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ABSTRACT. Reverse subdivision aims at constructing a coarser represen-
tation of an object given by a fine polygon mesh. In this paper, we first
derive a mask for reverse Loop subdivision that can be applied to both
regular and extraordinary vertices. The mask is parameterized, and thus
can also be used in reversing variants of Loop subdivision, such as those
proposed by Warren and Litke.

We apply this mask not only to mesh geometry, but also to tex-
ture coordinates. This reverses the texture-mapping process described
by DeRose, Kass and Truong, in which a texture originally defined for
a coarse mesh was carried to the finer meshes obtained by subdivision.
Combined with the forward subdivision, the proposed technique consti-
tutes a multiresolution representation of textured subdivision surfaces.
We illustrate its use with a set of examples.
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1. INTRODUCTION

A hierarchy of level-of-detail approximations of a surface can be applied in
both Modeling and Rendering. Subdivision methods can provide the hierarchy
of refining approximations; through the use of subdivision, a sequence of meshes
in several resolutions is constructed.

In order to have a texture mapping for subdivision surfaces, the rule of
transforming vertices of a coarse mesh to a fine one can be used for carrying
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texture coordinates from the coarse mesh to the fine mesh. Figure 1 illustrates
this concept which was introduced in [4]. By using this technique, we only
need a texture map for the given coarse mesh. The texture coordinates of the
subsequent finer meshes are carried from the coarse mesh during subdivision.
This technique is more advantageous when we encounter time-consuming tex-
ture mapping methods such as those that are procedural [4] and interactive
[15]. Texture mapping for subdivision surfaces has been also considered in [21]
and [16].

Here we consider the inverse problem: How can texture coordinates be car-
ried from a fine mesh over to a coarse one? We describe the possibility of
recovering coarse meshes, together with their texture coordinates, from the
fine mesh using reverse subdivision. Therefore, with this technique, it is no
longer necessary to have coarse meshes and their texture coordinates. This
new technique, together with the technique of DeRose, Kass and Truong [4],
can generate a hierarchy of meshes with their texture coordinates in differ-
ent levels-of-detail, so that all meshes and their texture coordinates can be
produced from a specific mesh by the use of subdivision and its reverse rules
(Figure 10).

This hierarchy is beneficial for various applications, such as view dependent
rendering and progressive transmission. Consider looking at an object from
close and distant view points. We can use a fine mesh for a close view and a
coarse mesh for a distant view; and can easily change the quality or resolution
of the mesh both ways by using this hierarchy. Texture coordinates can also be
transformed in this process and repeating the texture mapping at each resolu-
tion can be avoided. In other words, only one approximation mesh of a surface
together with its texture coordinate is needed, and all other approximations in
different levels-of-detail, coarse or fine, can be obtained.

Therefore, our framework is a multiresolution hierarchy (MR) that is an ex-
tension of subdivision. This is consistent with the framework of [3, 13, 17, 22].
The progressive mesh (PM) [8, 20, 14], is another framework for constructing
a hierarchy of several level-of-details of an object. It can be obtained by using
vertex-split and collapse operations. PM can be applied to a mesh with an ar-
bitrary topology, while MR can be applied directly only on those meshes that
satisfy whatever connectivity conditions are required by the subdivision rule
being used. Although, this is a restriction for the MR approach, nevertheless,
subdivision methods are widely used in various graphics software and appli-
cations. Thus, subdivision connectivity conditions are achievable and not too
restrictive in practice. In addition, several techniques have been proposed for
remeshing, [7, 9, 10], which replace meshes unsuitable for a given subdivision
into approximating meshes that are suitable, which broadens the applicability
of MR. Furthermore, each step of any subdivision scheme converts a low fre-
quency approximation of a surface to a high one, and analogously each step
of reverse subdivision converts a high frequency approximation to a low one.
Hence, the hierarchy obtained has a suitable configuration consistent with some
specific applications such as (MR) editing and progressive transmission.
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A musk for deereasing the resolution of & mesh 15 an iImportant tool for (M)
surfaces. There is an analogous mask for refiming, or incressing, the resclution
of & mesh, in the case of subdivision surfaces. Whale the mask of s subdivision
surface 1sns h

15 i Joeal formuls, finding & mask (local formuls) for the reverse

subdivision is problemnatie,

The multiresolution masks of Butterfly and Loop subdivision for regular ver-
tices (all vertices have the walence 6), are determmned by Samawats and Bartels
m [18] and for Doo-Sabin subdivision i [18]. Here we construet a moversal
for Loop subdivision that works for extre-ordmery vertioos as well. Loop sub-
divizion 15 & very good selection because 1ts hmit surface 15 smooth, 1t hes a
comverent local formula for extes-ordinary vertices, and 1t 5 based on triengu-
lar meshes. Loop subdivision has heen widely used in computer graphies |24];
theeefore, constructing & reverse mask of Loop subdiizion 15 advantegeous.
There are other vanations of Loop subdivision such as Warren and Litke that
we take them to consideration as well. Therefore, we construct a parametric
reverse mask that works for sll Loop style subdivisions.

Although, meshes are mostly covered by regular vertices, there are a small
number of extra-ordinary vertices on practical meshes, Therefore, determin-
ing & local formula for & roverse process s important. This local formuls or
parametnic mask can be applied to both ordinary and extre-ordinary vertices.
The main contabutions of this work are the construction of this mask, together
with the concept of earrying texture coordinates from a fine mesh to a coarse
mees.

The work m [19] provides hoth local reversal and local defai] (error) masks
for ordinary vertices. The detail masks relate to the wavelet coefficients of &
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MR surface constructed as a biorthogonal system. The detail coefficients are
important only if the fine mesh being reversed is not created by a subdivision,
which is not the case we are considering here. The errors or details of the
reverse method that relate to the wavelet coefficients are left for future works.

Section 2 gives the necessary background of this work. The construction of
the reverse mask is described in section 3. Section 4 demonstrates the concept
of carrying texture by using local masks.

2. BACKGROUND

Subdivision is a repetitive refinement process that gradually converts a given
coarse mesh to finer meshes to generate a smooth surface at the limit. An
arbitrary mesh M can be denoted by the pair (F, V'), where F shows the faces
of M, and V denotes the vertices of M. Each element v € V has the spatial
coordinates, (z,y, z), and each element f € F is assigned a list that includes
all indices of its adjacent vertices in V.

Catmull-Clarck, Doo-Sabin, Butterfly and Loop subdivisions are some im-
portant cases [2, 5, 6, 12]. The input for subdivision methods is M = (F°, V),
a control mesh. In each step of a subdivision method, the mesh M* = (F¥, V*)
is converted to a new and finer mesh M*+1 = (F*+1 V*+1) This conversion is
done through some local affine operations on V¥, together with a mapping pro-
cess from the faces of F* to those of F¥*1. The affine operations are usually de-
scribed by masks, or matrices, that are smoothing filters. Consequently, by suc-
cessively applying a subdivision method, a hierarchy M°, M, M2, ... Mk, ...
is obtained that usually converges to a smooth surface.

2.1. Loop Subdivision. Loop subdivision is an extension of triangular B-
spline subdivision to general surfaces. In each step of this subdivision, each
triangular face of F* is replaced by four new triangles that form the faces of
FFL (figure 2).

The set of new vertices V¥! includes two types of vertices; some vertices
in V**! have an analogous vertex in V¥, and are called vertex-vertex or even
vertex (vertex v*¥*1 in figure 2). Some vertices in V**1 have an analogous edge
in V¥ which is called edge-vertex or odd vertex (vertex Vf“ in figure 2).
Assume that vertices v, v5, ... vF are all neighbors of v* in M*. In addition,
vF+1 s the corresponding vertex-vertex of v* and V{“H, V§+1, ..., vF*1 are the
corresponding edge-vertices. Then the position of v**! is obtained by the
vertex-vertex mask

(2.1) =gk >k,
j=1
where
2
1/(5 3 1 27
2.2 == (2-(=+= = =1-na.
(2.2) e n<8 <8+4cos<n)>>,ﬁ no
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FIGURE 2. Situation around a vertex v* before and after subdivision.

The weight « is a function of n, and has been selected such that the limit
surface is smooth.

The edge-vertex mask is
(23) y;?+1:gyk+§yf+éf+l+%j_l, 7=12,...,n
where indices are in module n.

For triangular meshes, a regular vertez (or ordinary vertex) has the valance
of 6, i.e. m = 6. Otherwise, the vertex is called extra-ordinary (n # 6). In
the regular case, « is %, and f is % and these are also obtainable from the
triangular B-spline surface. But masks (2.2) and (2.3) are more general and
can be applied for any type of vertex including ordinary and extra-ordinary.
The local formula (2.2) is one of the advantages of Loop subdivision. Note that
both masks of equations (2.1) and (2.3) are affine operations. Figure (3) shows
two consecutive meshes of Loop subdivision and their limit surface.

2.2. Boundary. When we encounter boundary vertices, we need to use bound-
ary masks that are usually different from the interior mask. It is important
that subdivision at any point on the boundary be independent of any point in
the interior of the mesh [24]. This permits two surfaces to be joined along a
boundary curve. Therefore, cubic B-spline subdivision masks for curves can be
used as the boundary masks of Loop subdivision

VL= Lok 3k LUk
(2.4) 1/{”1 =1k 4 %uf,

1/§+1 N %Vé”

IR NI

where v} and v} are two direct neighbors of v* on the boundary (see figure 4).

In figure 11 the left one is a mesh with boundary and the middle one shows
the obtained mesh by Loop subdivision.



26 EAMAVATL PARDEL, SMITH

i
> Jii--:':
I.li'.-'-l ™
.H'.
&1
A s
T e
Pty
-~
o

Ficure 4. An illustration for the boundary mask.

1.1 Loop Style Subdivisions. We derive & reverse mask for Loop subdivi-
sion. This mask s parametenized and can also be apphed mreversing other
wanants such as tnangle averaping of Warren and Wamer [23] and quas-
mmterpolation scheme of Litke, Lovin and Schroder [11]. The tnangle sveraging
scheme cun produce & smooth surface but not nocessanly at extra-ordinary
vertiees. The o, 3 values of this seheme are

[25] it % i E

Therefore o for chis scheme 15 simpler than (2.2). In Ggure 5, there 15 a com-
parson between Warren's seheme and the ongnal Loop subdivision. In che
quas-interpoletion scheme different mask values are used to obtain & quas-
mterpolation limmt surface. The mask values are
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(2.6) a=-—3+, =3

T 2n

The right part of figure 5 shows an example of this scheme.

FIGURE 5. From left to right: the coarse mesh, Loop subdivi-
sion, Warren’s scheme and the quasi-interpolation scheme.

2.4. Texture Mapping. The conventional texture mapping of subdivision
surfaces is close to the technique of texture mapping of polyhedron meshes.
The control polyhedron M is mapped to a fine mesh M* such that MP* is
smooth enough for the graphics pipeline and rendering. Then texture mapping
techniques of polyhedron meshes are employed for M*. In practical applica-
tions, sometimes we need a finer mesh, since, it is necessary to change the view
point or the object’s position. In this situation we have to continue the sub-
division process on M* in order to obtain a smoother mesh M*¢ where £ > k.
Consequently, the texture mapping must be repeated for the new mesh, M¥.
DeRose, Kass and Troung [4] provide the concept of carrying texture coor-
dinates from the coarse mesh to the finer one by using the same subdivision
rule that is applied to the vertices. More specifically, we assume that texture
coordinates of the control mesh M? are somehow given. Each texture coordi-
nate is a pair (s;,t;) assigned to the vertex v; € V. These coordinates can be
obtained by some methods that are potentially expensive such as procedural,
manual and interactive textures.

The pair (s;j,t;) presents a point in the texture space whose value defines
the intensity color of v;. t; and s; are numeric scalars and can be added to
the spatial coordinates of v;. Therefore, the corresponding attribute of v; is
(2,95, 25, Sj,t;) where the first three components are the spatial coordinates
and the two last components are the texture coordinates. Now, it is sufficient
to apply the subdivision mask to elements of the five dimensional Euclidian
space E5. By using this technique, not only it is not necessary to repeat
texture mapping for finer surfaces, but also a smooth correlation between the
texture of the coarse mesh and the fine mesh is provided (Figure 1). The
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efficiency of this technique is substantial when complicated texture maps are
encountered. The concept of increasing the space dimension of control points
might be extended to include other rasterization features such as multi-textures
and bump maps. DeRose at el.[4] have considered texture mapping for Catmull-
Clark subdivision. Seng and Zhiyong [21] have considered it for Doo-Sabin
subdivision. Piponi and Broshukov [16] provide a seamless texture mapping
of subdivision surfaces. We extend this concept to offer the ability of carrying
texture coordinates from a fine mesh to a coarse one. It relates to the reversal
of subdivision and constructing a MR representation.

2.5. Reverse Subdivision and Multiresolution Surfaces. Subdivision meth-
ods give a hierarchy

MO MY M. ME L
where

M* = (VF FF).

Each v € V has a 5 space coordinate (z,y, z, s,t). Suppose MY is the control
mesh of an object and MP* is a good approximation of the limit surface for
rendering. Now, if the object position is changed to a new position that is closer
to the view point, it will be necessary to construct a finer mesh M**¢ (i > 0).
Thus, it is sufficient to repeat the subdivision rule for i times over M*. In
other words, having M* is enough for all finer approximations. Contrarily, if the
object position is moved to a distant position, it will be better to have a coarser
approximation in respect to M*. Therefore, we encounter this problem: ”How
can coarser meshes M*~* be obtained from MF ?” This question is interesting
in two ways. Firstly, for 1 < ¢ < k, procedural reversal relieves us of the
necessity of storing any information about MP°, ..., M* 1, trading time for
space. Secondly, for £ > k, reversal provides us coarser meshes than M°, which
might have been given at a fairly high level of detail to begin with, due perhaps
to the design process.

The reverse mask together with the subdivision mask provide a (MR) of the
given object that is suitable for applications such as; view dependent rendering,
flexible editing and progressive transmission. In section 3, we construct the
reverse mask from the Loop subdivision mask. The method is general enough
to be extended to other subdivision schemes, but in this work we just focus
one Loop subdivision and its variants.

3. REVERSE MASK OF LOOP SUBDIVISION

For the reverse process, it is necessary to construct a mask to map V*+!
to VF. Assume a general subdivision situation for an extra-ordinary vertex in
Figure 6. In this Figure, we know v*+1 p8 1 pA+1 )kt and we want to
find v*¥ by a new mask such that the following conditions are met:

(i) The operation of the new mask must be affine(to obtain a mask that maps
points to points).

(ii) Weights of neighbors of v**1 in the mask must be equal (similar to Loop
mask of equation (2.1).
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(iii) The new mask must be a reverse of the subdivision mask i.e. the action
of subdivision mask of Equation (2.1) and (2.2) on v* and its neighbors must

exactly reconstruct Zians
k41
Vn + v k41
subdivision L
—_—
%
k reverse
Vs stubdivision E1
UQ

FIGURE 6. General situation for an extra-ordinary vertex.

Condition (ii) provides the diagram of figure 7 for the reverse mask. In this
diagram g is the weight of v**1 and 7 is the weight of the neighbors in the
reverse mask. Note that the weight of all neighbors are equal to 1. These
weights are determined such that conditions (i) and (iii), also become true.

FIGURE 7. Reverse mask.

For condition (iii) (reversal), it is necessary to have

n
pktt +nZuJ’.€+1 =k,
=1

By use of Equation 2.1, we get

- 3 5
M(ﬂl/k)_|_u O‘Z”jk +77(8n1/k> +1n §ZV;€ zz/k7
j=1

or equivalently
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To enforce the equality, we must have
51) pB+ gnn =1
. po+ %n =0.

In this system, «, 8 are parameters of Loop subdivision mask in equation (2.2),
and they satisfy the relation

6 =1-—nao.
If we solve equation (3.1) with respect to 3, then
__s _ B
(32) P=g5—3 "= )

The equation (3.2) is a parametric formula for the reverse mask and can be
applied to both regular and extra-ordinary vertices. For example, in the case
of regular vertex, i.e. n = 6, = 1—16,/6’ = %, equation (3.2) gives p = % and
n= —i. figure 8 diagrammatically presents this result, which exactly matches
with the A mask of width 1 in [19]. However, the diagram in figure 7 together
with the formula (3.2) can also be used for extra-ordinary cases.

rajn

FI1GURE 8. Reverse mask for regular vertex.

For an extra-ordinary example, let n = 3; thus, equation (2.2) gives
7

16

If we substitute a, 8 into equation (3.2), we obtain

3
O‘*Eaﬁ*

M:10,77=—3,

or diagrammatically as in figure 9.
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FIGURE 9. Reverse mask for an extra-ordinary vertex (n=3).

3.1. Affine Invariance Property. Both examples figure 8 and figure 9 form
affine operations i.e. the sum of the weights is one. This property is generally
correct, since

ptmnn =1,
where p and 7 are determined from equation (3.2). In fact, the property (con-
dition (i)) automatically becomes true for all reverse masks (condition (iii)).
There is a short argument for this fact in Appendix.

3.2. Reverse of Loop Style Subdivisions. The formula (3.2) is a param-
eterized, and thus can be applied directly to Warren scheme (2.5) and quasi-
interpolation scheme (2.6). This implies the following p and 1 values for the
reverse mask of the Warren scheme

(3.3) p=3 0= o

And the following values for the reverse mask of the quasi-interpolation
scheme

3.3. Reverse Mask of the Boundary Vertices. We have used cubic B-
spline mask for boundary vertices as a pure curve scheme. Therefore, we need to
find a reverse mask for the cubic B-spline subdivision. In Bartels and Samavati
[1], several masks for cubic B-spline subdivision are provided. The simplest
one is

1 1
(3.5) VP = —él/f—"_l + 2/kH §V§+1.
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Here the same notetion of the section 2.2 15 used. In frure 11, the boundary

boundary of the middle surfrce.

Fioupg 10. The top-left shows the textured control mesh of

top-middle 15 the fine mesh obtained by Loop
subdivizion, and top-right shows the obtained mesh from the
reverse process. Lhe second row shows the same meshes to-
pether with grd Iimes.

8 PEWTL, A0

1. REsvLTS

To demonstrate the quality of the proposing techmigque we show several ex-
amples. In these examples, Loop subdivision has heen used for both inercasing
the resolution of & given mesh and transforming it texture coordinaces. Char re-
verse mask {oquation [3.2) has boen used for decreasing the resolution together
with texture coordinates.

For the pawn example in
illussration of the concept.

figure 10, asimple texture has been used for 6 better
This figure shows one step of Loop subdivision and
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Froune 11. The wop-left shows & simple control mesh with
boundary, and the top-middle 1 the fine mesh ohtained by
Loop subdivision, and top-right shows the obtained mesh from
the reverse process. The second row shows the same meshes
together with & simple texture.

one level of the reverse process.  In order to cohance clanty, & god based
puthne versions of those meshes are also provided. The coarse mesh includes
154 vertices while the fine mesh mneludes 610 vertiees.

The fish example in fpure 14 shows the results after two steps of Loop
subdivision, s well a5 two levels of the reverse process. The control mesh has
46 and the finest mesh has 3% vertices.

Figure 11 demonstraces the mmpact of the reverse subdivision on different
kinds of textures. In this example, the boundary s highhiehted o show the
offoet of the boundary masks.

The cxample in fgure 12 shows the cffect of Loop subdivision and its reverse
scheme on a complicated mesh.

Froune 12, Left 1 s piven control mesh, muddle 15 the result-
mmg mesh after one step of Loop subdivision and night 1 the
resulting mesh after roversal.
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Figure 13 shows the impact of repositioning the vertices in the fine mesh in
the reverse process. The reverse mask of the quasi-interpolation scheme (3.4)
produces a better result. This is due to the fact that Loop subdivision is a
contracting scheme, therefore its inverse must expand the objects. In the other
hand, the quasi-interpolating subdivision is an expansion scheme(see the equa-
tion (2.6), consequently its inverse must be a contraction scheme and reduces
the impact of the perturbation. In fact, the values of x4 and 7 in this case are
positive, and consequently the resulting coarse mesh is contained in the convex
hull of the fine mesh.

FIGURE 13. The left shows a modified fine mesh of the pawn,
and the middle is the resulting coarse mesh via the mask 3.4,
and the right shows the obtained mesh from the reverse Loop.

5. CONCLUSION

A reverse mask for Loop subdivision has been constructed. This mask is a
parameterized formula and can be applied to other Loop style subdivisions. We
have also described a technique for texture mapping of multiresolution surfaces
using the reverse mask. We have demonstrated the effectiveness of the resulting
method mostly when there is no large modification in the fine meshes.

In the case of a significant change to the fine mesh the reverse mask of Loop
and Warren schemes show an unstable behavior, however the reverse mask of
quasi-interpolation produce better results.

Bartels and Samavati [1] have constructed more stable reverse masks for
curve scheme by increasing the width of curve masks. It is possible to employ
and extend that concept to obtain wider but more stable reverse Loop masks.
However, the resulting masks will be too complicated to compute and imple-
ment especially in extra-ordinary cases.
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Fioure 14. {a} The control mesh. (h] The textured control
mesh. {¢) The resulting mesh after one step of Loop subdivi-
sion. {d) After two steps of Loop subdivizion. (e The resulting
mesh after applying the reverse schemne on mesh (d). (1) The
resulting mesh after applying the reverse seheme on mesh ().
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Appendix We want to show that each reverse mask of width one for Loop
subdivision forms an affine operation. Consider, the following matrix relation:

yhtt 8 a a « « vk
RN I A
(5.1) vy =| 8§ 8 § 8 0 v,
k1 31 (0 o 3 K
Vn+ s 0 0 B v,
or
V=8V,
where S is a local subdivision matrix [23]. Furthermore, assume that the row
matrix, R = [ag, a1, ..., a,], represents the reverse mask, then we have:
R.VETL =k
therefore,
R.S. V¥ =k,

or equivalently

R.S = [1,0,0,...,0]7.
If we set S = [S1,52,...,5,] where S; is i-th column of S, then we obtain,
RS; =1and RS; =0,¢=2...,n. Therefore

(5.2) R(S1+ 852 +...+5,) =1,
Since rows of S have the unit summation property [23], we must have:
Si+Sy+...4+8,=[1,1,...,1]F

by using recent equation (5.2), we obtain

and this equation shows affine property of R mask.
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