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ABSTRACT. In this paper, a Bayesian hierarchical model is used to anaylze
the female breast cancer mortality rates for the State of Missouri from
1969 through 2001. The logit transformations of the mortality rates are
assumed to be linear over the time with additive spatial and age effects
as intercepts and slopes. Objective priors of the hierarchical model are
explored. The Bayesian estimates are quite robustness in terms change
of the hyperparamaters. The spatial correlations are appeared in both
intercepts and slopes.
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1. INTRODUCTION

Over the past decades a great deal of effort has been expended in the col-
lection and compilation of high quality data on cancer incidence and mortality
in the United States. These data have largely been used in the creation and
disbursement of descriptive statistics concerning the state of cancer in the U.S.
The information available through these statistics present limited information
concerning spatial or temporal trends in the course of cancer in the U.S. Re-
cently, there have been more efforts made to investigate these trends, such as
Jackson-Thompson et al. (2006). National data on mortality due to cancer
has been examined using a variety of methods in work by Mungiole and Pickle
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(1999), Manton, Woodbury, Tallard, Riggan, Creason and Pellom (1989) and
Devesa et al. (1999) for example. While others have sought to model national
data on cancer incidence (Pickle et al. 2003). For public health policy mak-
ers, there are two important initial questions about any disease, and cancer
specifically, that need to be answered. First, how has the course of the disease
changed over time; have incidence or mortality rates increased or decreased?
Secondly, are there specific regions where the disease is more or less prevalent
than others, and has this changed over time? These are important questions
that provide feedback both to assess the effectiveness of public health policy and
to provide guidance as to the best allocation of limited resources in preventing
the spread of disease.

The use of Bayesian spatial models for disease mapping and smoothing of
data dates back to the seminal paper by Clayton and Kaldor (1987), which
introduced the use of the conditional autoregressive (CAR) prior from Besag
(1974) for spatial effects in an empirical Bayesian model. Other examples of
various empirical Bayesian approaches to spatial data include Manton, Wood-
bury, Stallard, Riggan, Creason and Pellom (1989), Clayton and Bernardinelli
(1992), Devine, Halloran and Louis (1994), Devine, Louis and Halloran (1994),
and Devine and Louis (1994). Other more recent Bayesian approaches include,
Bernardinelli et al. (1995), Ferrandiz et al. (1995), Xia and Carlin (1998), Sun
et al. (2000), and Zhang et al. (2006).

The data set considered here consists of the observed number of deaths in
each county in the State of Missouri due to female breast cancer from 1969
through 2001. The data are stratified into eleven three year time periods, and
into four ten year age-group periods, 40 — 49, 50 — 59, 60 — 69 and 70+ years
of age. One of the goals of the analysis proposed here is to devise a suitable
spatio-temporal smoother for this data set.

The model proposed for the analysis of the breast cancer mortality data is
a relatively straightforward additive model with separate terms for the spatial,
temporal and age effects. This is similar to a random effects model, but with
the distinction that the temporal effects term has a slope that contains both
a separate age effect and a separate spatial effect. This model does provide a
degree of smoothing, but unfortunately this smoothing is dominated by the age
effects and retains little of the regional heterogeneity present in the raw data.

2. A HIERARCHICAL MODEL FOR MORTALITY RATES

In order to begin the description of the additive model, first consider the
likelihood of the data. Let y;;r denote the number of cases of a given disease
for the it* county, j** time period, and k' age-group. Here i = 1,--- , I = 115,
j=1,---,J=11,and k =1,--- ,K = 4. Given the population size n;;; and
rate p;ji, we assume that y;;x follows an independent Poisson distribution,

indep. .
(1) Wijk | piji) =" Poisson(nijkpiji)-
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We consider the following hierarchical model for a monotonic transformation
of the rate p;ji,

(2) Viji = log(pijr) = zi + O + (wi + pr)(t; — 1) + €,

where z; is the additive effect for the i** county and 6 is the additive effect
for age-group k. The change over time is represented by the rate (w; + py) for
the i*" county and k' age group multiplied by (t; — ), where £ = Jflzjzl t
and t; is the midpoint of the jt* time period. This allows for each age group
and each county to have different temporal slopes. Extra variations due to
other sources are included in the error terms e;;; and are assumed to follow
the distribution

(3) €ijk iy N(0, o).
As a result, the prior for v;j; is
4)  (vijr | 21,0k, wi, g, 00) ~ N (2i + O0r + (wi + pr) (t; — 1), 00).

This form of spatio-temporal interaction, in which county slopes are allowed
to have spatial correlation, is first suggested in Sun et al. (2001). In order to
complete this model the priors for dg, 8 and g must be specified. z; and w; also
have prior distributions with hyper-parameters that have prior distributions of
their own.

2.1. Prior Distributions of z; and w;. The prior distribution of z; is given by
the conditional autoregressive (CAR) prior proposed in Besag (1974) , Clayton
and Kaldor (1987). This prior is defined in part using the I x I adjacency
matrix C' with elements C,,, defined as

(5)

o 1, if counties v and v are adjacent,
e 0, otherwise, with Cy, = 0.

If z = (21,...,21)", then the CAR prior for z is then defined by the density

I — 1/2 1
(6) [z]p1,01] = %GXP{_Q_&ZI(II_MC)Z}a

where 0; > 0. In order for this to be a proper prior, the values for p; are
constrained such that p; € ()\I_l,)\l_ ), where A\; and \; are, respectively, the
minimum and the maximum eigenvalues of the adjacency matrix C. Note that
this interval contains 0 because A\; < 0 < A;. In the case p; = 0, the z; are
independent. As in the case of z, w = (w1, ..,wr)’ follows a similar CAR prior.

Ir — p>C|'/? 1
0 folps] = B0 e (- w' (- Oy

where d2 > 0 and po € (/\fl,Afl). Note that the correlation coefficients p; and
p2 are assumed to be independent of age-group and time period. The CAR
priors (6) and (7) chosen for both z and w as in He and Sun (2000) have the
benefits of additional correlation parameters not in other priors such as that
proposed by Besag et al. (1991).
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2.2. Summary and Completion of the Hierarchical Model. Evaluation
of the model requires the likelihood and additional priors given here. The
likelihood in (1) can be written in terms of vy, = log(pijk),

(8) [ijn | vijk] oc exp(vijryije — nijre”*).
In order to complete the hierarchical model, the following priors are needed
(9) 0k ~ N(fmk; 6mk):
(10) pr ~ N(Ek,dsk),
1 _
(11) (0] o (;la,——le‘ b/ 1=0,1,2,
(12) P~ U(AflaAfl)a l= 172

The hyper-parameters (§mk, Omk), (§sk,dsk) and (ag,by) are fixed constants.
When a; > 0 and b; > 0, §; has a proper distribution.

2.3. Propriety of Posterior Distribution. To complete the hierarchical
model, the hyper-parameters (&, 0mj), (&s5,0s5) and (ar, b;) need to be speci-
fied. The commonly used objective prior for 6 and u are flat or constant priors.
This can be a limiting case when 6,,; and ds; — oco. Flat priors are naturally
used for p; and p». Objective priors for §; can present problems. Traditionally
the prior 1/4; can be used for §;. The problem with this prior is that Sun et al.
(2001) shows that the resulting joint posterior will be improper. In this model
the priors 1/+/9; for the variance components are used. In this case, Sun et al.
(2001) showed that the joint posterior is indeed proper.

2.4. Estimation Via MCMC. In order to evaluate this model, Gibbs sam-
pling as proposed in Gelfand and Smith (1990) is used to evaluate the resulting
posterior distributions. In order to implement the Gibbs sampler the full con-
ditional distributions need to be sampled; most of these are known densities,
while a few others are sampled by proving the log-concavity of the distributions
and using the ARS algorithm from Gilks and Wild (1992).

2.5. Available Conditional Distributions. If we define v = (v111,...,V11K
, V121, -+, VijK)', then the full conditional distribution for the joint posterior
of the parameters of interest is as follows.

Lemma 2.1.
a: For given (z;, ik, Wi, 0k, 00; Yiji), (Y111, - .., vigK) are independent. Each
viji, depends only on yiji, 0o, and a;jr = z; + O + (Wi + p)(t; — 1),
and has the following conditional density,

[ . . O 00 Ui o .. pViik _1 . )2
Vijk | Ziy Pk, Wiy Uy anzgk] X €XP 4§ YijkVijk — Nijk€ - 2 (Vz]k - azgk) ;
0

b: The conditional posterior distribution of v;j in part (a) is log-concave.
c: (z|v,0,p1,60,01;y) ~ Ni(c1,60G7 "), where Gy = JKI; + g—;’(II -
7 O), ¢1 = Gy di1,dia, ..., dig)', and dy; = > Wijk — Or).
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d: (O | vijr, 2, 003 yij) ~ N (‘5’":(3?502)+1(/1:5;) (IJ/&o)l—i-l/émk> :

e: (w|v,pw,p2,00,02;y) ~ Ny (02,60G2_1), where Gy = JKI1 + g—g(II —
p2C), dy = 3, (t;=1)%, and ¢y = G5 325 ({0, vijk (tj—1) —da 3 i }-

£: (. | Vijr, wi, 003 yiji) ~ N (csk, Gy ), where Gy, = %2 + ﬁ and
=G A Bty ]

g (00 | v, 2,0, 1,0;9) ~ IG (a0 + L2 by + 1 50, ;L (vije — ain)?)

2 (h) (01 | z,p15y) ~IG (a1 + £, b1 + L2/ (I — p1©)2) .

it (62 | w,p23y) ~IG (a2 + £, by + L' (I1 — p2C)w).

Jt [o1 | 2,6059) o [Ir = p1 C|'/? exp (f;’—iz’CZ)-

k: The conditional density of p1 in part (a) is log-concave.

I [ps | w, 823 y] o< I = poC|/2 exp (B20/Cw).
m: The conditional distribution of pa in part (1) is log-concave.

Proof. The proof for part (b) is as follows

2

0 ,
EEn log[vijk | ziy tks i, Oks 005 Yiju] = —(nijre”* +1/d0) < 0, V vjj.

ijk
For part (k),

5 1< N
8—/)210g[m |z’6l;y]:_§z<l—7p1)\»> <0, Vpr.
1 7

i=1

Part (m) is similar to part (k).

3. RESULTS

Most of the above conditional distributions are easily sampled, the excep-
tions being for v;;i, p1, and pa. Those are shown to have log-concave densities
and are then evaluated using the ARS algorithm at each step in the Gibbs sam-
pler. Implementation in FORTRAN, with the compiled code running 100,000
iterations takes approximately 100 minutes, with 50,000 iterations discarded
for burn-in.

3.1. Objective and Data Dependent Priors. The model is initially run
using objective priors for dg, 6; and da,

w(d) o %, [=0,1,2.
The resulting posterior means and variance are used to calculate a set of data-
dependent priors for dg, 9y and d» by inflating the mean and variances by
some inflation factors (IF). Typically IF = (2,200) for the mean and variance
respectively. Then we use the inflated mean and variance to calculate new
values for the hyper-parameters of the priors. These new data-dependent priors
are used to test the model for robustness in prior selection. Results in Table 1
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for the objective priors (NI) and the inflated priors show that the model does
indeed appear to be robust in terms of prior selection.

TaABLE 1. Quantiles of (&g, 1, 02, p1, p2) for Objective (NI)
and Inflation Factor (IF) Data-dependent Priors

Summary of Posterior Distributions

Prior Min. 1st Qt. | Median | Mean | 3rd Qt. | Max. | Std. Dev.
NI .00095 | .00341 | .00459 | .00467 | .00578 | .01268 | .00166
5o IF 2,200 | .00019 | .00304 | .00418 | .00431 | .00548 | .01282 | .00181
IF 1.5, 25 | .00019 | .00304 | .00418 | .00431 | .00548 | .01282 | .00181
IF 2.5, 500 | .00123 | .00346 | .00432 | .00456 | .00541 | .01183 | .00152
NI .00274 | .00797 | .00952 | .00979 | .01134 | .02295 | .00249
5, IF 2,200 | .00274 | .00794 | .00946 | .00976 | .01126 | .03006 | .00255
IF 1.5, 25 | .00274 | .00794 | .00946 | .00976 | .01126 | .03006 | .00255
IF 2.5, 500 | .00337 | .00830 | .00980 | .01005 | .01151 | .02927 | .00245
NI .00001 | .00019 | .00027 | .00028 | .00035 | .00119 | .00013
5 IF 2,200 | .00001 | .00019 | .00027 | .00030 | .00036 | .00045 | .00019

IF 1.5, 25 | .00001 | .00019 | .00027 | .00030 | .00036 | .00450 | .00019

IF 2.5, 500 | .00005 | .00023 | .00030 | .00032 | .00037 | .00470 | .00016

NI -.2480 | .0787 1185 1046 | .1442 .1700 | .0531

IF 2,200 -.2480 | .0838 1222 1084 | 1471 1700 | .0519

PLITFE 1.5,25 | -.2480 | .0838 1222 1084 | 1471 .1700 | .0519

IF 2.5, 500 | -.2504 | .0803 .1198 1051 | .1453 1700 | .0544

NI -.3399 | -.1188 | .0103 -.0188 | .0947 1700 | 1334

IF 2,200 -.3399 | -.1019 | .02375 | -.0076 | .1054 1700 | 1333

P2 TR 15,25 |-.3399 | -.1019 | .02375 | -.0076 | .1054 1700 | 1333

IF 2.5,500 | -.3399 | -.0835 | .0249 .0006 | .1017 1700 | .1208

3.2. Age Effects 0; and pi. The range of posterior means of 6, indicates
a steady increase in mortality due to female breast cancer with age. Figure 1
shows that the rates for each age group appear to be increasing as age increases;
the mortality rates are higher for older age-groups, regardless of location in
space or time.

The posterior means for u; shown in Figure 1 demonstrate the change in
rates with respect to age over time. The negative values for the two youngest
age groups indicate a decrease in mortality rates over the time period for the
those age groups, and the positive values for the two oldest age groups represent,
an increase in the mortality rates over time for those age groups. Looking at
both plots indicates that the rates for the youngest age groups are less than
the older age groups but also that there is a discrepancy in the rates over time;
they are increasing for the older age groups but decreasing for the younger age
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groups. This interaction between age and time is indication of a possible cohort
effect.

3.3. Variance Components dg, 4; and d5. The relative importance of z and
w and can be seen in their respective variances, 41,02 and in dg, whose posterior
distributions are shown in Figure 1. The mean of the posterior distribution of §,
is smaller than that of dy and é;. In addition the posterior density of py is quite
diffuse and centered about 0. These results indicate that the w components
are superfluous to the model, the small variance and density of ps indicates
that there is little contribution by these terms.

3.4. Spatial Correlation Parameters p; and p,. The plots of the posterior
densities of p; and ps in Figure 1 show that the parameter p; for z is clearly
non-zero, but the density for ps, the similar parameter in the distribution of w,
is widely spread about 0. The implication in this is that the spatial structure
between rates over time is not significant, even though the spatial effect overall
is. In the CAR prior for w when ps is equal to zero, the w; are in fact i.i.d, and
would have the effect of adding random noise to the age group component of
the temporal slope. This could lead to identifiability issues as the model would
then have effectively two error terms.

3.5. Disease Mapping. The maps in Figures 2 and 3 compare the results of
the additive model to the raw estimates of rates. As can be seen from these
maps, the estimates from the additive model greatly smooth the raw data.
Little if any spatial pattern evident in the data is visible from these maps. The
smoothing that is taking place is due to the 8y terms dominating the model
estimates. As a result, the rate estimates are being smoothed toward a mean
age-group effect. This result contradicts the maps of the raw rates, which
show some indication of possible spatial patterns in the rates, though in reality
interpretations of the raw rate maps could be misleading.

The second four sets of maps in Figures 4-7 show the rates for each age
group through each time period. These clearly show the trend over time for
the two youngest age groups (k = 1,2) to be decreasing. The rates for the
third age group (k = 3) are flat, and the rates for the oldest age group (k = 4)
are increasing. These results verify what can be seen in the previous figures
showing the posterior densities for py.

4. COMMENTS

In all, the results for this model show that the dominant term is 6y, indicat-
ing that the age effects dominate the model. While the spatial effects appear
significant, they are small relative to the age effects. There appear to be sig-
nificant temporal trends, though the spatial correlation between the temporal
slopes appears insignificant and they are again dominated by the age terms.
There is also a clear difference between the oldest and youngest age groups
in terms of temporal trends. This model demonstrates satisfactory results in
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terms of detecting age group differences in both mean rate and the temporal
slope of the mean rate.
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FIGURE 1. Posterior Densities of (a) 6y, (b) u, (c) do, (d) d1,
(e) d2, (f) p1 and po from Additive Model for Mortality Rates
pijr for Female Breast Cancer in Missouri during 1969-2000.
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FIGURE 2. Maps of Frequency and Bayesian Estimates of
Mortality Rates p;jr for Female Breast Cancer in Missouri
during 1969-2001 for (4, k) = (3,1) and (j,k) = (5,2).
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FIcURE 3. Maps of Frequency and Bayesian Estimates of
Mortality Rates p;jr for Female Breast Cancer in Missouri
during 1969-2001 for (j,k) = (7,3) and (j, k) = (11,4).
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range of p

0.0002 0.0004

FIGURE 4. Maps of Bayesian Estimates of Mortality Rates
pijr, for Female Breast Cancer in Missouri during 1969-2001
forj=1,...,11and k= 1.
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range of p

0.0004 0.0007

FIGURE 5. Maps of Bayesian Estimates of Mortality Rates
pijr, for Female Breast Cancer in Missouri during 1969-2001
forj=1,...,11 and k = 2.
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FIGURE 6. Maps of Bayesian Estimates of Mortality Rates
pijr, for Female Breast Cancer in Missouri during 1969-2001
forj=1,...,11 and k£ = 3.
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range of p

0.0007 0.0020

FIGURE 7. Maps of Bayesian Estimates of Mortality Rates
pijr, for Female Breast Cancer in Missouri during 1969-2001
forj=1,...,11 and k = 4.
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