Iranian Journal of Mathematical Sciences and Informatics Vol. 12, No. 1 (2017), pp 95-106 DOI: 10.7508/ijmsi.2017.01.008

On the Zero-divisor Cayley Graph of a Finite Commutative Ring

A. R. Naghipour

Department of Mathematics, Shahrekord University, P.O. Box: 115, Shahrekord, Iran.

E-mail: naghipour@sci.sku.ac.ir

ABSTRACT. Let R be a finite commutative ring. Let Z(R) and J(R) be the set of all zero-divisor elements and the Jacobson radical of R, respectively. The zero-divisor Cayley graph of R, denoted by $Z\mathbb{CAY}(R)$, is the graph obtained by setting all the elements of Z(R) to be the vertices and defining distinct vertices x and y to be adjacent if and only if $x-y \in Z(R)$. The induced subgraph of $Z\mathbb{CAY}(R)$ on the vertex set $Z(R) \setminus J(R)$ is denoted by $Z\mathbb{CAY}^*(R)$. In this paper, the basic properties of $Z\mathbb{CAY}(R)$ and $Z\mathbb{CAY}^*(R)$ are investigated and some characterization results regarding connectedness, girth and planarity of $Z\mathbb{CAY}(R)$ and $Z\mathbb{CAY}^*(R)$ are given. Finally, we study the clique number of $Z\mathbb{CAY}(R)$.

Keywords: Clique, Connectivity, Diameter, Girth, Planar graph.

2010 Mathematics subject classification: 13A99, 05C25, 05C40, 13M05, 16U60.

1. INTRODUCTION

The study of algebraic structures, using the properties of graph theory, tends to an exciting research topic in the last decade, see for example [1, 2, 4, 10]. The Cayley graph introduced by Arthur Cayley in 1878 is a useful tool for connection between group theory and the theory of algebraic graphs. Let Gbe an abelian group and S be a subset of G. The Cayley graph $\mathbb{CAY}(G, S)$ is

Received 11 October 2014; Accepted 28 September 2015

^{©2017} Academic Center for Education, Culture and Research TMU

a graph whose vertices are elements of G and in which two distinct vertices xand y are joined by an edge if and only if $x - y \in S$. We refer the reader to [8] for general properties of Cayley graphs. Let R be a commutative ring with identity and R^+ and Z(R) be the additive group and the set of all zero-divisors of R, respectively. The authors in [1] have studied $\mathbb{CAY}(R^+, Z(R))$ and its subgraph $\operatorname{Reg}\mathbb{CAY}(R)$ the induced subgraph on the regular elements of R. We denote by $\mathbb{ZCAY}(R)$ the induced subgraph on zero-divisor elements of R. In this paper, following [4], we are interested in studying $\mathbb{ZCAY}(R)$.

Let J(R) denote the Jacobson radical of R. It is easy to see that every $x \in J(R)$ is adjacent to each vertex of $Z\mathbb{CAY}(R)$. Thus the main part of the graph $Z\mathbb{CAY}(R)$ is the induced subgraph of $Z\mathbb{CAY}(R)$ on the vertex set $Z(R) \setminus J(R)$. We denote it by $Z\mathbb{CAY}^*(R)$. The graphs in Figure 1 are the zero-divisor Cayley graphs of the rings indicated. In the figures of this paper, the vertices in Jacobson radical are shown by circle.

Figure 1. The zero-divisor Cayley graphs of some specific rings.

The plan of the paper is as follows: In Section 2 of this paper, we bring some preliminaries and notations about graph and ring theory. In Section 3, we state some basic properties of $Z\mathbb{CAY}(R)$. In Section 4, we study the connectivity, diameter and girth of $Z\mathbb{CAY}(R)$ and $Z\mathbb{CAY}^*(R)$. In Section 5, the planarity of $Z\mathbb{CAY}(R)$ and $Z\mathbb{CAY}^*(R)$ are investigated. In the final section, we study the clique number of $Z\mathbb{CAY}(R)$.

2. Preliminaries and Notations

The graphs in this paper are simple, that is they have no loops or multiple edges. For a graph G, let V(G) denote the set of vertices, and let E(G) denote the set of edges. For $x \in V(G)$ we denote by N(x) the set of all vertices of G adjacent to x. Also, the *degree* of x, denoted $d_G(x)$, is the size of N(x). The maximum and minimum degree of vertices of G are denoted by $\Delta(G)$ and $\delta(G)$, respectively. The *union* of two simple graphs G and H is the graph $G \cup H$ with the vertex set $V(G) \cup V(H)$ and the edge set $E(G) \cup E(H)$. If V(G) and V(H) are disjoint, we refer to their union as a *disjoint union*, and denote it by G+H. The *join* of simple graphs G and H, written $G \vee H$, is the graph obtained from the disjoint union G + H by adding edges joining every vertex of G to every vertex of H.

Let G be a graph. For two vertices x and y of G, a walk (path) of length n between x and y is an ordered list of (distinct) vertices $x = x_0, x_1, \ldots, x_n = y$ such that x_{i-1} is adjacent to x_i for $i = 1, \ldots, n$. The distance between x and y, denoted by d(x, y), is the length of shortest path between x and y (d(x, x) = 0and $d(x, y) = \infty$ if there is no path between x and y). The largest distance among all distances between pairs of the vertices of a graph G is called the diameter of G and is denoted by diam(G). A cycle in G is a path that begins and ends at the same vertex. The girth of G, denoted by gr(G), is the length of a shortest cycle in G ($gr(G) = \infty$ if G has no cycle). A graph G is called connected if for any vertices x and y of G there is a path between x and y. Otherwise, G is called disconnected (a singleton graph is connected with zero diameter). The null graph is the graph whose vertex set and edge set are empty.

A graph in which each pair of distinct vertices is joined by an edge is called a *complete graph*. We denote the complete graph on *n* vertices by K_n . A *clique* of a graph is a maximal complete subgraph and the number of vertices in the largest clique of graph G, denoted by $\omega(G)$, is called the *clique number* of G. The complement of a graph G, denoted by \overline{G} , is the graph with the same vertex set as G such that two vertices of \overline{G} are adjacent if and only if they are not adjacent in G.

For a set X, |X| denotes the cardinal number of X. Also, \mathbb{F}_{p^n} denotes the field with p^n elements and \mathbb{Z}_n denotes for the ring of integers modulo n. Following the literature, we write

$$D_2(R) = \left\{ \left(\begin{array}{cc} a & b \\ 0 & a \end{array} \right) \mid a, b \in R \right\}$$

In this paper, for convenience, we denote the elements $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ of $D_2(R)$ by A and B, respectively.

It is well known that every finite commutative ring can be expressed as a direct product of finite local rings, and this decomposition is unique up to permutations of such local rings (see [5, Theorem 8.7]). In this paper, we assume that R is a finite commutative ring with identity and we accept the following notations: Let $R = R_1 \times \cdots \times R_n$ be a ring, where R_i s are local

rings. We set $e_0 := (0, 0, ..., 0), e_1 := (1, 0, ..., 0), e_2 := (0, 1, 0, ..., 0), ..., e_n := (0, ..., 0, 1).$

For a ring R, we denote by U(R) the set of all unit elements of R. We note that if R is a finite commutative ring, then $U(R) = R \setminus Z(R)$. In other words, the set of all zero-divisors and the set of all nonunit elements of R coincide. If $R = R_1 \times \cdots \times R_n$, where R_i is a local ring with maximal ideal \mathfrak{m}_i , then

$$Z(R) = \{(x_1, x_2, \dots, x_n) \in R | x_i \in \mathfrak{m}_i \text{ for some } 1 \le i \le n\}.$$

This fact is frequently used in this paper.

3. Some Basic Properties of ZCAY(R)

In this section, we study the basic properties of $Z\mathbb{CAY}(R)$. We begin with the following proposition.

Proposition 3.1. The following are equivalent:

(1) $Z \mathbb{CAY}^*(R)$ is a null graph,

(2) Z(R) = J(R),

(3) $Z \mathbb{CAY}(R)$ is a complete graph,

(4) R is a local ring.

Proof. $(1) \Leftrightarrow (2)$ is trivial.

 $(2) \Rightarrow (3)$ Suppose that J(R) = Z(R). Then Z(R) is an ideal and hence $Z\mathbb{CAY}(R)$ is a complete graph.

 $(3) \Rightarrow (4)$ By [9, Lemma 3.13], it is enough to show that Z(R) is an ideal of R. It is easy to see that Z(R) is closed under scalar multiplication. Now let $x, y \in Z(R)$. Since $Z\mathbb{CAY}(R)$ is a complete graph, we have $x - y \in Z(R)$. So Z(R) is an ideal of R.

(4) \Rightarrow (2) Let R be a local ring with maximal ideal \mathfrak{m} . Then $J(R) = Z(R) = \mathfrak{m}$.

In the rest of this section, we study the maximum and minimum degree of $\mathbb{ZCAY}(R)$.

Proposition 3.2. Let $R = R_1 \times \cdots \times R_n$ be a ring, where R_i is a local ring with maximal ideal \mathfrak{m}_i . Let $(a_1, ..., a_n) \in Z(R)$ and $G = Z\mathbb{CAY}(R)$. Then $d_G(a_1, ..., a_n) = d_G(\delta_1, ..., \delta_n)$, where

$$\delta_i = \begin{cases} 1 & \text{if } a_i \in U(R_i), \\ 0 & \text{if } a_i \in \mathfrak{m}_i. \end{cases}$$

Proof. Let $G = Z\mathbb{CAY}(R)$ and let $a = (a_1, ..., a_k, \alpha, \beta, a_{k+3}, ..., a_n)$ be an element of Z(R), where $(\alpha, \beta) \in (\mathfrak{m}_{k+1}, U(R_{k+2}))$. Then

$$\begin{aligned} d_{\overline{G}}(a) &= d_{\overline{G}}(a_1, ..., a_k, \alpha, \beta, a_{k+3}, ..., a_n) \\ &= |\{(d_1, ..., d_k, x, y, d_{k+3}, ..., d_n) \in Z(R)| d_i - a_i \in U(R_i) \\ &\quad \text{for } 1 \leq i \leq n \text{ with } i \neq k+1, k+2, x - \alpha \in U(R_{k+1}), y - \beta \in U(R_{k+2})\}| \\ &= |\{(d_1, ..., d_k, x, y, d_{k+3}, ..., d_n) \in Z(R)| d_i - a_i \in U(R_i) \\ &\quad \text{for } 1 \leq i \leq n \text{ with } i \neq k+1, k+2, x \in U(R_{k+1}), y - 1 \in U(R_{k+2})\}| \\ &= d_{\overline{G}}(a_1, ..., a_k, 0, 1, a_{k+3}, ..., a_n). \end{aligned}$$

A similar argument works if $(\alpha, \beta) \in (U(R_{k+1}), \mathfrak{m}_{k+2}) \cup (\mathfrak{m}_{k+1}, \mathfrak{m}_{k+2}) \cup (U(R_{k+1}), U(R_{k+2}))$. Now the assertion follows by repeating this argument. \Box

Theorem 3.3. Let $R = R_1 \times \cdots \times R_n$, where R_i is a local ring with maximal ideal \mathfrak{m}_i . Let $G = Z \mathbb{CAY}(R)$ and $\delta = (\delta_1, ..., \delta_n) \in Z(R)$, where $\delta_i \in \{0, 1\}$ for all i = 1, 2, ..., n. Then

$$d_G(\delta) = |Z(R)| - |U(R)| - 1 + \left[\prod_{\substack{1 \le i \le n \\ \delta_i = 0}} (|R_i| - |\mathfrak{m}_i|) \prod_{\substack{1 \le i \le n \\ \delta_i = 1}} (|R_i| - 2|\mathfrak{m}_i|)\right].$$

Proof. Let $N := \{(x_1, x_2, \ldots, x_n) \in R | x_i - \delta_i \in U(R_i) \text{ for all } 1 \le i \le n\}$. Then $N = \{(\delta_1 + u_1, \delta_2 + u_2, \ldots, \delta_n + u_n) \in R | u_i \in U(R_i) \text{ for all } 1 \le i \le n\}$ and hence |N| = |U(R)|. On the other hand,

$$\begin{aligned} |N \cap U(R)| &= |\{(x_1, x_2, \dots, x_n) \in U(R) | x_i - \delta_i \in U(R_i) \text{ for all } 1 \le i \le n\}| \\ &= |\{(x_1, x_2, \dots, x_n) \in U(R) | x_i - \delta_i \notin \mathfrak{m}_i \text{ for all } 1 \le i \le n\}| \\ &= |\{(x_1, x_2, \dots, x_n) \in R | x_i - \delta_i \notin \mathfrak{m}_i \text{ and } x_i \notin \mathfrak{m}_i \text{ for all } 1 \le i \le n\}| \\ &= \prod_{\substack{1 \le i \le n \\ \delta_i = 0}} (|R_i/\mathfrak{m}_i| - 1)|\mathfrak{m}_i|) \prod_{\substack{1 \le i \le n \\ \delta_i = 1}} (|R_i/\mathfrak{m}_i| - 2)|\mathfrak{m}_i|) \\ &= \prod_{\substack{1 \le i \le n \\ \delta_i = 0}} (|R_i| - |\mathfrak{m}_i|) \prod_{\substack{1 \le i \le n \\ \delta_i = 1}} (|R_i| - 2|\mathfrak{m}_i|). \end{aligned}$$

Since $N = (N \cap U(R)) \cup (N \cap Z(R))$ and $(N \cap U(R)) \cap (N \cap Z(R)) = \emptyset$, we have

$$\begin{split} d_{\overline{G}}(\delta) &= |N \cap Z(R))| \\ &= |N \setminus (N \cap U(R))| \\ &= |N| - |(N \cap U(R))| \\ &= |U(R)| - [\prod_{\substack{1 \leq i \leq n \\ \delta_i = 0}} (|R_i| - |\mathfrak{m}_i|) \prod_{\substack{1 \leq i \leq n \\ \delta_i = 1}} (|R_i| - 2|\mathfrak{m}_i|)]. \end{split}$$

Now the assertion follows from the fact that $d_G(\delta) + d_{\overline{G}}(\delta) = |Z(R)| - 1$. \Box

The following result is an immediate consequence of the proof of Proposition 3.2 and Theorem 3.3.

Corollary 3.4. Let $R = F_1 \times \cdots \times F_n$, where F_i s are fields and $|F_i| = p_i^{\alpha_i}$ and $p_1^{\alpha_1} \leq p_2^{\alpha_2} \leq \cdots \leq p_n^{\alpha_n}$. If $G = \mathbb{ZCAY}(R)$, then

$$\Delta(G) = d_G(0, 0, \dots, 0) = |Z(R)| - 1,$$

$$\delta(G) = d_G(1, 1, \dots, 1, 0) = |Z(R)| - 1 - (p_n^{\alpha_n} - 1) [\prod_{i=1}^{n-1} (p_i^{\alpha_i} - 1) - \prod_{i=1}^{n-1} (p_i^{\alpha_i} - 2)]$$

4. Connectivity, Diameter and Girth

The following theorem determines the diameter of ZCAY(R).

Theorem 4.1. Let R be a ring. Then ZCAY(R) is connected and

$$\operatorname{diam}(Z\mathbb{CAY}(R)) = \left\{ \begin{array}{ll} 0 & if \ R \ is \ a \ field, \\ 1 & if \ R \ is \ local \ which \ is \ not \ a \ field, \\ 2 & otherwise. \end{array} \right.$$

Proof. Let $R = R_1 \times \cdots \times R_n$, where R_i 's are local rings. First suppose that n = 1. In this case we may assume R is a local ring with maximal ideal \mathfrak{m} . If R is a field, then $\mathbb{ZCAY}(R)$ has only one vertex and hence $\operatorname{diam}(\mathbb{ZCAY}(R)) = 0$. If n = 1 and R is not a field, then $\mathbb{ZCAY}(R) \cong K_{|\mathfrak{m}|}$. Hence $\operatorname{diam}(\mathbb{ZCAY}(R)) = 1$.

Second suppose that $n \ge 2$. Let a, b be two distinct elements of $Z(R) \setminus J(R)$ and let $c \in J(R)$. Then $a, b \in N(c)$. It follows that diam $(Z\mathbb{CAY}(R)) \le 2$. On the other hand, if x = (1, 0, 0, ..., 0) and y = (0, 1, 1, ..., 1), then x and y are not adjacent, and so $d(x, y) \ge 2$. Therefore diam $(Z\mathbb{CAY}(R)) = 2$ and the proof is complete.

In the following theorem, we completely characterize the girth of ZCAY(R).

Theorem 4.2. Let R be a ring. Then $\operatorname{gr}(Z\mathbb{CAY}(R)) \in \{3,\infty\}$ and $\operatorname{gr}(Z\mathbb{CAY}(R)) = \infty$ if and only if R is isomorphic to the one of the following rings.

$$\mathbb{F}_{p^n}, \mathbb{Z}_4, D_2(\mathbb{Z}_2), \mathbb{Z}_2 \times \mathbb{Z}_2.$$

Proof. Let $R = R_1 \times \cdots \times R_n$, where R_i 's are local rings. We consider the following cases:

Case 1: n = 1. In this case we may assume R is a local ring with maximal ideal \mathfrak{m} . If $|\mathfrak{m}| = 1$, then R is a field and hence $\mathbb{ZCAY}(R)$ has only one vertex and hence $\operatorname{gr}(\mathbb{ZCAY}(R)) = \infty$ and $R = \mathbb{F}_{p^n}$. If $|\mathfrak{m}| = 2$, then $\mathbb{ZCAY}(R) \cong K_2$ and hence $\operatorname{gr}(\mathbb{ZCAY}(R)) = \infty$. Since \mathfrak{m} is a nonzero finite dimensional vector space over the field R/\mathfrak{m} , we must have $|R/\mathfrak{m}| \leq |\mathfrak{m}|$ and hence |R| = 4. Therefore $R = \mathbb{Z}_4$ or $R = D_2(\mathbb{Z}_2)$ (see [6, Page 687]). If $|\mathfrak{m}| \geq 3$, then every three distinct elements of \mathfrak{m} form a triangle and so $\operatorname{gr}(\mathbb{ZCAY}(R)) = 3$.

Case 2: n = 2. If $|R_1| \ge 3$, then $(r_1, 0), (r_2, 0), (r_3, 0)$, where r_1, r_2, r_3 are distinct elements of R_1 , form a triangle and so $\operatorname{gr}(\mathbb{ZCAY}(R)) = 3$. A similar argument shows that if $|R_2| \ge 3$, then $\operatorname{gr}(\mathbb{ZCAY}(R)) = 3$. Otherwise $R = R_1 \times R_2 = \mathbb{Z}_2 \times \mathbb{Z}_2$ and hence $\operatorname{gr}(\mathbb{ZCAY}(R)) = \infty$.

Case 3: $n \ge 3$. In this case, e_1, e_2, e_3 form a triangle in $\mathbb{ZCAY}(R)$ and so $\operatorname{gr}(\mathbb{ZCAY}(R)) = 3$.

Proposition 4.3. Let R be a ring such that $ZCAY^*(R)$ is not a null graph. Then the following are equivalent:

(1) $Z \mathbb{CAY}^*(R)$ is disconnected,

(2) R is a direct product of two local rings,

(3) $Z\mathbb{CAY}^*(R)$ is disjoint union of two complete graphs.

Proof. Let $R = R_1 \times \cdots \times R_n$, where R_i is a local ring with maximal ideal \mathfrak{m}_i .

 $(1)\Rightarrow(2)$ By Proposition 3.1, it is enough to show that $n \leq 2$. Suppose on the contrary that $n \geq 3$. Now let $a = (a_1, a_2, a_3, ..., a_n)$ and $b = (b_1, b_2, b_3, ..., b_n)$ be two arbitrary distinct vertices of $Z\mathbb{CAY}^*(R)$. Set $c = (1, 0, a_3, ..., a_n)$ and $d = (1, 0, b_3, ..., b_n)$. Then a, c, d, b is a walk and hence $Z\mathbb{CAY}^*(R)$ is connected, which is a contradiction.

 $(2) \Rightarrow (3)$ Let $R = R_1 \times R_2$, where R_1 and R_2 are local rings with maximal ideals \mathfrak{m}_1 and \mathfrak{m}_2 , respectively. Then $\mathbb{ZCAY}^*(R)$ is disjoint union of two complete graphs with vertex sets $\mathfrak{m}_1 \times U(R_2)$ and $U(R_1) \times \mathfrak{m}_2$.

 $(3) \Rightarrow (1)$ is trivial.

In the following figures the graphs $ZCAY(\mathbb{F}_m \times \mathbb{F}_n)$, $ZCAY(\mathbb{F}_n \times \mathbb{Z}_4)$ and $ZCAY(\mathbb{F}_n \times D_2(\mathbb{Z}_2))$ are presented.

Figure 2. The graph $ZCA\mathbb{Y}(\mathbb{F}_m \times \mathbb{F}_n) = (K_{m-1} + K_{n-1}) \vee K_1$.

Figure 3. The graph $Z\mathbb{CAY}(\mathbb{F}_n \times \mathbb{Z}_4)$, if x = 2 and y = 3; and the graph $Z\mathbb{CAY}(\mathbb{F}_n \times D_2(\mathbb{Z}_2))$, if x = A and y = B.

We note that $ZCAY(\mathbb{F}_n \times \mathbb{Z}_4) = ZCAY(\mathbb{F}_n \times D_2(\mathbb{Z}_2)) = (K_{2(n-1)} + K_2) \vee K_2$, by Figure 3.

The following theorem characterizes the diameter of $Z\mathbb{CAY}^*(R)$.

Theorem 4.4. Let R be a ring such that $Z\mathbb{CAY}^*(R)$ is not a null graph. Then $\operatorname{diam}(Z\mathbb{CAY}^*(R)) \in \{2,\infty\}$ and $\operatorname{diam}(Z\mathbb{CAY}^*(R)) = \infty$ if and only if R is a direct product of two local rings.

Proof. Let $R = R_1 \times \cdots \times R_n$, where R_i is a local ring with maximal ideal \mathfrak{m}_i . Since $\mathbb{ZCAY}^*(R)$ is not a null graph, by Proposition 3.1, we have two following cases:

Case 1: n = 2. In this case, Proposition 4.3 implies that diam $(\mathbb{ZCAY}^*(\mathbb{R})) = \infty$.

Case 2: $n \geq 3$. Let $a = (a_1, a_2, ..., a_n)$ and $b = (b_1, b_2, ..., b_n)$ be two arbitrary distinct vertices of $\mathbb{ZCAY}^*(R)$. Then there are $i, j \in \{1, 2, ..., n\}$ such that $a_i \in \mathfrak{m}_i$ and $b_j \in \mathfrak{m}_j$. Let $k \in \{1, 2, ..., n\} \setminus \{i, j\}$. Then a, e_k, b form a path in $\mathbb{ZCAY}^*(R)$ and so diam $(\mathbb{ZCAY}^*(R)) \leq 2$. On the other hand, if x = (1, 0, ..., 0) and y = (0, 1, 1, ..., 1), then x and y are not adjacent, and so $d(x, y) \geq 2$. Therefore diam $(\mathbb{ZCAY}^*(R)) = 2$ and the proof is complete. \Box

In the following theorem, we completely characterize the girth of $ZCAY^*(R)$.

Theorem 4.5. Let R be a ring such that $\mathbb{ZCAY}^*(R)$ is not a null graph. Then $\operatorname{gr}(\mathbb{ZCAY}^*(R)) \in \{3,\infty\}$ and $\operatorname{gr}(\mathbb{ZCAY}^*(R)) = \infty$ if and only if $R \in \{\mathbb{Z}_2 \times \mathbb{Z}_2, \mathbb{Z}_2 \times \mathbb{Z}_3, \mathbb{Z}_3 \times \mathbb{Z}_3, \mathbb{Z}_2 \times \mathbb{Z}_4, \mathbb{Z}_2 \times D_2(\mathbb{Z}_2), \mathbb{Z}_3 \times \mathbb{Z}_4, \mathbb{Z}_3 \times D_2(\mathbb{Z}_2)\}.$

Proof. Let $R = R_1 \times \cdots \times R_n$, where R_i is a local ring with maximal ideal \mathfrak{m}_i . Since $\mathbb{ZCAY}^*(R)$ is not a null graph, we only have two following cases:

Case 1: n = 2. If $|U(R_1)| = |R_1 \setminus \mathfrak{m}_1| \ge 3$ or $|U(R_2)| = |R_2 \setminus \mathfrak{m}_2| \ge 3$, then $\mathbb{ZCAY}^*(R)$ has a triangle and so $\operatorname{gr}(\mathbb{ZCAY}^*(R)) = 3$. Now suppose that $|U(R_1)| \le 2$ and $|U(R_2)| \le 2$. Then [7, Corollary 4.5] implies that $R = R_1 \times R_2$, where $R_1, R_2 \in \{\mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4, D_2(\mathbb{Z}_2)\}$. In view of Figure 2, we have $\operatorname{gr}(\mathbb{ZCAY}^*(R)) = \infty$ if $R \in \{\mathbb{Z}_2 \times \mathbb{Z}_2, \mathbb{Z}_2 \times \mathbb{Z}_3, \mathbb{Z}_3 \times \mathbb{Z}_3\}$. Figure 3 implies that $\operatorname{gr}(\mathbb{ZCAY}^*(R)) = \infty$ if $R \in \{\mathbb{Z}_2 \times \mathbb{Z}_4, \mathbb{Z}_3 \times \mathbb{Z}_4, \mathbb{Z}_2 \times D_2(\mathbb{Z}_2), \mathbb{Z}_3 \times D_2(\mathbb{Z}_2)\}$. If $R = \mathbb{Z}_4 \times \mathbb{Z}_4$, then (1, 0), (3, 0), (1, 2) form a triangle in $\mathbb{ZCAY}^*(R)$. If $R = D_2(\mathbb{Z}_2) \times D_2(\mathbb{Z}_2)$, then (1, 0), (3, 0), (1, A) form a triangle in $\mathbb{ZCAY}^*(R)$.

Case 2: $n \ge 3$. In this case, e_1, e_2, e_3 form a triangle in $\mathbb{ZCAY}^*(R)$ and so $\operatorname{gr}(\mathbb{ZCAY}^*(R)) = 3$.

5. Planarity

A graph is said to be *planar* if it can be drawn in the plane such that its edges intersect only at their ends. A *subdivision* of an edge is obtained by inserting some new vertices of degree two into this edge. A remarkably simple characterization of planar graphs was given by Kuratowski in 1930. Kuratowski's Theorem says that a graph is planar if and only if it contains no subdivision of K_5 or $K_{3,3}$ (see [11, Theorem 6.2.2]). We recall the following proposition.

Proposition 5.1. ([3, Proposition 2.1]) If R is a local ring with maximal ideal \mathfrak{m} , then there exists a prime number p such that $|R/\mathfrak{m}|$, |R| and $|\mathfrak{m}|$ are all powers of p.

The following theorem gives a necessary and sufficient condition for the planarity of $\mathbb{ZCAY}^*(R)$.

Theorem 5.2. Let $R = R_1 \times \cdots \times R_n$, where R_i is a local ring with maximal ideal \mathfrak{m}_i . Then $\mathbb{ZCAY}^*(R)$ is planar if and only if $\mathbb{ZCAY}^*(R)$ is a null graph or R is isomorphic to one of the following rings:

- (1) $R = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$,
- (2) $R = R_1 \times R_2$, where R_1, R_2 are fields with $|R_1| \le 5$ and $|R_2| \le 5$.

Proof. By Proposition 3.1, $n \ge 2$. We consider the following cases:

Case 1: $n \ge 4$. In this case the set of vertices $\{e_1, e_2, e_3, e_4, e_1 + e_2\}$ is a clique and hence $\mathbb{ZCAY}^*(R)$ is not planar, by Kuratowski's Theorem.

Case 2: n = 3. If $|R_i| \leq 2$ for all i = 1, 2, 3, then $R = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ and Figure 4 shows $Z\mathbb{CAY}^*(R)$ is planar. Now suppose that $|R_i| \geq 3$ for some $1 \leq i \leq 3$, say i = 1. Therefore $|U(R_1)| \geq 2$, by Proposition 5.1. Let H be the subgraph induced by the vertices $\{(1, 0, 0), (a, 0, 0), (0, 1, 1), (0, 0, 1), (0, 1, 0), (1, 1, 0)\}$, where $a \in U(R_1) \setminus \{1\}$. Then it is easy to see that $K_{3,3}$ is a subgraph of H and hence $Z\mathbb{CAY}^*(R)$ is not planar, by Kuratowski's Theorem.

Case 3: n = 2 and $R = R_1 \times R_2$ with $|R_i| > 5$ for some $1 \le i \le 2$. Without loss of generality, we may assume that $|R_1| > 5$. By Proposition 5.1, we have $|R_1 \setminus \mathfrak{m}_1| \ge 6$. Now the set $U(R_1) \times \{0\}$ has a clique of order 6 and hence $\mathbb{ZCAY}^*(R)$ is not planar, by Kuratowski's Theorem.

So, if $Z\mathbb{CAY}^*(R)$ is planar, then $R = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ or $R = R_1 \times R_2$, where R_1, R_2 are local rings with $|R_1| \leq 5$ and $|R_2| \leq 5$.

On the other hand, in view of Figures 2, 3 and 4, it is easy to see that if R is isomorphic to one of the above rings, then $Z\mathbb{CAY}^*(R)$ is planar. This completes the proof.

Figure 4. The graph $ZCAY^*(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2)$.

The following theorem gives a necessary and sufficient condition for the planarity of $Z\mathbb{CAY}(R)$.

Theorem 5.3. Let R be a ring. Then $\mathbb{ZCAY}(R)$ is planar if and only if R is isomorphic to one of the following rings: \mathbb{F}_{p^n} , \mathbb{Z}_4 , $D_2(\mathbb{Z}_2)$, $\mathbb{F}_4[x]/(x^2)$, $\mathbb{Z}_4[x]/(x^2 + x + 1)$, $\mathbb{Z}_2 \times \mathbb{Z}_2, \mathbb{Z}_2 \times \mathbb{Z}_3, \mathbb{Z}_3 \times \mathbb{Z}_3, \mathbb{Z}_2 \times \mathbb{Z}_4$ and $\mathbb{Z}_2 \times D_2(\mathbb{Z}_2)$.

Proof. Let $R = R_1 \times \cdots \times R_n$, where R_i 's are local rings. Let $Z \mathbb{CAY}(R)$ be a planar graph. We consider the following cases:

Case 1: n = 1. In this case, we may assume R is a local ring with maximal ideal \mathfrak{m} . If $\mathfrak{m} = 0$, then R is a field and $\mathbb{ZCAY}(R)$ has only one vertex and hence $\mathbb{ZCAY}(R)$ is planar. Now let $\mathfrak{m} \neq 0$. Since \mathfrak{m} is a nonzero finite dimensional vector space over the field R/\mathfrak{m} , we must have $|R/\mathfrak{m}| \leq |\mathfrak{m}|$. Since $\mathbb{ZCAY}(R)$ is planar, Kuratowski's Theorem implies that $|\mathfrak{m}| \leq 4$ and hence $|R| \leq 16$. In view of [6, Page 687], we have $R \in \{\mathbb{Z}_4, \mathbb{F}_4[x]/(x^2), \mathbb{Z}_4[x]/(x^2 + x + 1)\}$.

Case 2: n = 2. If $|R_1| \ge 5$, then the set $R_1 \times \{0\}$ contains a subgraph isomorphic to K_5 . Thus by Kuratowski's Theorem, $\mathbb{ZCAY}(R)$ is not planar. A similar argument shows that $|R_2| \le 4$. Therefore [7, Corollary 4.5] implies that $R = R_1 \times R_2$, where $R_i \in \{\mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4, \mathbb{F}_4, D_2(\mathbb{Z}_2)\}$. We note that $\mathbb{ZCAY}(R)$ is not planar if $R \in \{\mathbb{Z}_4 \times \mathbb{Z}_4, \mathbb{Z}_4 \times D_2(\mathbb{Z}_2), D_2(\mathbb{Z}_2) \times D_2(\mathbb{Z}_2)\}$, since $\mathbb{ZCAY}(R) =$ $(K_4 + K_4) \vee K_4$.

Case 3: $n \geq 3$. In this case the elements e_0 , e_1 , e_2 , e_3 , $e_1 + e_2$ and $e_2 + e_3$ obtain a graph $K_{3,3}$ in the structure of $Z\mathbb{CAY}(R)$. Thus by Kuratowski's Theorem, $Z\mathbb{CAY}(R)$ is not planar.

Let $R = \mathbb{F}_4[x]/I$ and $S = \mathbb{Z}_4[x]/J$, where $I = (x^2)$ and $J = (x^2+x+1)$. Since $Z(R) = \{I, x+I, ax+I, bx+I\}$, where a, b are distinct elements of $\mathbb{F}_4 \setminus \{0, 1\}$ and $Z(S) = \{J, 2+J, 2x+J, 2+2x+J\}$, we must have $Z\mathbb{CAY}(R) = Z\mathbb{CAY}(S) = K_4$. We also have $Z\mathbb{CAY}(\mathbb{F}_{p^n}) = K_1$ and $Z\mathbb{CAY}(\mathbb{Z}_4) = Z\mathbb{CAY}(D_2(\mathbb{Z}_2)) = K_2$. So, in view of Figures 2 and 3, it is easy to see that, if R is one of the rings that appears in the statement of the theorem, then $Z\mathbb{CAY}(R)$ is a planar graph. This completes the proof.

6. CLIQUE NUMBER

In the following, we denote the set of maximal ideals of a ring R by $\max(R)$.

Lemma 6.1. Let R be a ring and $\mathfrak{m} \in \max(R)$. Then \mathfrak{m} is a clique of $\mathbb{ZCAY}(R)$.

Proof. Every two vertices of \mathfrak{m} are adjacent. If x is a vertex of $Z\mathbb{CAY}(R)$ such that x is adjacent to every vertex of \mathfrak{m} . Then

$$x + \mathfrak{m} \subseteq \bigcup_{\mathfrak{m} \in \max(R)} \mathfrak{m}.$$

It follows form [9, Theorem 3.64] that

$$Rx + \mathfrak{m} \subseteq \bigcup_{\mathfrak{m} \in \max(R)} \mathfrak{m}.$$

By Prime Avoidance Theorem (see for example [9, Theorem 3.61]) there exists maximal ideal \mathfrak{m}_0 of R such that $x + \mathfrak{m} \subseteq \mathfrak{m}_0$. Therefore $x \in \mathfrak{m}_0 = \mathfrak{m}$. Hence \mathfrak{m} is a clique of $\mathbb{ZCAY}(R)$.

Theorem 6.2. Let $G = \mathbb{ZCAY}(F_1 \times \cdots \times F_n)$, where F_i s are finite fields and $|F_1| \leq |F_2| \leq \cdots \leq |F_n|$. Then $\mathfrak{m} = 0 \times F_2 \times \cdots \times F_n$ is a largest clique of G. In particular $\omega(G) = |R|/|F_1|$.

Proof. Let $f_i : F_1 \setminus \{0\} \longrightarrow F_i \setminus \{0\}$ be an injective function for all $i \in \{2, 3, \ldots, n\}$ (note that $|F_1| \leq |F_i|$). Let K be an arbitrary clique of G. We define

$$\varphi:K\longrightarrow\mathfrak{m}$$

as follows: If $x \in K \cap \mathfrak{m}$, then $\varphi(x) = x$. If $x = (x_1, x_2, \ldots, x_n) \in K \setminus \mathfrak{m}$, then $\varphi(x_1, x_2, \ldots, x_n) = (0, x_2 + f_2(x_1), \ldots, x_n + f_n(x_1))$. We claim that φ is injective. Suppose that $a = (a_1, a_2, \ldots, a_n)$, $b = (b_1, b_2, \ldots, b_n) \in K$ and $\varphi(a) = \varphi(b)$. We consider the following cases:

Case 1: $a, b \in K \cap \mathfrak{m}$. In this case, we have $a = \varphi(a) = \varphi(b) = b$.

Case 2: $a \in K \cap \mathfrak{m}$ and $b \notin K \cap \mathfrak{m}$. Since a, b are adjacent and $0 = a_1 \neq b_1$, there exists $2 \leq i \leq n$ such that $a_i = b_i$. Then $a_i = b_i + f_i(b_1)$, since $\varphi(a) = \varphi(b)$. It follows that $f_i(b_1) = 0$, a contradiction.

Case 3: $a \notin K \cap \mathfrak{m}$ and $b \in K \cap \mathfrak{m}$. Then by an argument symmetric to that of Case 2, we get a contradiction.

Case 4: $a \notin K \cap \mathfrak{m}$ and $b \notin K \cap \mathfrak{m}$. Since a, b are adjacent, there exists $1 \leq i \leq n$ such that $a_i = b_i$. If i = 1, then $\varphi(a) = \varphi(b)$ implies that a = b. Now, suppose that $a_1 \neq b_1$ and $a_i = b_i$ for some $i \geq 2$. Then $\varphi(a) = \varphi(b)$ implies that $a_i + f_i(a_1) = b_i + f_i(b_1)$. It follows that $f_i(a_1) = f_i(b_1)$. Since f_i is injective we must have $a_1 = b_1$, a contradiction.

So φ is injective and hence $|K| \leq |\mathfrak{m}|$. It follows from Lemma 6.1 that \mathfrak{m} is a largest clique of G.

Acknowledgments

I would like to thank the referee for his/her helpful remarks which have contributed to improve the presentation of the paper. I would also like to thank the Center of Excellence for Mathematics, Shahrekord university for financial support.

References

- 1. G. Aalipour, S. Akbari, On the Cayley graph of a commutative ring with respect to its zero-divisors, *Communications in Algebra*, **44**(4), (2016), 1443-1459.
- A. Abbasi, H. Roshan-Shekalgourabi, D. Hassanzadeh-Lelekaami, Associated graphs of modules over commutative rings, *Iranian Journal of Mathematical Sciences and Informatics*, **10**(1), (2015), 45–58.
- R. Akhtar, M. Boggess, T. Jackson-Henderson, I. Jiménez, R. Karpman, A. Kinzel, D. Pritikin, On the unitary Cayley graph of a finite ring, *Electron. J. Combin.*, 16(1), (2009), #R117.
- D. F. Anderson, A. Badawi, The total graph of a commutative ring, J. Algebra, 320(7), (2008), 2706–2719.
- M. F. Atiyah, I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, Mass., 1969.
- B. Corbas, G. D. Williams, Rings of order p⁵. I. Nonlocal rings, J. Algebra, 231(2), (2000), 677–690.
- D. Dolžan, Group of units in a finite ring, ring. J. Pure Appl. Algebra, 170, (2002), 175–183.
- 8. C. Godsil, G. Royle, Algebraic Graph Theory, Springer-Verlag, New York, 2001.
- 9. R. Y. Sharp, *Steps in Commutative Algebra*, Cambridge University Press, Cambridge, 1990.
- A. Theranian, H. R. Maimani, A study of the total graph, Iranian Journal of Mathematical Sciences and Informatics, 6(2), (2011), 75–80.
- 11. D. B. West, Introduction to Graph Theory, Second Edition, Prentice-Hall, 2000.