
Iranian Journal of Mathematical Sciences and Informatics
Vol. 4, No. 1 (2009), pp. 55-77

Axisymmetric Vibrations in Micropolar Thermoelastic Cubic
Crystal Plate Bordered with Layers or Half Spaces of Inviscid

liquid

Rajneesh Kumara and Geeta Partapb,∗

aDepartment of Mathematics, Kurukshetra University, Kurukshetra,
Haryana, India - 136 119

bDepartment of Mathematics, Dr. B. R. Ambedkar National Institute of
Technology, Jalandhar, Punjab, India -144 011

E-mail: rajneesh kuk @ rediffmail.com

E-mail: pratapg@nitj.ac.in, gp.recjal@gmail.com

Abstract. The present study is concerned with the propagation of ax-

isymmetric vibrations in a homogenous isotropic micropolar thermoelas-

tic cubic crystal plate bordered with layers or half spaces of inviscid liq-

uid subjected to stress free boundary conditions in context of Lord and

Shulman (L-S) and Green and Lindsay (G-L) theories of thermoelastic-

ity. The secular equations for symmetric and skew-symmetric leaky and

nonleaky Lamb wave modes of propagation are derived. The amplitudes

of displacement components, microrotation and temperature distribution

are also computed numerically and presented graphically. Finally, in or-

der to illustrate the analytical developments, numerical solution of secu-

lar equations corresponding to stress free thermally insulated micropolar

thermoelastic cubic crystal plate is carried out for magnesium crystal

material bordered with water layers of finite and infinite thickness.
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1. Introduction

The problem of wave propagation in an elastic plate of uniform material
was first investigated by Lamb [1]. Since then the term Lamb wave has been
used to refer to an elastic disturbance propagating in a solid plate with free
boundaries. Lamb waves have found applications in multi-sensors and in the
inspection of defects in thin – walled materials. The density and viscosity
sensing with Lamb waves is based on the principle that the presence of liquid
in contact with a solid plate changes the velocity and amplitude of the Lamb
waves in the plate with free boundaries. When a plate of finite thickness is
bordered with homogeneous liquid half spaces on both sides, then some part of
the Lamb wave energy in the plate radiates into the liquid, while most of the
energy still remains in the solid. These are known as leaky Lamb waves. Wu
and Zhu [2] and Zhu and Wu [3] studied the propagation of Lamb waves in an
elastic plate when both sides of the plate are bordered with liquid layers.

Nayfeh and Nagy [4] derived the exact characteristic equations for leaky
waves propagating along the interfaces of several systems involving isotropic
elastic solids loaded with viscous fluids, including semi-spaces and finite thick-
ness plates totally immersed in fluids or coated on one or on both sides by
finite thickness fluid layers. The technique adopted by Nayfeh and Nagy [4] re-
moved certain inconsistencies that unnecessarily reduce the accuracy and range
of validity of the Zhu and Wu [3] results.

The classical theory of elasticity is inadequate to represent the behavior
of some modern engineering structures such as polycrystalline materials and
materials with fibrous or coarse grain. The study of these materials requires
incorporation of theory of oriented media. “Micropolar elasticity”, termed by
Eringen [5], is used to describe the deformation of elastic media with oriented
particles. A micropolar continuum is a collection of interconnected particles
in the form of small rigid bodies undergoing both translational and rotational
motions. The force at a point of a surface element of bodies of these materials
is completely characterized by a stress vector and a couple stress vector at that
point.

The linear theory of micropolar thermoelasticity was developed by extending
the theory of micropolar continua to include thermal effects by Eringen [6] and
Nowacki [7]

Following various methods, the elastic fields of various loadings, inclusion
and inhomogeneity problems, and interaction energy of point defects and dis-
location arrangement have been discussed extensively in the past. Generally
all materials have elastic anisotropic properties which mean the mechanical be-
havior of an engineering material characterized by the direction dependence.
However the three-dimensional study for an anisotropic material is much more
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complicated to obtain than the isotropic one, due to the large number of elastic
constants involved in the calculation.

A wide class of crystals such as W, Si, Cu, Ni, Fe, Au, Al, etc., which are
some frequently used substances, belong to cubic materials. The cubic mate-
rials have nine planes of symmetry whose normals are on the three coordinate
axes and on the coordinate planes making an angle π/4 with the coordinate
axes. With the chosen coordinate system along the crystalline directions, the
mechanical behavior of a cubic crystal can be characterized by four independent
elastic constants A1, A2, A3 and A4.

To understand the crystal elasticity of a cubic material, Chung and Buessem
[8] presented a convenient method to describe the degree of the elasticity
anisotropy in a given cubic crystal. Later, Lie and Koehler [9] used a Fourier
expansion scheme to calculate the stress fields caused by a unit force in a cubic
crystal. Minagawa et al. [10] discussed the propagation of plane harmonic
waves in a cubic micropolar medium. Kumar and Rani [11] studied time har-
monic sources in a thermally conducting cubic crystal. However no attempt
has been made to study source problems in micropolar cubic crystals. Kumar
and Ailawalia [12] investigated elastodynamics of inclined loads in micropolar
cubic crystals. Kumar and Ailawalia [13] studied time harmonic sources at
micropolar thermoelastic medium possessing cubic crystals with one relaxation
time. Kumar and Singh [14] investigated propagation of plane waves in ther-
moelastic cubic crystal material with two relaxation times. Kumar and Kansal
[15] discussed the analysis of wave motion in transversely isotropic general-
ized thermoelastic diffusive plate. Sharma and Kumar [16] examined Lamb
waves in micropolar thermoelastic solid plates immersed in liquid with varying
temperature.

In practical situations, it is extremely important to hidden cracks and other
possible faults in aerospace and other structures. This can be done by using
ultrasonic waves. Lamb waves which direct the energy along the plate are
especially useful in thin plates. The other applications are in radar detection.
Recently, resurgent interest in Lamb waves is initiated by its applications in
multisensors.

The present investigation is concerned to study the propagation of axisym-
metric vibrations in an infinite homogeneous isotropic micropolar thermoelastic
plate possessing cubic symmetry bordered with layers or half space of inviscid
liquid.

2. Formulation of the problem

We consider an infinite homogeneous isotropic, thermally conducting microp-
olar thermoelastic cubic crystal plate of thickness 2d and initially at uniform
temperature T0. The plate is bordered with infinitely large homogeneous in-
viscid liquid half spaces or layers of thickness h on both sides. The plate is
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axi-symmetric with respect to z – axis as the axis of symmetry. We take origin
of the co-ordinate system (r,θ, z) on the middle surface of the plate and the z –
axis is taken normal to the solid plate along the thickness. We take r – z plane
as the plane of incidence.
If we restrict our analysis to plane strain problem parallel to r–z plane with
displacement vector ~u = (ur, 0, uz)and microrotation vector ~φ = (0, φθ, 0), then
the field equations and constitutive relations in a micropolar thermoelastic solid
with cubic symmetry in the absence of body forces, body couples and heat
sources are given by Minagawa et al [10], Lord and Shulman [17] and Green
and Lindsay [18]
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where A = A1 −A2 −A3 −A4, B = B1 −B2 −B3 −B4, ν = (A1 + 2A2)αt.
A1, A2, A3, A4, B1, B2, B3, B4 are material constants, αt is coefficient of linear
thermal expansion, ρ is the density, j is the microinertia, tij and mij are the
components of stress and couple stress tensors respectively,K∗is the coefficient
of thermal conductivity, C∗ is specific heat at constant strain,τ0 and τ1 are
thermal relaxation times ,δij is Kronecker delta. The comma notation denotes
spatial derivatives.
For Lord and Shulman(L – S) theory τ1 = 0, τ0 > 0 and η0 = 1 and for Green
and Lindsay (G – L) theory τ1 ≥ τ0 > 0 and η0 = 0.
For the liquid half – space, the equation of motion and constitutive relations
are given by
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,
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(9) (tij)L = λL(ur,r)Lδij .

We define the non-dimensional quantities
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where c21 = A1
ρ , ω∗ = ρ C∗c21

K∗ , ω∗ is the characteristic frequency of the medium,
cL is the velocity of sound in the liquid, ρL is the density of the liquid and λL
is the bulk modulus.
Using equation (10) in equations (1) - (4) and (8) and after suppressing the
primes for convenience, we obtain
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In the liquid boundary layers, we have
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where φLi and ψLi are the respectively the scalar velocity potential and vector
velocity component along the θ – direction, for the top liquid layer (i = 1) and
for the bottom liquid layer (i = 2), uLiand wLiare respectively , the r and z
components of particle velocity.
Using equations (17) in equations (15) and (16), we obtain

(18) ∇2φLi −
1
δ2L

∂2φLi

∂t2
= 0; i = 1, 2.

Because the inviscid liquid does not support the shear motion so shear modulus
of liquid vanishes and hence ψLi , i = 1,2 vanish. The potential function φLi in
case of inviscid liquid layers satisfy the equation (18).

3. Formal solution of the problem

We assume the solution of equations (11) – (14) and (18) of the type

(19) (ur, uz, φθ, T, φL1 , φL2) =

[
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]
ūr e
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where c = ω
ξ is the phase velocity of the wave ,ω is the angular frequency and

ξ is the wave number.
m is an unknown parameter which signifies the penetration depth of the wave;
ūz, φ̄θ, T̄ are the amplitude ratios of displacement u−z, microrotation φθ and
temperature T to that of displacement u−r respectively.
Using equation (19) in equations (11) – (14), we obtain

(20)
m2

c2
+ a1 +ma2ūz +ma3φ̄θ + a4T̄ = 0,
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The system of equations (20) – (23) has a non-trivial solution if the determi-
nant of coefficients of (1, ūz, φ̄θ, T̄ )Tvanishes,which yields an algebraic equation
relating m to c.
Solving the above equations, we obtain an eight degree equation of the form

(24) m8 +A′m6 +B′m4 + C ′m2 +D′ = 0.

The roots of the equation (24) give four values of m2.
Using a computer program of Descard’s method following Cardan’s method,
equation (24) leads to the following solution for displacements, microrotation
and temperature as
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k0a21 − a3a9 + a4a11) + c2(k0a2a5 − a8a20a11 + a2a5a20 − a2a7a9+
a2a8a11 + a21a20a8 + a3a5a9 − k0a3a9 − a3a16a9 − a4a5a11 + c2a3a8a9a11)]
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G∗ = [(a8a20a11 + k0a16a20 + k0a7a9 − k0a2a5 − a2a5a20 + a2a7a9

−a2a8a11 − a3a5a9 + k0a3a9 + a3a6a9 − a4a20a11 + a4a5a11 + a4a6a11)
+ a21(k0a20 − k0a6 − a16a20 − a7a9 − a8a20)
+c2(k0a2a7a9 − k0a2a5a20 − a2a8a20a11 − a21a8a20a11 + k0a3a5a9+
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k0a21a7a9 + k0a3a5a9 + k0a3a16a9 + a4a5a20a11 + a4a16a20a11
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k0 = τ0 + iω−1, k′0 = η0τ0 + iω−1, k1 = τ1 + iω−1.

(i) Leaky Lamb waves
The most appropriate choice of total solutions for solid media having finite
thickness (plate of thickness 2d) sandwiched between two liquid half spaces is
given by equations (3) and

(28) φL1 = E5e
γ

L
(z+d)J0(ξr)e−iωt,−∞ < z < −d,
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(29) φL2 = F6e
−γ

L
(z−d)J0(ξr)e−iωt, d < z <∞.

(ii) Nonleaky Lamb waves
The corresponding solutions for a solid plate of finite thickness 2d sandwiched
between two finite liquid layers of thickness h is given by equations (3) and

(30) φL1 = E5SinhγL [z + (d+ h)] J0(ξr)e−iωt,−(d+ h) < z < −d,

(31) φL2 = F6SinhγL
[z − (d+ h)] J0(ξr)e−iωt, d < z < d+ h.

The main difference between nonleaky Lamb waves and leaky Lamb waves is
that the functions φL1and φL2are chosen in such a way that the acoustical
pressure is zero at z = ∓(d + h). In other words, φL1 and φL2here are of
standing wave solutions for nonleaky Lamb waves and for leaky Lamb waves
they are of traveling waves.
Boundary Conditions
The boundary conditions at the solid – liquid interfaces z = ±d to be satisfied
are as follows:
(i) The magnitude of the normal component of the stress tensor of the plate
should be equal to the pressure of the liquid

(32) (tzz)L = (tzz)S .

(ii) The tangential component of the stress tensor should be zero.

(33) (tzr)S = 0,

(iii) The tangential component of the couple stress tensor should be zero.

(34) (mzθ)S = 0,

(iv) The normal velocity component of the solid should be equal to that of
the liquid.

(35) (ūz)S = (w̄L)

(v) The thermal boundary condition is given by

(36) Tz +HT = 0.
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where H is the surface heat transfer coefficient . Here H → 0 corresponds to
thermally insulated boundaries and H → ∞ refers to isothermal one.

4. Derivation of the dispersion equations

In this section we apply the already shown formal solutions to study the specific
situations in which the fluid is inviscid.
(i) Leaky Lamb Waves
We consider an isotropic micropolar thermoelastic plate with cubic symmetry
completely immersed in a inviscid liquid. The plate thickness is 2d and thus
the lower and upper portions of the fluid extend from z = d to ∞ and z = -d to
−∞ respectively. The partial waves in this case are in both the plate and the
fluid. The appropriate formal solutions for the plate and fluids are those given
by equations (25), (28) and (29). By applying the boundary conditions (32) –
(36) at z = ±dand subsequently requiring nontrivial values of the partial wave
amplitudes Ek and Fk, k = 1,2,3, 4; E5 , F6 and γL 6= 0 , we arrive at the
characteristic dispersion equations after lengthy but straightforward algebraic
reductions and manipulations

(37) AT1 [T1T3]
±1 +

ρLω
2T5

ργL
AT21 [T1T3]

±1 = AT2 [T1T2]
±1 +

AT3 [T1T4]
±1 +AT4 [T2T3]
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±1 +AT6 [T3T4]

±1 +

ρLω
2T5

ργL

{
AT22 [T1T2]

±1 +AT23 [T1T4]
±1 +AT24 [T2T3]

±1 + AT25 [T2T4]
±1+

AT26 [T3T4]
±1}

for stress free thermally insulated boundaries(H → 0) of the plate.

(ii) Nonleaky Lamb Waves
We consider an isotropic micropolar thermoelastic plate with cubic symmetry
bordered with layers of inviscid liquid on both sides.
The appropriate formal solutions for the plate and fluids are those given by
equations (25), (30) and (31). By applying the boundary conditions (32) –
(36) at z = ±d and subsequently requiring nontrivial values of the partial wave
amplitudes Ek and Fk, k = 1,2,3,4; E5 ,F6 and γL 6= 0 , we arrive at the
characteristic dispersion equations after lengthy but straightforward algebraic
reductions and manipulations

(38) AT1 [T1T3]
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ρLω
2

ργL
AT21 [T1T3]

±1 =
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AT2 [T1T2]
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for stress free thermally insulated boundaries(H → 0) of the plate.

AT2 = (g52g61 − g51g62)[(g1 − g13)g34 − (g1 − g14)g33],

AT3 = (g51g64 − g54g61)[(g1 − g13)g32 − (g1 − g12)g33],

AT4 = (g53g62 − g52g63)[(g1 − g11)g34 − (g1 − g14)g31],

AT5 = (g54g62 − g52g64)[(g1 − g13)g34 − (g1 − g14)g33],

AT6 = (g54g63 − g53g64)[(g1 − g11)g32 − (g1 − g12)g31],

AT21 = (g53g61−g51g63)[g34r2−g32r4], AT22 = (g52g61−g51g62)[g34r3−g33r4],

AT23 = (g51g64−g54g61)[g32r3−g33r2], AT24 = (g53g62−g52g63)[g34r1−g31r4],

AT25 = (g54g62−g52g64)[g34r3−g33r1], AT26 = (g54g63−g53g64)[g32r1−g31r2].

Ti = Tan ξmid, g1 = d7iξ, g1i = iω k1ti, g2i = ξ mirid1,

g3i = iξ rid8 − lid4, g4i = ξ mid2 , g5i = ξ mili, g6i = ξ miti, i = 1, 2, 3, 4;
T5 = tan ξγLh.
Here the exponent +1 refers to skew-symmetric and -1 refers to symmetric
modes.
Equations (37) - (38) are the most general dispersion relations involving wave
number and phase velocity of various modes of propagation in micropolar ther-
moelastic cubic crystal plate bordered with layers of inviscid liquid or half
spaces on both sides.
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5. Special cases

If we remove the liquid layers or half spaces on both sides, then we shall be left
with the problem of wave propagation in micropolar thermoelastic cubic crystal
plate. To do this, we shall put ρL = 0 in equations (37) – (38). The reduced
secular equations for stress free thermally insulated boundaries(H → 0) for the
said case are given by

AT1 [T1T3]
±1 = AT2 [T1T2]

±1 +AT3 [T1T4]
±1 +AT4 [T2T3]

±1 +
AT5 [T2T4]

±1 +AT6 [T3T4]
±1

5.1 Micropolar thermoelastic plate
In this case, A1 = λ + 2µ + K, A2 = λ, A3 = µ + K, A4 = µ, B3 = γ The
reduced secular equations agree with Kumar and Partap [19].

5.2 Micropolar elastic plate
In this case,A1 = λ+2µ+K,A2 = λ, A3 = µ+K,A4 = µ,B3 = γ, and thermal
parameters K∗ = C∗ = ν = 0
The reduced secular equations agree with Kumar and Partap [20].

6. Amplitudes of displacements, microrotation and temperature

distribution

In this section the amplitudes of displacement components, microrotation and
temperature distribution for symmetric and skew-symmetric modes of plate
waves can be obtained as

(ur)sym, (ur)asym =
4∑

i=1

(EiCos ξmiz, FiSin ξmiz)J1(ξr)e−iωt,

(uz)sym, (uz)asym =
4∑

i=1

ri(FiSinξmiz, EiCosξmiz)J0(ξr)e−iωt,

(φθ)sym, (φθ)asym =
4∑

i=1

li(FiSinξmiz, EiCosξmiz)J1(ξr)e−iωt,

(T )sym, (T )asym =
4∑

i=1

ti(EiCosξmiz, FiSinξmiz)J0(ξr)e−iωt.
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7. Example results

For numerical computations, we take the following values of relevant parame-
ters for micropolar medium with cubic symmetry as

A1 = 19.6× 1010N/m2, A2 = 11.7× 1010N/m2, A3 = 5.6 × 1010N/m2,

A4 = 4.3× 1010N/m2, B3 = 0.98× 10−9N

Micropolar parameters are

ρ = 1.74× 103Kg/m3, λ = 9.4 × 1010N/m2, µ = 4.0 × 1010N/m2,

K = 1.0 × 1010N/m2, γ = 0.779× 10−9N, j = 0.2 × 10−19m2.

Thermal parameters are

τ0 = 6.131× 10−13 sec, τ1 = 8.765× 10−13 sec,∈= 0.028, T0 = 2980K,

C∗ = 1.04× 103J/Kg deg,

K∗ = 1.7× 106J/m sec deg, ν = 2.68× 106N/m2 deg,

The liquid taken for the purpose of numerical calculations is water and the
speed of sound in water given by cL = 1.5 × 103m/ sec.
In general, wave number and phase velocity of the waves are complex quantities,
therefore, the waves are attenuated in space. If we write

(39) c−1 = v−1 + iω−1q

then ξ = K1 + iq , where K1 = ω/v and q are real numbers. This shows
that v is the propagation speed and q is attenuation coefficient of waves. Upon
using equation (39) in secular equations (37) and (38), the value of propagation
speed v and attenuation coefficient q for different modes of wave propagation
can be obtained.
The dotted curves refer to L-S theory and solid curves correspond to G-L theory
of thermoelasticity.
The phase velocity of symmetric and skew-symmetric modes of wave prop-
agation in the context of L-S and G-L theories of thermoelasticity have been
computed for various values of wave number from dispersion equations (37) and
(38) for stress free thermally insulated micropolar thermoelastic cubic crystal
plate and have been represented graphically for different modes (n = 0 to n =
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2) in figures 1 and 2 for leaky Lamb waves and in figures 5 and 6 for nonleaky
Lamb waves.
The variation of attenuation coefficient with wave number for lowest symmetric
and skew-symmetric modes (n = 0) of wave propagation in the context of
L-S and G-L theories of thermoelasticity for stress free thermally insulated
micropolar thermoelastic cubic crystal plate is represented graphically in figures
3 and 4 for leaky Lamb waves and in figures 7 and 8 for nonleaky Lamb waves.
Figures 9 - 16 depict the variations of symmetric and skew-symmetric ampli-
tudes of displacements ur, uz, microrotation φθ and temperature distribution
T in the context of L-S and G-L theories of thermoelasticity for stress free
thermally insulated boundary.
The phase velocities of higher modes of propagation, symmetric and skew-
symmetric for leaky and nonleaky Lamb waves as evident from figures 1, 2, 5
and 6 attain quite large values at vanishing wave number which sharply slashes
down to become steady and asymptotic with increasing wave number.

Phase velocity
The phase velocities of lowest symmetric leaky and nonleaky Lamb wave modes
of propagation become dispersionless i.e. remain constant with variation in
wave number. It is evident from figure 1 and figure 5 that (a) phase velocity
profiles for L-S and G-L theory coincide for symmetric modes ( n = 0 and n
= 2) of propagation (b) for n = 1, phase velocity for L-S theory is less than in
case of G-L theory for wave number ξ ≤ 2.2; phase velocity for L-S theory is
slightly more than in case of G-L theory for wave number lying between 2.2 and
3.2; phase velocity profiles for L-S and G-L theory coincide for wave number
ξ ≥ 3.2.
For skew-symmetric leaky Lamb wave modes of propagation, we notice the
following from figure 2: (a) for n = 0, phase velocity for L-S theory is less than
in case of G-L theory for wave number ξ ≤ 1.2; phase velocity for L-S theory
is more than in case of G-L theory for wave number lying between 1.2 and
2.2; phase velocity profiles for L-S theory and G-L theory coincide for wave
number ξ ≥ 2.2 (b) for n = 1, phase velocity for L-S theory is slightly more
than in case of G-L theory for wave number ξ ≤ 1.2; phase velocity profiles for
L-S theory and G-L theory coincide for wave number lying between 1.2 and
2.4; phase velocity for L-S theory is less than in case of G-L theory for wave
number ξ ≥ 2.4 and ξ ≤ 4.6; phase velocity profiles for L-S theory and G-L
theory coincide for wave number ξ ≥ 4.6(c) phase velocity for L-S theory is
slightly more than in case of G-L theory for wave number ξ ≤ 1.2 and for wave
number lying between 2.8 and 4.2; phase velocity for L-S theory is less than in
case of G-L theory for wave number lying between 1.2 and 2.8; phase velocity
profiles for L-S theory and G-L theory coincide for wave number ξ ≥ 4.2.
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For skew-symmetric nonleaky Lamb wave modes of propagation, we notice the
following from figure 6: (a) for lowest mode ( n = 0) phase velocity for L-S
theory is more than in case of G-L for wave number ξ ≤ 1.2; phase velocity
for L-S theory is less than in case of G-L theory for wave number ξ ≥ 1.2 and
ξ ≤ 2.2; phase velocity profiles coincide for wave number ξ ≥ 2.2 (b) phase
velocity profiles for L-S theory and G-L theory coincide for modes n = 1 and
n = 2.

Attenuation coefficients
For symmetric leaky and nonleaky Lamb wave mode (n = 0), the magnitude of
attenuation coefficient for L-S and G-L theories increases upto 123.9 and 113.4
respectively in the region 0.2 ≤ ξ ≤ 5.2 at ξ = 5.2 It is evident from figure
3 and figure 7 that symmetric modes of propagation have same attenuation
coefficient for wave number ξ ≤ 2.2 and have higher attenuation coefficient in
L-S theory followed by G-L theory for wave number ξ ≥ 2.2 and ξ ≤ 5.2.
The attenuation coefficient for lowest skew-symmetric leaky and nonleaky Lamb
wave mode (n = 0) has negligible variation with wave number in G-L theory
of thermoelasticity as evident from figure 4 and figure 8. For lowest skew-
symmetric leaky Lamb wave mode, the attenuation coefficient has negligible
variation with wave number in L-S theory of thermoelasticity in the region
0.2 ≤ ξ ≤ 3.2 and attains high values 1577 and 1655 at ξ = 4.2 and at ξ = 5.2
respectively in the 3.2 ≤ ξ ≤ 5.2 as evident from figure 4. For lowest skew-
symmetric nonleaky Lamb wave mode, attenuation coefficient for L-S theory
attains maximum value 997.5 in the region 0.2 ≤ ξ ≤ 3.2 at ξ = 1.2 and de-
creases sharply to nearly zero with the increase in wave number as noticed from
figure 8.

Amplitudes
The displacement ur and temperature distribution T of the plate is minimum
at the centre and maximum at the surfaces for symmetric mode and zero at the
centre and maximum at the surfaces for skew-symmetric mode as evident from
figures 9, 10, 15 and 16 respectively. From figure 11 and figure 12, it is noticed
that the values of the displacement uz of the plate is zero at the centre and
maximum at the surfaces for symmetric mode and maximum at the centre and
minimum at the surfaces for skew-symmetric mode. It is evident from figure
13 and figure 14 that the value of microrotationφθ of the plate is zero at the
centre, minimum at the bottom surface and maximum at the top surface of
the plate for symmetric mode and minimum at the centre and maximum at
the surfaces for skew-symmetric mode. (ur)sym ,(ur)asym ,(uz)sym ,(uz)asym
,(φθ)sym, (φθ)asym,(T )symand(T )asym correspond to the values of ur,uz,φθ and
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T for symmetric and skew -symmetric modes respectively.
The values of the symmetric displacements ur of the plate in case of G-L
theory are slightly higher in comparison to L-S theory. The values of the skew-
symmetric displacements ur and symmetric displacements uz of the plate are
nearly same in case of L-S and G-L theories. The values of the skew-symmetric
displacements uz of the plate in case of G-L theory are more in comparison to
L-S theory. The values of the microrotation φθ of the plate are exactly same in
case of L-S and G-L theories for symmetric and skew-symmetric modes. The
values of the temperature distribution T of the plate in case of G-L theory are
less in comparison to L-S theory for symmetric and skew-symmetric modes.

8. Conclusions

(i) The propagation of leaky and nonleaky Lamb waves in a homogenous
isotropic micropolar thermoelastic cubic crystal plate bordered with layers or
half spaces of inviscid liquid subjected to stress free boundary conditions has
been studied in context of Lord and Shulman (L-S) and Green and Lindsay
(G-L) theories of thermoelasticity (ii) The secular equations for symmetric
and skew-symmetric leaky and nonleaky Lamb wave modes of propagation are
derived (iii) The phase velocities of lowest symmetric leaky and nonleaky Lamb
modes of propagation become dispersionless i.e. remain constant with variation
in wave number. The phase velocities of higher leaky and nonleaky Lamb
modes of propagation, symmetric and skew-symmetric attain quite large values
at vanishing wave number which sharply slashes down to become steady and
asymptotic with increasing wave number (iv) The variation of phase velocity
and attenuation coefficient with wave number for symmetric modes (n = 0) of
wave propagation in the context of L-S and G-L theories of thermoelasticity
for stress free thermally insulated micropolar thermoelastic cubic crystals is
same for leaky Lamb waves and nonleaky Lamb waves (v) It is observed that
behavior and trend of variations (ur)asymand (T )asym is similar to (uz)sym and
that of (ur)sym resembles with (T )sym . However the behavior and trend of
variations (uz)asym is opposite to that of (ur)symand(T )sym .
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