Generalized Degree Distance of Strong Product of Graphs

K. Pattabiraman*, P. Kandan
Department of Mathematics, Annamalai University, Annamalainagar 608 002, India.
E-mail: pramank@gmail.com
E-mail: kandan2k@gmail.com

Abstract. In this paper, the exact formulae for the generalized degree distance, degree distance and reciprocal degree distance of strong product of a connected and the complete multipartite graph with partite sets of sizes \(m_0, m_1, \ldots, m_{r-1}\) are obtained. Using the results obtained here, the formulae for the degree distance and reciprocal degree distance of the closed and open fence graphs are computed.

Keywords: Generalized degree distance, Degree distance, Reciprocal degree distance, Strong product.

2000 Mathematics subject classification: 05C12, 05C76.

1. Introduction

All the graphs considered in this paper are simple and connected. For vertices \(u, v \in V(G)\), the distance between \(u\) and \(v\) in \(G\), denoted by \(d_G(u,v)\), is the length of a shortest \((u,v)\)-path in \(G\) and let \(d_G(v)\) be the degree of a vertex \(v \in V(G)\). The strong product of graphs \(G\) and \(H\), denoted by \(G \Box H\), is the graph with vertex set \(V(G) \times V(H) = \{(u,v) : u \in V(G), v \in V(H)\}\) and \((u,x)(v,y)\) is an edge whenever (i) \(u = v\) and \(xy \in E(H)\), or (ii) \(uv \in E(G)\) and \(x = y\), or (iii) \(uv \in E(G)\) and \(xy \in E(H)\), see Fig. 1.

*Corresponding Author

Received 22 July 2014; Accepted 27 December 2014
©2015 Academic Center for Education, Culture and Research TMU

A topological index of a graph is a real number related to the graph; it does not depend on labeling or pictorial representation of a graph. In theoretical chemistry, molecular structure descriptors (also called topological indices) are used for modeling physicochemical, pharmacologic, toxicologic, biological and other properties of chemical compounds [8]. There exist several types of such indices, especially those based on vertex and edge distances. One of the most intensively studied topological indices is the Wiener index.

Let G be a connected graph. Then Wiener index of G is defined as $W(G) = \frac{1}{2} \sum_{u,v \in V(G)} d_G(u,v)$ with the summation going over all pairs of distinct vertices of G. This definition can be further generalized in the following way:

$$W_{\lambda}(G) = \frac{1}{2} \sum_{u,v \in V(G)} d^\lambda_G(u,v),$$

where $d^\lambda_G(u,v) = (d_G(u,v))^\lambda$ and λ is a real number [9, 10]. If $\lambda = -1$, then $W_{-1}(G) = H(G)$, where $H(G)$ is Harary index of G. In the chemical literature also $W_{\frac{1}{2}}$ [27] as well as the general case W_{λ} were examined [6, 11]. Wiener index of 2-dimensional square and comb lattices with open ends is obtained by Graovac et al. in [5]. In [17] the Wiener index of HAC5C7[p, q] and HAC5C6C7[p, q] nanotubes are computed by using GAP program. Dobrynin and Kochetova [4] and Gutman [7] independently proposed a vertex-degree-weighted version of Wiener index called degree distance or Schultz molecular topological index, which is defined for a connected graph G as

$$DD(G) = \frac{1}{2} \sum_{u,v \in V(G)} (d_G(u) + d_G(v))d_G(u, v),$$

where $d_G(u)$ is the degree of the vertex u in G. Note that the degree distance is a degree-weight version of the Wiener index. In the literature, many results on the degree distance $DD(G)$ have been put forward in past decades and they mainly deal with extreme properties of $DD(G)$.

Tomescu[24] showed that the star is the unique graph with minimum degree distance within the class of n-vertex connected graphs. Tomescu[25] deduced properties of graphs with minimum degree distance in
the class of \(n\)-vertex connected graphs with \(m \geq n-1\) edges. For other related results along this line, see [2, 14, 18].

Additively weighted Harary index \((H_A)\) or reciprocal degree distance \((RDD)\) is defined in [1] as \(H_A(G) = RDD(G) = \frac{1}{2} \sum_{u,v \in V(G)} (d_G(u) + d_G(v))d_G(u,v)\). In [12], Hamzeh et. al recently introduced generalized degree distance of graphs. Hua and Zhang [12, 13] have obtained lower and upper bounds for the reciprocal degree distance of graph in terms of other graph invariants including the degree distance, Harary index, the first Zagreb index, the first Zagreb coindex, pendant vertices, independence number, chromatic number and vertex-, and edge-connectivity. Puttabiraman and Vijayaragavan [21, 22] have obtained the reciprocal degree distance of join, tensor product, strong product and wreath product of two connected graphs in terms of other graph invariants. The chemical applications and mathematical properties of the reciprocal degree distance are well studied in [1, 19, 23].

The generalized degree distance, denoted by \(H_\lambda(G)\), is defined as \(H_\lambda(G) = \frac{1}{2} \sum_{u,v \in V(G)} (d_G(u) + d_G(v))\lambda d_G(u,v)\), where \(\lambda\) is a any real number. If \(\lambda = 1\), then \(H_\lambda(G) = DD(G)\) and if \(\lambda = -1\), then \(H_\lambda(G) = RDD(G)\). The generalized degree distance of unicyclic and bicyclic graphs are studied by Hamzeh et. al [12, 13]. Also they are given the generalized degree distance of Cartesian product, join, symmetric difference, composition and disjunction of two graphs. It is well known that many graphs arise from simpler graphs via various graph operations. Hence it is important to understand how certain invariants of such product graphs are related to the corresponding invariants of the original graphs. In this paper, the exact formulae for the generalized degree distance, degree distance and reciprocal degree distance of strong product \(G \boxtimes K_{m_0, m_1, \ldots, m_{r-1}}\), where \(K_{m_0, m_1, \ldots, m_{r-1}}\) is the complete multipartite graph with partite sets of sizes \(m_0, m_1, \ldots, m_{r-1}\) are obtained.

The first Zagreb index is defined as \(M_1(G) = \sum_{u \in V(G)} d_G(u)^2\). In fact, one can rewrite the first Zagreb index as \(M_1(G) = \sum_{u \in E(G)} (d_G(u) + d_G(v))\). The Zagreb indices are found to have applications in QSPR and QSAR studies as well, see [3].

If \(m_0 = m_1 = \ldots = m_{r-1} = s\) in \(K_{m_0, m_1, \ldots, m_{r-1}}\) (the complete multipartite graph with partite sets of sizes \(m_0, m_1, \ldots, m_{r-1}\)), then we denote it by \(K_{r(s)}\). For \(S \subseteq V(G)\), \((S)\) denotes the subgraph of \(G\) induced by \(S\). For two subsets \(S, T \subseteq V(G)\), not necessarily disjoint, by \(d_G(S, T)\), we mean the sum of the distances in \(G\) from each vertex of \(S\) to every vertex of \(T\), that is, \(d_G(S, T) = \sum_{s \in S, t \in T} d_G(s, t)\).
2. Generalized Degree Distance of Strong Product of Graphs

In this section, we obtain the generalized degree distance of \(G \Join K_{m_0, m_1, \ldots, m_{r-1}} \).

Let \(G \) be a simple connected graph with \(V(G) = \{v_0, v_1, \ldots, v_n\} \) and let \(K_{m_0, m_1, \ldots, m_{r-1}}, \ r \geq 2 \), be the complete multipartite graph with partite sets \(V_0, V_1, \ldots, V_{r-1} \) and let \(|V_i| = m_i \), \(0 \leq i \leq r-1 \). In the graph \(G \Join K_{m_0, m_1, \ldots, m_{r-1}} \), let \(B_{ij} = v_i \times V_j, v_i \in V(G) \) and \(0 \leq j \leq r-1 \). For our convenience, as in the case of tensor product, the vertex set of \(G \Join K_{m_0, m_1, \ldots, m_{r-1}} \) is written as

\[
V(G) \times V(K_{m_0, m_1, \ldots, m_{r-1}}) = \bigcup_{i=0}^{r-1} B_{ij}.
\]

As in the tensor product of graphs, let \(\mathcal{B} = \{B_{ij}\}_{i=0}^{r-1} \) and \(\mathcal{B}_1 = \bigcup_{i=0}^{r-1} B_{ij} \); we call \(\mathcal{B}_1 \) as layer and column of \(G \Join K_{m_0, m_1, \ldots, m_{r-1}} \), respectively, see Figures 2 and 3.

If we denote \(V(B_{ij}) = \{x_{i1}, x_{i2}, \ldots, x_{im_j}\} \) and \(V(B_{kp}) = \{x_{k1}, x_{k2}, \ldots, x_{km_p}\} \), then \(x_{i\ell} \) and \(x_{k\ell}, 1 \leq \ell \leq j \), are called the corresponding vertices of \(B_{ij} \) and \(B_{kp} \). Further, if \(v_iv_k \in E(G) \), then the induced subgraph \(\langle B_{ij} \cup B_{kp} \rangle \) of \(G \Join K_{m_0, m_1, \ldots, m_{r-1}} \) is isomorphic to \(K_{|V_i||V_p|} \) or, \(m_p \) independent edges joining the corresponding vertices of \(B_{ij} \) and \(B_{kp} \) according as \(j \neq p \) or \(j = p \), respectively.

Structure of shortest paths in \(G \Join K_{m_0, m_1, \ldots, m_{r-1}} \) **corresponding to an edge in** \(G \).

If \(v_iv_k \in E(G) \), then shortest paths of length 1 and 2 from \(B_{ij} \) to \(B_{kp} \) are shown in solid edges, where the vertical line between \(B_{ij} \) and \(B_{kp} \) denotes the edge joining the corresponding vertices of \(B_{ij} \) and \(B_{kp} \). The broken edges denote a shortest path of length 2 from a vertex of \(B_{ij} \) to a vertex of \(B_{kp} \).

The proof of the following lemma follows easily from the properties and structure of \(G \Join K_{m_0, m_1, \ldots, m_{r-1}} \), see Figs. 2 and 3.
Lemma 2.1. Let G be a connected graph and let B_{ij}, $B_{kp} \in \mathcal{B}$ of the graph $G' = G \boxtimes K_{m_0, m_1, \ldots, m_r}$, where $r \geq 2$.

(i) If $v_iv_k \in E(G)$ and $x_{it} \in B_{ij}$, $x_{kt} \in B_{kj}$, then

$$d_{G'}(x_{it}, x_{kt}) = \begin{cases} 1, & \text{if } t = \ell, \\ 2, & \text{if } t \neq \ell, \end{cases}$$

and if $x_{it} \in B_{ij}$, $x_{kt} \in B_{kp}$, $j \neq p$, then $d_{G'}(x_{it}, x_{kt}) = 1$.

(ii) If $v_iv_k \notin E(G)$, then for any two vertices $x_{it} \in B_{ij}$, $x_{kt} \in B_{kp}$, $d_{G'}(x_{it}, x_{kt}) = d_G(v_i, v_k)$.

(iii) For any two distinct vertices in B_{ij}, their distance is 2.

The proof of the following lemma follows easily from Lemma 2.1. The lemma is used in the proof of the main theorems of this section.

Lemma 2.2. Let G be a connected graph and let B_{ij}, $B_{kp} \in \mathcal{B}$ of the graph $G' = G \boxtimes K_{m_0, m_1, \ldots, m_r}$, where $r \geq 2$.

(i) If $v_iv_k \in E(G)$, then

$$d_{G'}^\lambda(B_{ij}, B_{kp}) = \begin{cases} m_jm_p, & \text{if } j \neq p, \\ (1 - 2^\lambda(m_j - 1))m_j, & \text{if } j = p. \end{cases}$$

(ii) If $v_iv_k \notin E(G)$, then $d_{G'}^\lambda(B_{ij}, B_{kp}) = \begin{cases} m_jm_p\lambda d_G^\lambda(v_i, v_k), & \text{if } j \neq p, \\ m_j^2\lambda^2 d_G^\lambda(v_i, v_k), & \text{if } j = p. \end{cases}$

(iii) $d_{G'}^\lambda(B_{ij}, B_{kp}) = \begin{cases} m_jm_p, & \text{if } j \neq p, \\ 2^\lambda m_j(m_j - 1), & \text{if } j = p. \end{cases}$

![Fig. 3](image)

Corresponding to a shortest path of length $k > 1$ in G, the shortest path from any vertex of B_{ij} to any vertex of B_{kj} (resp. any vertex of B_{ij} to any
vertex of $B_{kp}, p \neq j$) of length k is shown in solid edges (resp. broken edges).

Lemma 2.3. Let G be a connected graph and let B_{ij} in $G' = G \otimes K_{m_0, m_1, \ldots, m_{r-1}}$. Then the degree of a vertex $(v_i, u_j) \in B_{ij}$ in G' is $d_{G'}((v_i, u_j)) = d_G(v_i) + (n_0 - m_j) + d_G(v_i)(n_0 - m_j)$, where $n_0 = \sum_{j=0}^{m_j} m_j$.

Remark 2.4. The sums $\sum_{j, p=0}^{r-1} m_j m_p = 2q, \sum_{j=0}^{r-1} m_j^2 = n_0^2 - 2q \sum_{j, p=0}^{r-1} m_j^2 m_p = n_0^3 - 2n_0q - \sum_{j=0}^{r-1} m_j^3$ and $n_0 \sum_{j=0}^{r-1} m_j^3 = n_0 \sum_{j=0}^{r-1} m_j^3 - \sum_{j=0}^{r-1} m_j^4 = n_0 \sum_{j=0}^{r-1} m_j^3 m_p$, where $n_0 = \sum_{j=0}^{m_j}$ and q is the number of edges of $K_{m_0, m_1, \ldots, m_{r-1}}$.

Theorem 2.5. Let G be a connected graph with n vertices and m edges. Then $H_\lambda(G \otimes K_{m_0, m_1, \ldots, m_{r-1}}) = (n_0^3 + 2n_0q)H_\lambda(G) + 4n_0qW_3(G) + M_1(G)(1 - 2^\lambda)(2q - 2 - 2^{\lambda+1}) + n_0(2q - 2 - 2^{\lambda+1}) + 2(2 - 2^\lambda + 1)\sum_{j=0}^{r-1} m_j^3) + n\left(2n_0(2 - 2^\lambda) + n_0(2^\lambda - 1) - 2^{\lambda+1} + (1 - 2^\lambda)\sum_{j=0}^{r-1} m_j^3\right), r \geq 2$.

Proof. Let $G' = G \otimes K_{m_0, m_1, \ldots, m_{r-1}}$. Clearly,

$$H_\lambda(G') = \frac{1}{2} \sum_{B_{ij}, B_{kp} \in \mathcal{D}} \left(d_{G'}(B_{ij}) + d_{G'}(B_{kp})\right) d_{G'}^2(B_{ij}, B_{kp})$$

$$= \frac{1}{2} \left(\sum_{i, j, p=0}^{r-1} \left(d_{G'}(B_{ij}) + d_{G'}(B_{kp})\right) d_{G'}^2(B_{ij}, B_{kp}) + \sum_{i, k, j=0}^{r-1} \left(d_{G'}(B_{ij}) + d_{G'}(B_{kj})\right) d_{G'}^2(B_{ij}, B_{kj}) + \sum_{i, k, j=0}^{r-1} \left(d_{G'}(B_{ij}) + d_{G'}(B_{kj})\right) d_{G'}^2(B_{ij}, B_{kj}) + \sum_{i=0}^{r-1} \sum_{j=0}^{r-1} \left(d_{G'}(B_{ij}) + d_{G'}(B_{ij})\right) d_{G'}^2(B_{ij}, B_{ij})\right)$$

$$= \frac{1}{2} \left(A_1 + A_2 + A_3 + A_4\right),$$

where A_1, A_2, A_3 and A_4 are the sums of the terms of the above expression, in order.
We shall obtain A_1 to A_4 of (2.1), separately.

\[A_1 = \sum_{i=0}^{r-1} \sum_{j=0}^{n-1} \left(d_{G'}(B_{ij}) + d_{G'}(B_{ip}) \right) d_{G'}(B_{ij}, B_{ip}) \]

\[= \sum_{i=0}^{r-1} \sum_{j=0}^{n-1} \left(2d_G(v_i) + d_G(v_i)(2n_0 - m_j - m_p) + (2n_0 - m_j - m_p) \right) m_j m_p, \]

by Lemmas 2.2 and 2.3

\[= 8mq + 2m \left(4n_0q - 2(n_0^3 - 2n_0q - \sum_{j=0}^{r-1} m_j^3) \right) + n \left(4n_0q - 2(n_0^3 - 2n_0q - \sum_{j=0}^{r-1} m_j^3) \right), \]

by Remark 2.4

\[= 2m \left(4q + 8n_0q - 2n_0^3 + 2 \sum_{j=0}^{r-1} m_j^3 \right) + n \left(8n_0q - 2n_0^3 + 2 \sum_{j=0}^{r-1} m_j^3 \right). \]

\[A_2 = \sum_{j=0}^{r-1} \sum_{i=0}^{n-1} \sum_{i, k = 0}^{n-1} \left(d_{G'}(B_{ij}) + d_{G'}(B_{jk}) \right) d_{G'}(B_{ij}, B_{jk}) \]

\[= \sum_{j=0}^{r-1} \sum_{i, k = 0}^{n-1} \left(d_G(v_i) + d_G(v_k) \right) + 2(n_0 - m_j) + (n_0 - m_j)(d_G(v_i) + d_G(v_k)) \]

\times \left(1 - 2^3 + 2^2 m_j \right) m_j

\[+ \sum_{j=0}^{r-1} \sum_{i, k = 0}^{n-1} \left(d_G(v_i) + d_G(v_k) \right) + 2(n_0 - m_j) + (n_0 - m_j)(d_G(v_i) + d_G(v_k)) \]

\times m_j^2 d_G(v_i, v_k), \]

\[= 2H_s(G) \left(n_0^3 + n_0^2 - 2q - 2n_0q - \sum_{j=0}^{r-1} m_j^3 \right) + 4W_s(G) \left(n_0^3 - 2n_0q - \sum_{j=0}^{r-1} m_j^3 \right) + 2M_s(G) \left(2q - n_0^3 + n_0 + 4q + \sum_{j=0}^{r-1} m_j^3 \right) + 4m(1 - 2^3) \left(2q - n_0^3 + 2q + \sum_{j=0}^{r-1} m_j^3 \right). \]
by Remark 2.4.

\[A_3 = \sum_{i, k = 0, j, p = 0, i \neq k, j \neq p}^{r-1} \sum_{i, k = 0, j, p = 0, i \neq k, j \neq p}^{n-1} \left(d_G(v_i) + d_G(v_k)(n_0 - m_j) + d_G(v_j)(n_0 - m_j) + d_G(v_k)(n_0 - m_p) \right) \\
+ d_G(v_k)(n_0 - m_j) \right)_{v_i, v_k}, \]

by Lemmas 2.2 and Lemma 2.3

\[A_4 = \sum_{i = 0}^{n-1} \left(\sum_{j = 0}^{r-1} \left(d_G(v_i) + d_G(v_j) \right) \right) \]

\[= \sum_{i = 0}^{n-1} \sum_{j = 0}^{r-1} \lambda^{i+j} \left(d_G(v_i)(m_j^2 - m_j) + (n_0 - m_j)(m_j^2 - m_j) + d_G(v_j)(n_0 - m_j)(m_j^2 - m_j) \right) \\
= 2^{\lambda+1} \left(2m(n_0^2 - 2q - n_0) + n(n_0^3 - 2qn_0 - n_0^2 - \sum_{j=0}^{r-1} m_j^3 + n_0^2 - 2q) \right) \\
+ 2m(n_0^2 - 2q - n_0 - \sum_{j=0}^{r-1} m_j^3 + n_0^2 - 2q) \right), \] by Remark 2.4

\[= 2^{\lambda+2} \left(n_0^3 + n_0^2 - 4q - n_0 - 2q - n_0 - \sum_{j=0}^{r-1} m_j^3 + 2^{\lambda+1} \left(n_0^2 - 2q - n_0 - 2q - \sum_{j=0}^{r-1} m_j^3 \right) \right) \]

Using (2.2), (2.2), (2.2) and (2.2) in (2.1), we have

\[H_{\lambda}(G') = \left(n_0^3 + 2n_0q \right) H_{\lambda}(G) + 4n_0q W_{\chi}(G) \]

\[+ M_\lambda(G)(1 - 2^\lambda) \left(2q \right) \left(n_0^3 - n_0^2 + n_0 + 4q + \sum_{j=0}^{r-1} m_j^3 \right) \]

\[+ \left(4q n_0(3 - 2^{\lambda+1}) - 2n_0^3(2 - 2^{\lambda+1}) + 4q(2 - 2^\lambda - 2^{\lambda+1}) + n_0(n_0 - 1)2^{\lambda+1} \right) \]

\[+ 2(2 - 2^{\lambda+1}) \sum_{j=0}^{r-1} m_j^3 \right) + n \left(2n_0q(2 - 2^\lambda) + n_0^3(2^\lambda - 1) - 2^{\lambda+1} q + (1 - 2^\lambda) \sum_{j=0}^{r-1} m_j^3 \right). \]

Using \(\lambda = 1 \) in Theorem 2.5, we have the following corollary, which is the degree distance of the strong product of graphs.
Corollary 2.6. Let G be a connected graph with n vertices. Then $DD(G \Box K_{n_0, n_1, \ldots, n_{r-1}}) = (n_0^3 + 2n_0q)DD(G) + 4n_0qW(G) + M_1(G)\left(n_0^3 + n_0^2 - 2q n_0 - n_0 - 4q - \sum_{j=0}^{r-1} m_j^3\right) + 4m\left(n_0^3 - 4q - n_0^2 - n_0 - \sum_{j=0}^{r-1} m_j^3\right) + n\left(n_0^3 - 4q - \sum_{j=0}^{r-1} m_j^3\right)$, $r \geq 2$.

If $m_i = s$, $0 \leq i \leq r - 1$, in Corollary 2.6, we have the following

Corollary 2.7. Let G be a connected graph with n vertices and m edges. Then $DD(G \Box K_{r(s)}) = r^3 s^3 (rs - s + 1)DD(G) + 2r^2 s^3 (r - 1)W(G) + M_1(G)s\left(rs^2 - rs + 2s - s^2 - 1\right) + 2mrs\left(r^2 s^2 - 2rs + rs^2 + 4s - 2s^2 - 2\right) + nrs^2\left(r^2 s - 2rs + 2s^2\right)$, $r \geq 2$.

As $K_r = K_{r(1)}$, the above corollary gives the following

Corollary 2.8. Let G be a connected graph with n vertices and m edges. Then $DD(G \Box K_r) = r^3 DD(G) + 2r^2 (r - 1)W(G) + 2rn(r - 1)^2 + rm(r - 1)^2$, $r \geq 2$.

Using $\lambda = -1$ in Theorem 2.5, we obtain the reciprocal degree distance of strong product of graphs.

Corollary 2.9. Let G be a connected graph with n vertices. Then $RDD(G \Box K_{n_0, n_1, \ldots, n_{r-1}}) = (n_0^3 + 2n_0q)RDD(G) + 4n_0qH(G) + \frac{M_1(G)}{2}\left(n_0(n_0 + 1) - (n_0 + 2)(n_0^2 - 2q) + \sum_{j=0}^{r-1} m_j^3\right) + m\left(8n_0q - 2n_0^3 + n_0^2 - n_0 + 2q + \sum_{j=0}^{r-1} m_j^3\right) + \frac{n}{2}\left(6n_0q - n_0^3 - 2q + \sum_{j=0}^{r-1} m_j^3\right)$, $r \geq 2$.

If $m_i = s$, $0 \leq i \leq r - 1$, in Corollary 2.9, we have the following

Corollary 2.10. Let G be a connected graph with n vertices and m edges. Then $RDD(G \Box K_{r(s)}) = r^3 s^3 (rs - s + 1)RDD(G) + 2r^2 s^3 (r - 1)H(G) + \frac{M_1(G)}{2}r s^2 - rs^2 - 2s + s^2 + 1\) + mrs\left(r^2 s^2 - 4rs^2 + 2rs + 2s^2 - s - 1\right) + \frac{nr^2}{2}\left(2r^2 s^2 - 3rs + s - r + 1\right)$.

As $K_r = K_{r(1)}$, the above corollary gives the following

Corollary 2.11. Let G be a connected graph with n vertices and m edges. Then $RDD(G \Box K_r) = r\left(r^2 RDD(G) + 2r(r - 1)H(G) + 2r(r - 1)m + n(r - 1)^2\right)$.

As an application we present formulae for degree distance and reciprocal degree distance of open and closed fences, $P_n \Box K_2$ and $C_n \Box K_2$, see Fig.4.
One can easily check that $W(P_n) = \frac{n(n^2-1)}{6}$ and $W(C_n) = \begin{cases} \frac{n^3}{8} & \text{n is even} \\ \frac{n(n^2-1)}{8} & \text{n is odd} \end{cases}$.

Similarly, we have $DD(P_n) = 4n(n-1)(2n-1)$ and $DD(C_n) = 4W(C_n)$.

One can observe that $M_1(C_n) = 4n$, $n \geq 3$, $M_1(P_1) = 0$, and $M_1(P_n) = 4n - 6$, $n > 1$. By direct calculations we obtain the Harary indices of P_n and C_n as follows. $H(P_n) = n \left(\sum_{i=1}^{n} \frac{1}{i}\right) - n$ and $H(C_n) = \begin{cases} n \left(\sum_{i=1}^{n} \frac{1}{i}\right) - 1, & \text{n is even} \\ n \left(\sum_{i=1}^{n} \frac{1}{i}\right), & \text{n is odd} \end{cases}$.

The following are the reciprocal degree distance of path and cycle on n vertices. $RDD(P_n) = H(P_n) + 4 \left(\sum_{i=1}^{n} \frac{1}{i}\right) - \frac{3}{n-1}$ and $RDD(C_n) = 4H(C_n)$.

By using Corollaries 2.8 and 2.11, we obtain the exact formulae for degree distance and reciprocal degree distance of the following graphs.

Example 2.12.

(i) $DD(P_n \Box K_2) = \frac{4}{3} \left(5n^3 - 6n^2 + 31n - 24\right)$.

(ii) $DD(C_n \Box K_2) = \begin{cases} 5n(n^2 + 2) & \text{n is even} \\ 5n(n^2 + 1) & \text{n is odd} \end{cases}$.

(iii) $RDD(P_n \Box K_2) = 16 \left(\sum_{i=1}^{n} \frac{1}{i}\right) + 32 \left(\sum_{i=1}^{n} \frac{1}{i}\right) - 6n - \frac{24}{n-1} - 8$.

(iv) $RDD(C_n \Box K_2) = \begin{cases} 10n \left(1 + 4 \sum_{i=1}^{n} \frac{1}{i}\right) - 40 & \text{n is even} \\ 10n \left(1 + 4 \sum_{i=1}^{n} \frac{1}{i}\right) & \text{n is odd} \end{cases}$.

![Fig. 4. Closed and open Fence graphs.](https://example.com/Fig4.png)
The authors wish to thank the referees for their recommendations to publish this article.

REFERENCES