash\{0\}$ be an injective function for all $i \in$ $\{2,3, \ldots, n\}$ (note that $\left|F_{1}\right| \leq\left|F_{i}\right|$). Let K be an arbitrary clique of G. We define

$$
\varphi: K \longrightarrow \mathfrak{m}
$$

as follows: If $x \in K \cap \mathfrak{m}$, then $\varphi(x)=x$. If $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in K \backslash \mathfrak{m}$, then $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(0, x_{2}+f_{2}\left(x_{1}\right), \ldots, x_{n}+f_{n}\left(x_{1}\right)\right)$. We claim that φ is injective. Suppose that $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right), b=\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in K$ and $\varphi(a)=\varphi(b)$. We consider the following cases:

Case 1: $a, b \in K \cap \mathfrak{m}$. In this case, we have $a=\varphi(a)=\varphi(b)=b$.
Case 2: $a \in K \cap \mathfrak{m}$ and $b \notin K \cap \mathfrak{m}$. Since a, b are adjacent and $0=a_{1} \neq b_{1}$, there exists $2 \leq i \leq n$ such that $a_{i}=b_{i}$. Then $a_{i}=b_{i}+f_{i}\left(b_{1}\right)$, since $\varphi(a)=$ $\varphi(b)$. It follows that $f_{i}\left(b_{1}\right)=0$, a contradiction.

Case 3: $a \notin K \cap \mathfrak{m}$ and $b \in K \cap \mathfrak{m}$. Then by an argument symmetric to that of Case 2, we get a contradiction.

Case 4: $a \notin K \cap \mathfrak{m}$ and $b \notin K \cap \mathfrak{m}$. Since a, b are adjacent, there exists $1 \leq i \leq n$ such that $a_{i}=b_{i}$. If $i=1$, then $\varphi(a)=\varphi(b)$ implies that $a=b$. Now, suppose that $a_{1} \neq b_{1}$ and $a_{i}=b_{i}$ for some $i \geq 2$. Then $\varphi(a)=\varphi(b)$ implies that $a_{i}+f_{i}\left(a_{1}\right)=b_{i}+f_{i}\left(b_{1}\right)$. It follows that $f_{i}\left(a_{1}\right)=f_{i}\left(b_{1}\right)$. Since f_{i} is injective we must have $a_{1}=b_{1}$, a contradiction.

So φ is injective and hence $|K| \leq|\mathfrak{m}|$. It follows from Lemma 6.1 that \mathfrak{m} is a largest clique of G.

Acknowledgments

I would like to thank the referee for his/her helpful remarks which have contributed to improve the presentation of the paper. I would also like to thank the Center of Excellence for Mathematics, Shahrekord university for financial support.

References

1. G. Aalipour, S. Akbari, On the Cayley graph of a commutative ring with respect to its zero-divisors, Communications in Algebra, 44(4), (2016), 1443-1459.
2. A. Abbasi, H. Roshan-Shekalgourabi, D. Hassanzadeh-Lelekaami, Associated graphs of modules over commutative rings, Iranian Journal of Mathematical Sciences and Informatics, 10(1), (2015), 45-58.
3. R. Akhtar, M. Boggess, T. Jackson-Henderson, I. Jiménez, R. Karpman, A. Kinzel, D. Pritikin, On the unitary Cayley graph of a finite ring, Electron. J. Combin., 16(1), (2009), \#R117.
4. D. F. Anderson, A. Badawi, The total graph of a commutative ring, J. Algebra, 320(7), (2008), 2706-2719.
5. M. F. Atiyah, I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, Mass., 1969.
6. B. Corbas, G. D. Williams, Rings of order p^{5}. I. Nonlocal rings, J. Algebra, 231(2), (2000), 677-690.
7. D. Dolžan, Group of units in a finite ring, ring. J. Pure Appl. Algebra, 170, (2002), 175-183.
8. C. Godsil, G. Royle, Algebraic Graph Theory, Springer-Verlag, New York, 2001.
9. R. Y. Sharp, Steps in Commutative Algebra, Cambridge University Press, Cambridge, 1990.
10. A. Theranian, H. R. Maimani, A study of the total graph, Iranian Journal of Mathematical Sciences and Informatics, 6(2), (2011), 75-80.
11. D. B. West, Introduction to Graph Theory, Second Edition, Prentice-Hall, 2000.

[^0]: Received 11 October 2014; Accepted 28 September 2015
 © 2017 Academic Center for Education, Culture and Research TMU

