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1. Introduction

Classifying the class of all topological spaces is one of the main problems in

topology. For instance in algebraic topology one of the main results of intro-

ducing fundamental groups and homological groups is classifying topological

spaces.

In this paper we introduce and demonstrate a method to classify the class of

all topological spaces, and in particular the class of all linear connected spaces.

A topological space X is called path connected (linear connected) if for ev-

ery x, y ∈ X there exists a path in X from x to y ( i.e, a continuous map
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f : [0, 1]→ X such that f(0) = x and f(1) = y [4]).

The following questions are asked due to the properties paths from x to y.

(1) How much paths from x to y are similar to “one to one” path?

(2) For nonzero cardinal number θ, is it possible to have“ θ to one” path

from x to y?

(3) How many “θ to one” paths are there from x to y?

(4) How big could be a collection of “θ to one” paths from x to y which

are “enough separated”?

These questions help to classify the class of all linear connected spaces.

In § 2 main tools, α−arcs and β−separated families are introduced. In § 3 we

define (α, β)−linear connectivity and we have our first and main steps, also § 4

is designed for explanation more details of (α, β)−linear connectivity. Finally

in § 5 the concept of (α, β)−linear connectivity as a classifying tool for class of

all linear connected spaces is shown in detail.

We assume ZFC+CH, moreover N denotes the set of natural numbers, R de-

notes the set of real numbers, ω = card(N) is the first infinite cardinal number,

and c = card(R) is the first uncountable cardinal number.

2. α−Arcs and β−Separated Families

In this section, α−arcs and β−separated families are introduced. We introduce

α−arcs in order to work on the second question of Introduction. β−separated

families in accompanying with α−arcs work on question (4) of Introduction.

These are our main tools for (α, β)−linear connectivity approach.

Definition 2.1. In topological space X for nonzero cardinal number α, a

continuous map f : [0, 1] → X is called an α−arc (between a = f(0) and

b = f(1)) if for any t ∈ [0, 1] we have card(f−1(f(t))− {t}) < α

As we see in the following remark, 1−arcs are well-known. In the literature

1−arcs are known as arcs [5, page 29].

Remark 2.2. A continuous function f : [0, 1]→ X is an 1−arc if and only if it

is one to one. In addition any continuous function f : [0, 1] → X is an α−arc

for any α > c.

Example 2.3. For n < ω consider f : [0, 1]→ C with

f(x) =



(n+ 2)x− 1 x ∈ [0, 1
n+2 ] ,

1
2k
e2πi((n+2)x−k) + i 1

2k
x ∈ [ k

n+2 ,
k+1
n+2 ], k ∈ {1, . . . , n} ,

(n+ 2)x− (n+ 1) x ∈ [n+1
n+2 , 1] .
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Then f : [0, 1] → C is an α−arc if and only if α ≥ n + 1 (In Figure 1 we see

f [0, 1] = {f(x) : x ∈ [0, 1]}).

q qq��
��
m

-1 10

pppd
(Figure 1)

Convention In the rest of this section by fn we denote constructed f : [0, 1]→
C in Example 2.3.

Example 2.4. Consider f : [0, 1]→ C with f(0) = 0, f(x) = fn(2n+1x−1)+3
2n+2 for

x ∈ [ 1
2n+1 ,

1
2n ] and n ∈ ω. Then f : [0, 1]→ C is an α−arc if and only if α ≥ ω

(In Figure 2 we see f [0, 1] = {f(x) : x ∈ [0, 1]} =: X).

r rr r r��
��

0 11
2

1
4

1
8

mf· · ·

· · ·

(Figure 2)

Definition 2.5. Let X be a topological space and β 6= 0 a cardinal number.

A collection Γ of maps f : [0, 1] → X with f(0) = a and f(1) = b, is called a

β−separated family of maps between a and b if for all g, h ∈ Γ with g 6= h we

have card(g[0, 1] ∩ h[0, 1]− {a, b}) < β.

Example 2.6. In Definition 2.5 for 0 < β ≤ c:
• If X = R, then every β−separated family of continuous maps

f : [0, 1]→ R between −1 and 1 has at most one element.

• If X = C, then every β−separated family of continuous maps

f : [0, 1] → S1 = {eiθ : θ ∈ [0, 2π]}(⊆ C) between −1 and 1 has

at most two element. In addition there exists a β−separated family

continuous maps between −1 and 1 with two elements.

For β > c, Γ is a β−separated family of continuous maps f : [0, 1]→ X between

a and b if and only if for any f ∈ Γ, f : [0, 1] → X is a continuous map with

f(0) = a and f(1) = b (note: the set of all continuous maps f : [0, 1]→ X for

X = R or X = S1 with f(0) = 1 and f(1) = −1 has cardinal number c).

Example 2.7. With the same assumptions as in Example 2.4, let X = f [0, 1],

then for each β ≤ ω, {f} is the unique β−separated family of continuous maps

g : [0, 1]→ X between 0 and 1 containing f .
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3. (α, β)−Linear Connectivity

Now we are ready to introduce (α, β)−linear connectivity. For a nonzero car-

dinal number β, and for a β−separated family of maps between a and b in a

topological space X like Γ, since Γ ⊆ X [0,1], card(Γ) ≤ card(X)c, we have the

following definition.

Definition 3.1. Let X be a linear connected topological space, a, b ∈ X,

and α, β be nonzero cardinal numbers. Then by DX
LC(α,β)(a, b) or simply

DLC(α,β)(a, b) we mean:

sup({card(Γ) : Γ is a β − separated family of α− arcs between a and b})

and call it (α, β)−linear connection degree of a and b [1, Definition 1].

Example 3.2. Suppose X = {|x|+ i sinx : x ∈ R} (Figure 3) with the induced

topology of C.

(Figure 3)

For nonzero cardinal numbers α, β, also n,m ∈ N ∪ {0} with n 6= m and

k = |n−m| we have:

DLC(α,β)(nπ,mπ) = DLC(α,β)(0, kπ) =


1 0 < β < k

2 k ≤ β ≤ c
c β > c

.

Moreover if x+ iy, x′ + iy′ ∈ X and (x, y) 6= (x′, y′) (with x, y, x′, y′ ∈ R) such

that nπ ≤ x < (n+1)π < mπ < x′ ≤ (m+1)π, then DLC(α,β)(x+iy, x′+iy′) =

DLC(α,β)(nπ, (m+ 1)π).

Proof. Since DLC(α,β)(nπ,mπ) = DLC(α,β)(mπ, nπ), we may assume nπ < mπ

and m = n+k. Note that f : [0, 1]→ X such that f(x) = nπ+kπx+i sin(nπ+

kπx) and g : [0, 1]→ X such that g(x) = nπ+ kπx+−i sin(nπ+ kπx) are two

1−arcs between nπ and mπ. Moreover f [0, 1]∩g[0, 1] = {nπ, (n+1)π, . . . ,mπ},
Thus for β ≥ k, {f, g} is a β−separated family of continuous 1−arcs (so α−arcs)

between nπ and mπ. Therefore:

DLC(α,β)(nπ,mπ) = DLC(α,β)(0, kπ) ≥
{

1 β < k

2 β ≥ k (∗).

Now we have the following cases:

Case 1: β < k. If f1, g1 : [0, 1] → X are two continuous maps with f1(0) =

g1(0) = nπ and f1(1) = g1(1) = mπ, then f1[0, 1] ∩ g1[0, 1] ⊆ {nπ, (n +
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1)π, . . . ,mπ}. So card((f1[0, 1]∩g1[0, 1])−{mπ, nπ}) ≥ k−1 ≥ β, which leads

to the fact that any β−separated family of continuous maps between nπ and

mπ has at most 1 element, i.e. DLC(α,β)(nπ,mπ) ≤ 1. Using (*) we have:

∀β < k DLC(α,β)(nπ,mπ) = 1.

Case 2: β > c. Consider 1−arc f : [0, 1] → X with f(x) = nπ + kπx +

i sin(nπ+kπx) in the beginning of proof. The set Φ := {f ◦φ : φ : [0, 1]→ [0, 1]

is a homeomorphism with φ(0) = 0 and φ(1) = 1} is a collection of 1−arcs

between nπ and mπ moreover it has cardinality c. For every f1, g1 ∈ Φ we have

card(f1[0, 1] ∩ g1[0, 1]) ≤ card(X) = c < β. Therefore DLC(α,β)(nπ,mπ) ≥
card(Φ) = c. Since the set of all continuous functions from [0, 1] to X has

cardinality c, DLC(α,β)(nπ,mπ) ≤ c. Thus we have:

∀β > c DLC(α,β)(nπ,mπ) = c.

Case 3: k < β ≤ c. If h1, h2 and h3 are distinct elements of a β−separated

family of α−arcs between nπ and mπ, then there exists x0 ∈ (nπ,mπ) such

that for all j ∈ {1, 2, 3}, {x+ i sinx : x ∈ [nπ, x0]} ⊆ hj [0, 1] or {x− i sinx : x ∈
[nπ, x0]} ⊆ hj [0, 1]. By Pigeonhole Principle there exist k, j ∈ {1, 2, 3} with

k 6= j such that {x+i sinx : x ∈ [nπ, x0]} ⊆ hj [0, 1]∩hk[0, 1] or {x−i sinx : x ∈
[nπ, x0]} ⊆ hj [0, 1] ∩ hk[0, 1]. Therefore we have c ≤ card(hk[0, 1] ∩ hj [0, 1] −
{nπ,mπ}) < β, which is a contradiction. Thus every β−separated family of

α−arcs between nπ and mπ has at most two elements, and DLC(α,β)(nπ,mπ) ≤
2, using (*) we have DLC(α,β)(nπ,mπ) = 2. �

Definition 3.3. For nonzero cardinal numbers α, β, a linear connected topo-

logical space X is called (α, β)−linear connected if for any distinct a, b ∈ X we

have DX
LC(α,β)(a, b) > 1.

Lemma 3.4. Let X be a topological space and a ∈ X. Then there exists a

maximal (α, β)−linear connected subspace of X containing a.

Proof. Let Γ = {M ⊆ X : a ∈ M and M is (α, β)−linear connected subspace

of X}. We observe that {a} ∈ Γ and Γ 6= ∅. Suppose that (Mλ)λ∈Λ is a

nonempty chain in (Γ,⊆). For c, d ∈
⋃
λ∈Λ

Mλ with c 6= d there exist λ1, λ2 ∈ Λ

such that c ∈ Mλ1
and d ∈ Mλ2

with out any less of generality. We may

suppose Mλ1
⊆ Mλ2

. Therefore c, d ∈ Mλ2
. Since Mλ2

is (α, β)−linear con-

nected, D
Mλ2

LC(α,β)(c, d) > 1. By D
⋃
λ∈Λ Mλ

LC(α,β) (c, d) ≥ D
Mλ2

LC(α,β)(c, d). We have

D
⋃
λ∈Λ Mλ

LC(α,β) (c, d) > 1, so
⋃
λ∈Λ

Mλ is (α, β)−linear connected and
⋃
λ∈Λ

Mλ ∈ Γ is

an upper bounded of chain (Mλ)λ∈Λ in (Γ,⊆). By Zorn’s Lemma, (Γ,⊆) has

a maximal element which is a maximal (α, β)−linear connected subspace of X

too. �
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Example 3.5. In Example 3.2, for 1 ≤ β < ω, the collection of all maximal

(α, β)−linear connected subspaces of X is {{x+iy ∈ X : kπ ≤ |x| ≤ (k+β)π} :

k ∈ ω}. Thus maximal (α, β)−linear connected subspaces of X are not disjoint.

Moreover if Ξ is the collection of all maximal (α, β)−linear connected subspace

of X containing a+ ib(∈ X), then:

Ξ = {{x+ iy ∈ X : kπ ≤ |x| ≤ (k + β)π} : k ≥ 0, 0 ≤ |a| − kπ ≤ βπ}.

Therefore maximal (α, β)−linear connected subspace ofX containing 0 is unique

(i.e., {x + iy ∈ X : |x| ≤ βπ}), and there exists two (α, β)−linear con-

nected subspace of X containing π (i.e., {x + iy ∈ X : |x| ≤ βπ} and

{x+ iy ∈ X : π ≤ |x| ≤ (β + 1)π}).
In addition X is (α, β)−linear connected for β ≥ ω.

Example 3.6. For two point set space X = {a, b} with topology {X,∅}, for

nonzero cardinal numbers α, β we have:

(1) for α ≤ c there is not any α−arc between a and b since if f : [0, 1]→ X

is continuous with f(0) = a and f(1) = b, then f−1(a)∪f−1(b) = [0, 1]

and therefore card((f−1(f(0))−{0})∪(f−1(f(1))−{1})) = card(0, 1) =

c which shows card(f−1(f(0))−{0}) = c or card(f−1(f(1))−{1}) = c

and f is not an α−arc.

(2) for α > c, f1, f2 : [0, 1]→ X with:

f1(x) =

{
a x = 0

b 0 < x ≤ 1
, f2(x) =

{
a 0 ≤ x < 1

b x = 1
,

are two α−arcs between a and b moreover: card((f1[0, 1] ∩ f2[0, 1]) −
{a, b}) = 0 < β and {f1, f2} is a β−separated family of α−arcs between

a and b.

Thus:

DLC(α,β)(a, b) =

{
0 α ≤ c
≥ 2 α > c

which shows:

(1) for α ≤ c, maximal (α, β)−linear connected subspaces of X are {a}
and {b}.

(2) for α > c, X is (α, β)−linear connected.

Note 3.7. (2c, 2c)−linear connected maximal subspaces of X are linear con-

nected component of X.

Now we study the product of two (α, β)−linear conectivity.

Lemma 3.8. In linear connected topological spaces X, Y , for nonzero cardinal

numbers α1, α2, β1, β2 and a, c ∈ X, b, d ∈ Y with (a, b) 6= (c, d) we have:

1. If f : [0, 1] → X is an α1−arc and g : [0, 1] → X is an α2−arc, then

f × g : [0, 1] → X × Y with f × g(x, y) = (f(x), g(y)) ((x, y) ∈ X × Y ) is a
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min(α1, α2)−arc (for this item see [1, Theorem 5], here we present a similar

but more clear proof).

2. If Γ is a β1−separated family of maps between a, c and Λ is a β2−separated

family of maps between b, d, such that ϕ : Γ → Λ is an injection, then

{f × ϕ(f) : f ∈ Γ} is a (β1β2 + 2β1 + 2β2 + 2)−separated family of maps

between (a, b) and (c, d).

3. If Γ is a β1−separated family of maps between a, c and Λ is a β2−separated

family of maps between b, d, such that ψ : Λ → Γ is an injection, then

{ψ(h) × h : h ∈ Λ} is a (β1β2 + 2β1 + 2β2 + 2)−separated family of maps

between (a, b) and (c, d).

4. The following inequality holds:

DX
LC(α1,β1)(a, c)D

Y
LC(α2,β2)(b, d) ≤ DX×Y

LC(min(α1,α2),(β1β2+2β1+2β2+2))((a, b), (c, d)).

In particular for infinite β1, β2 the inequality

DX
LC(α1,β1)(a, c)D

Y
LC(α2,β2)(b, d) ≤ DX×Y

LC(min(α1,α2),max(β1,β2))((a, b), (c, d))

holds.

Proof. 1. Suppose f : [0, 1]→ X is an α1−arc and g : [0, 1]→ X is an α2−arc.

For every t ∈ [0, 1] we have

(f × g)−1((f × g)(t)) = (f × g)−1(f(t), g(t)) ⊆ f−1(f(t)) ∩ g−1(g(t))

which leads to

card((f × g)−1((f × g)(t)− {t}))

≤ card((f−1(f(t))− {t}) ∩ (g−1(g(t))− {t}))
≤ min(card(f−1(f(t))− {t}), card(g−1(g(t))− {t}))
< min(α1, α2)

which leads to the desired result.

2. Let f, g ∈ Γ and f 6= g, then:

(f × g)[0, 1] ∩ (ϕ(f)× ϕ(g))[0, 1] ⊆ (f [0, 1] ∩ g[0, 1])× (ϕ(f)[0, 1] ∩ ϕ(g)[0, 1]).

Since ϕ is injective and f 6= g, then ϕ(f) 6= ϕ(g). Now we have

card((f × g)[0, 1] ∩ (ϕ(f)× ϕ(g))[0, 1])

≤ card((f [0, 1] ∩ g[0, 1])× (ϕ(f)[0, 1] ∩ ϕ(g)[0, 1]))

< (β1 + 2)(β2 + 2)

which leads to

card(((f×g)[0, 1]∩(ϕ(f)×ϕ(g))[0, 1])−{(a, b), (c, d)}) ≤ β1β2 +2(β1 +β2)+2.

3. Use a similar method described in (2).

4. Use (2) and (3) and the fact that there exists an injection ϕ : Γ→ Λ or an

injection ψ : Λ→ Γ. �
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Theorem 3.9. For nonzero cardinal numbers α1, α2, β1, β2 if X is

(α1, β1)−linear connected and Y is (α2, β2)−linear connected, then X × Y is

(min(α1, α2), (β1β2 + 2β1 + 2β2 + 2))−linear connected, in particular if at least

one of β1 or β2 is infinite, then X × Y is (min(α1, α2),max(β1, β2))−linear

connected.

Proof. Use Lemma 3.8. �

4. Acceptability with Respect to (α, β)

It is well-known that the collection of all maximal linear connected subspaces

of a topological space X is a partition of X and every point a ∈ X belongs

to a unique maximal linear connected subspace of X. Regarding Lemma 3.4

in the topological space X every a ∈ X belongs to a maximal (α, β)−linear

connected subspace of X. By Example 3.5 we see that there are examples in

which the maximal (α, β)−linear connected subspace of X containing a is not

unique. In this section we want to have a glance to the topological spaces in

which maximal (α, β)−linear connected subspaces are unique.

Lemma 4.1. For nonzero cardinal numbers α and β in the topological X the

following assertions are equivalent:

• for every a ∈ X there exists a unique maximal (α, β)−linear connected

subspace of X.

• The collection of all maximal (α, β)−linear connected subspaces of X

is a partition of X.

Proof. Use Lemma 3.4. �

Definition 4.2. The topological space X is called acceptable with respect to

(α, β), if maximal (α, β)−linear connected subspaces of X make a partition of

X.

If X is acceptable with respect to (α, β), then we call its maximal (α, β)−linear

connected subspaces, the (α, β)−linear connected components of X.

Remark 4.3.

(1) In Example 3.2 for 1 ≤ β < ω and nonzero α, X is not acceptable with

respect to (α, β) (use notes in Example 3.5).

(2) In Example 3.6 for any nonzero α and β, X is acceptable with respect

to (α, β).

Remark 4.4. Using [1, Theorem 6], in linear connected topological spaces X

for nonzero cardinal numbers α, α1 for all a, b, d ∈ X we have:

DLc(α,2c)(a, b)DLc(α1,2c)(b, d) ≤ DLc(α+α1+1,2c)(a, d),
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and therefore for infinite cardinal number α we have:

DLc(α,2c)(a, b)DLc(α,2c)(b, d) ≤ DLc(α,2c)(a, d).

Remark 4.5. Using [1, Theorem 2] in linear connected topological space X if

Y is a linear connected subspace of X and a, b ∈ Y , then for nonzero cardinal

numbers α, β we have:

DY
LC(α,β)(a, b) ≤ DX

LC(α,β)(a, b).

Lemma 4.6. For infinite cardinal number α every topological space X is ac-

ceptable with respect to (α, 2c).

Proof. Let A, B be maximal (α, 2c)−linear connected subspaces of X with

d ∈ A ∩B using Remark 4.4 and Remark 4.5 for all a ∈ A and b ∈ B we have:

DA∪B
Lc(α,2c)(a, b) ≥ DA∪B

Lc(α,2c)(a, d)DA∪B
Lc(α,2c)(d, b)

≥ DA
Lc(α,2c)(a, d)DB

Lc(α,2c)(d, b) ≥ 4.

Thus A ∪B is (α, 2c)−linear connected, which leads to A = B (since A and B

are maximal (α, 2c)−linear connected subspaces of X). �

Definition 4.7. For nonzero cardinal numbers α, β we call topological space

X locally (α, β)−linear connected in a ∈ X if for every open neighborhood U

of a there exists an (α, β)−linear connected open subset V of X such that a ∈
V ⊆ U . We call X locally (α, β)−linear connected if it is locally (α, β)−linear

connected in every x ∈ X.

Theorem 4.8. If X is acceptable with respect to (α, β) and it is locally

(α, β)−linear connected, then (α, β)−linear connected components of X are

open.

Proof. Suppose a ∈ X and M is (α, β)−linear connected components of X

containing a. Since X is locally (α, β)−linear connected, there exists an open

(α, β)−linear connected neighborhood of a like U(⊆ X). We set

Γ := {L ⊆ X : L is (α, β)− linear connected and U ⊆ L ⊆ X}.

Using Zorn’s Lemma (Γ,⊆) has a maximal element like L. L is a maximal

(α, β)−linear connected subspace of X. Since a ∈M∩L, L and M are maximal

(α, β)−linear connected subspaces of X, and X is acceptable with respect to

(α, β), L = M . By a ∈ U ⊆M , a is an interior point of M . �

5. A Table

In this section we bring a table which shows how (α, β)−linear connectivity

approach classify the class of all linear connected spaces.
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Table 5.1. For nonzero cardinal numbers α, β if LC(α, β) denotes the class
of all (α, β)−linear connected spaces., then we have the following table:

LC(1, 1) ⊂ · · · ⊂ LC(1, n) ⊂ · · · ⊂ LC(1, ω) ⊂ LC(1, c) ⊂ LC(1, 2c)

|∩ |∩ |∩ |∩ |∩
...

...
...

...
...

|∩ |∩ |∩ |∩ |∩
LC(m, 1) ⊂ · · · ⊂ LC(m,n) ⊂ · · · ⊂ LC(m,ω) ⊂ LC(m, c) ⊂ LC(m, 2c)

|∩ |∩ |∩ |∩ |∩
...

...
...

...
...

|∩ |∩ |∩ |∩ |∩
LC(ω, 1) ⊂ · · · ⊂ LC(ω, n) ⊂ · · · ⊂ LC(ω, ω) ⊂ LC(ω, c) ⊂ LC(ω, 2c)

|∩ |∩ |∩ |∩ |∩
LC(c, 1) ⊂ · · · ⊂ LC(c, n) ⊂ · · · ⊂ LC(c, ω) ⊂ LC(c, c) ⊂ LC(c, 2c)

∩ ∩ ∩ ∩ ∩
LC(2c, 1) ⊂ · · · ⊂ LC(2c, n) ⊂ · · · ⊂ LC(2c, ω) ⊂ LC(2c, c) ⊂ LC(2c, 2c)

||

The class of all linear connected spaces

Where “⊂” means strict inclusion.

Proof. Consider the following counterexamples:

Counterexample 1. Let α > 0, 0 < n < ω and X = {|x| + i sinx : 0 ≤
x ≤ (n + 1)π}, then X is an (α, n + 1)−linear connected space, but isn’t an

(α, n)−linear connected space.

Counterexample 2. In the Example 3.2 for α > 0, X is an (α, ω)−linear

connected space but isn’t an (α, n)−linear connected space.

Counterexample 3. Let X = {|x|+ i|x| sin( 1
x ) : −1 ≤ x ≤ 1, x 6= 0} ∪ {0} (a

schema has been presented in Figure 4) with the induced topology of C.

(Figure 4)

The topological space X is an (α, c)−linear connected space, but that isn’t an

(α, ω)−linear connected space.

Counterexample 4. In the Example 2.4, let α > 0, thenX is an (α, 2c)−linear

connected space, moreover X is not an (α, c)−linear connected space.
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Using Counterexamples 1, 2, 3, 4 we have the following diagrams which com-

plete the proof.

LC(α, 1)
LC(α, 2)

(Counterexample 1)
· · · LC(α, n+ 1)

(Counterexample 1)
· · ·

LC(α, ω)

(Counterexample 2)

LC(α, c)

(Counterexample 3)

LC(α, 2c)

(Counterexample 4)

In the above diagram for nonzero cardinal number α

regarding mentioned Counterexample we may find

a corresponding topological space.

And the following diagram:

LC(c, β)
LC(2c, β)

(Counterexample 4)

which indicates that regarding Counterexample 4, there exists a topological

space X such that X ∈ LC(2c, β)− LC(c, β). �

6. Final Note

6.1. Why should we deal with (α, β)−linear connectivity? As it has

been mentioned in the first paragraph of the abstract of [3] “Similarity concept,
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finding the resemblance or classifying some groups of objects and study their

common properties has been the interest of many researchers.”, also one may

try to know exactly the objects of a category (like [2]). In this text we tried to

introduce “(α, β)−linear connectivity concept” as a tool to classify the class of

all linear connected topological spaces. Here we want to show how we reach to

(α, β)−linear connectivity approach. The following is a real story (about one

of the authors).

When I was an undergraduate student, for the first time saw infinite bloom

(Figure 5)): that subspace of the Euclidean space R2 which consists of all

closed line segments joining a = (2, 1) to a rational point in x−axis. This

infinite bloom is linear connected and it is not locally connected in any point

except a, in fact it is locally linear connected in a. One of the most well known

exercises in this approach is this: Find a linear connected set X which is not

locally linear connected in any point (a schema of my answer is in Figure 6). So,

I decided to classify linear connected spaces which are locally linear connected

in just one point, and they are not locally connected in any other points. The

result was a a collection of examples Figures 8, 9, 10, and 11.

(Figure 5) (Figure 6) (Figure 7)

(Figure 8) (Figure 9) (Figure 10)

(Figure 11)

Where:
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• Figure 5 is a presentation of infinite bloom.

• Figure 6 is a presentation of my answer to: Find a linear connected set

X which is not locally linear connected in any point.

• Figure 7 is a presentation of a subset of R2 which is linear connected

and locally connected in just countable points.

• Figure 8 proposes to select a dense subset of the graph of a “good func-

tion” with dense complement, instead of choosing rational (irrational)

numbers of x−axis in Figure 5.

• Figure 9 is a more generalization of Figure 8.

• Figure 10 uses arcs instead of lines in previous Figures.

• Figure 11 presents a generalization of Figure 5.

However these spaces may be more complicated (Figure 12). Now the main

question is: “Suppose X is a linear connected subspace of plane with more than

one point which is locally linear connected in just one point like u and X is not

locally connected in every x ∈ X \ {u}.Does X has a subspace homeomorph

with infinite bloom?” The result of working in this question was a join lecture

in undergraduate math students’ seminar. But still the question was unsolved,

however a new concept has been introduced, I was hopeful that this concept

help us to find the answer. This concept was “(α, β)−linear connection degree”.

Our idea about the relation between the concept of (α, β)−linear connection

degree and our question was true, one may find this relation in next subsection.

As a matter of fact Theorem 6.2 guaranties the existance of a subspace similar

to Figure 13 in our target subspaces of R2.

(Figure 12) (Figure 13)

6.2. A Theorem. Let’s generalize the notion of DX
LC(α,β)(a, b) from linear

connected space X to arbitrary topological space X.

Definition 6.1. In topological space X, for a, b ∈ X and nonzero cardinal

numbers α, β, suppose La is linear connected component of X which contains
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a, and Ca is connected component of X containing a. Define:

DX
LC(α,β)(a, b) :=



DLa
LC(α,β)(a, b) b ∈ La ,

−1 b ∈ Ca \ La ,

−2 otherwise .

DX
LC(α,β)(a, b) (or simply DLC(α,β)(a, b)) is called (α, β)−linear connection de-

gree of a and b.

Using Definition 6.1 we recall the following theorem.

Theorem 6.2 ([1, Theorem 4]). Let S ⊆ R2, β be a nonzero cardinal number,

a ∈ S and f : [0, 1] → R2 be a continuous 1-1 map such that a /∈ f [0, 1],

f(0), f(1) ∈ S and:

• for each b, d ∈ f [0, 1] ∩ S with b 6= d we have DSLC(1,β)(b, d) ≥ 1 and

D
S\{a}
LC(1,β)(b, d) < 1,

• for each countable subset K of [0, 1], f([0, 1]\K)∩S is dense in f [0, 1],

• if for each b ∈ f [0, 1] ∩ S, gb : [0, 1]→ S be a continuous 1-1 map such

that gb(1) = b and gb(0) = a, then
⋃
{gb(0, 1) : b ∈ f(0, 1) ∩ S} is a

subset of the enterior of the simple closed curve f [0, 1] ∪ gf(0)[0, 1] ∪
gf(1)[0, 1].

Then there exists L ⊆ S such that:

• a ∈ L and L is linear connected,

• for each b ∈ L \ {a}, L is not locally connected in b,

• (S \ L) ∩ f [0, 1] is countable and for each countable subset K of [0, 1],

f([0, 1] \K) ∩ L is dense in f [0, 1].

6.3. Some arising problems. Now let’s generalize Theorem 6.2 through the

following example. Here we bring a subset of R3 which is a generalization of

infinite bloom. Let X be that subspace of R3 consisting of closed line segments

joining a = (0, 0, 1) to an element of {(x, y, 0) : x2 + y2 ≤ 1, (x, y) ∈ Q × Q}.
Then X is a linear connected space it is not locally linear connected in any

point but a (Figure 14). However one may consider more complicated examples

(Figure 15).
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(Figure 14) (Figure 15)

In the following for n ∈ N and linear normed space E let Dn
E := {x ∈ En :

||x|| ≤ 1} and SnE := {x ∈ Dn+1
E : ||x|| = 1}.

Regarding Theorem 6.2, and above descriptions the following problem occurs:

Problem 6.3. Find all normed linear space E, nonzero cardinal numbers α, β

and n ∈ N such that the following statement is valid:

Let S ⊆ En+1, and f : Dn
E → En+1 be a continuous 1-1 map such that

a /∈ f(Dn
E), f(Sn−1

E ) ⊆ S, and:

• for each b, d ∈ f(Dn
E) ∩ S with b 6= d we have DSLC(α,β)(b, d) ≥ 1 and

D
S\{a}
LC(α,β)(b, d) < 1,

• for each countable subset K of Dn
E , f(Dn \K) ∩ S is dense in f(Dn

E),

• if for each b ∈ f(Dn
E) ∩ S, gb : [0, 1] → S be a continuous α−arc such

that gb(1) = b and gb(0) = a, then M :=
⋃
{gb[0, 1] : b ∈ f(Sn−1

E )} ∪
f(Dn

E) is a nowhere-dense subset of En+1 such that En+1 \ M has

exactly two connected component, one bounded and the other un-

bounded,
⋃
{gb(0, 1) : b ∈ f(Dn

E \ S
n−1
E ) ∩ S} is a subset of bounded

component of En+1 \M .

Then there exists L ⊆ S (L 6= {a}) such that:

• a ∈ L and L is linear connected,

• for each b ∈ L \ {a}, L is not locally connected in b.

Using Theorem 6.2, E = R, n = 2 and α = 1 is one of the answers of Prob-

lem 6.3.

Considering Tabel 5.1, we have the following problem:

Problem 6.4. Suppose 0 < α ≤ ω and β > 0. Find an (α+, β)−linear

connected space X which is not (α, β)−linear connected space.

However solving the following problem may be useful to find answers for Prob-

lems 6.3 and 6.4.

Problem 6.5. Let f : [0, 1] → X be an α+−arc. When there exists α−arc

g : [0, 1]→ X with f(0) = g(0), f(1) = g(1) and g[0, 1] ⊆ f [0, 1]?
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