Generalized Douglas-Weyl Finsler Metrics

Mohammad Hosein Emamian, Akbar Tayebi

Department of Mathematics, Faculty of Science University of Qom, Qom, Iran.
E-mail: hosein.emamian@gmail.com
E-mail: akbar.tayebi@gmail.com

Abstract. In this paper, we study generalized Douglas-Weyl Finsler metrics. We find some conditions under which the class of generalized Douglas-Weyl \((\alpha, \beta)\)-metric with vanishing S-curvature reduce to the class of Berwald metrics.

Keywords: Generalized Douglas-Weyl metrics, S-curvature.

1. Introduction

Let \((M, F)\) be a Finsler manifold. In local coordinates, a curve \(c(t)\) is a geodesic if and only if its coordinates \((c^i(t))\) satisfy \(\ddot{c}^i + 2G^i(\dot{c}) = 0\), where the local functions \(G^i = G^i(x, y)\) are called the spray coefficients [10]. \(F\) is called a Berwald metric, if \(G^i\) are quadratic in \(y \in T_x M\) for any \(x \in M\) or equivalently \(G^i = \frac{1}{2} \Gamma^i_{jk}(x) y_j y_k\). As a generalization of Berwald curvature, Bācső-Matsumoto introduced the notion of Douglas metrics which are projective invariants in Finsler geometry [2]. \(F\) is called a Douglas metric if \(G^i = \frac{1}{2} \Gamma^i_{jk}(x) y_j y_k + P(x, y) y^i\).

A Finsler metric \(F\) is called generalized Douglas-Weyl metric (briefly, GDW-metric) if \(D^i_{jkl} y^m = T_{jkl} y^i\) holds for some tensor \(T_{jkl}\), where \(D^i_{jkl}||m\) denotes the horizontal covariant derivatives of \(D^i_{jkl}\) with respect to the Berwald
connection of F [8][18]. For a manifold M, let $\mathcal{GDW}(M)$ denotes the class of all Finsler metrics satisfying in above relation for some tensor T_{jkl}. In [3], Bácsó-Papp showed that $\mathcal{GDW}(M)$ is closed under projective changes. Then, Najafi-Shen-Tayebi characterized generalized Douglas-Weyl Randers metrics [8]. In [18], it is proved that all generalized Douglas-Weyl spaces with vanishing Landsberg curvature have vanishing the quantity H. For other works, see [12] and [13].

The notion of S-curvature is originally introduced by Shen for the volume comparison theorem [9]. The Finsler metric F is said to be of isotropic S-curvature if $S = (n + 1)cF$, where $c = c(x)$ is a scalar function on M. In [14], it is shown that every isotropic Berwald metric has isotropic S-curvature. In [4], Cheng-Shen show that every (α, β)-metric with constant Killing 1-form has vanishing S-curvature. Then, Bácsó-Cheng-Shen proved that a Finsler metric $F = \alpha \pm \beta^2/\alpha + \epsilon\beta$ has vanishing S-curvature if and only if β is a constant Killing 1-form [1]. Therefore, the Finsler metrics with vanishing S-curvature are of some important geometric structures which deserve to be studied deeply.

An (α, β)-metric is a Finsler metric on M defined by $F := \alpha\phi(s), s = \beta/\alpha$, where $\phi = \phi(s)$ is a C^∞ function on the $(-b_0, b_0)$ with certain regularity, $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ is a Riemannian metric and $\beta(y) = b_i(x)y^i$ is a 1-form on M [6]. In this paper, we are going to study generalized Douglas-Weyl (α, β)-metrics with vanishing S-curvature.

Theorem 1.1. Let $F = \alpha\phi(s), s = \beta/\alpha$, be an (α, β)-metric on a manifold M of dimension $n \geq 3$. Suppose that

$$F \neq \frac{c_3\alpha}{\beta} \left(\frac{\beta}{\alpha} \right)^{\frac{2}{n+2}} \left(c_1\frac{\beta}{\alpha} + c_2 + 1 \right)^{\frac{1}{1+n}}$$

and

$$F \neq d_1\sqrt{\alpha^2 + d_2\beta^2 + d_3\beta},$$

where c_1, c_2, c_3, d_1, d_2 and d_3 are real constants. Let F has vanishing S-curvature. Then F is a GDW-metric if and only if it is a Berwald metric.

2. Preliminary

Given a Finsler manifold (M, F), then a global vector field G is induced by F on TM_0, which in a standard coordinate (x^i, y^i) for TM_0 is given by $G = y^i \frac{\partial}{\partial x^i} - 2G^i(x, y) \frac{\partial}{\partial y^i}$, where

$$G^i := \frac{1}{4} g^{il} \left\{ [F^2]_{x^j y^k} y^k - [F^2]_{x^l} \right\}, \quad y \in T_x M.$$

The G is called the spray associated to F.

Define $B_y : T_x M \otimes T_x M \otimes T_x M \rightarrow T_x M$ and $E_y : T_x M \otimes T_x M \rightarrow \mathbb{R}$ by $B_y(u, v, w) := B_{ijk}(y)u^i v^k w^l \frac{\partial}{\partial x^l}$ and $E_y(u, v) := E_{jk}(y)u^j v^k$ where

$$B_{ijk} := \frac{\partial^3 G^i}{\partial y^j \partial y^k \partial y^l}, \quad E_{jk} := \frac{1}{2} B_{jkm}.$$
\(B\) and \(E\) are called the Berwald curvature and mean Berwald curvature, respectively. \(F\) is called a Berwald and weakly Berwald if \(B = 0\) and \(E = 0\), respectively [5][7].

Let
\[
D_{ij} \triangleq \frac{\partial^3}{\partial y^i \partial y^j \partial y^k} \left(G^i - \frac{1}{n+1} \frac{\partial G^m}{\partial y^m} y^i \right).
\]
It is easy to verify that \(D := D_{ij} dx^i \otimes \partial_j \otimes dx^k \otimes dx^l\) is a well-defined tensor on slit tangent bundle \(TM_0\). We call \(D\) the Douglas tensor. A Finsler metric with \(D = 0\) is called a Douglas metric. The notion of Douglas metrics was proposed by Bacsó-Matsumoto as a generalization of Berwald metrics [2].

The Douglas tensor \(D\) is a non-Riemannian projective invariant, namely, if two Finsler metrics \(F\) and \(\tilde{F}\) are projectively equivalent, \(G^i = \tilde{G}^i + P y^i\), where \(P = P(x, y)\) is positively \(y\)-homogeneous of degree one, then the Douglas tensor of \(F\) is same as that of \(\tilde{F}\). Finsler metrics with vanishing Douglas tensor are called Douglas metrics [11].

For a Finsler metric \(F\) on an \(n\)-dimensional manifold \(M\), the Busemann-Hausdorff volume form \(dV_F = \sigma_F(x) dx^1 \cdots dx^n\) is defined by
\[
\sigma_F(x) \triangleq \frac{\text{Vol}(\mathbb{B}^n(1))}{\text{Vol}\left(\{y^i \in \mathbb{R}^n \mid F\left(\frac{\partial}{\partial y^i} \big|_x\right) < 1\}\right)}.
\]
Let \(G^i\) denote the geodesic coefficients of \(F\) in the same local coordinate system. The S-curvature is defined by
\[
S(y) := \frac{\partial G^i}{\partial y^i}(x, y) - y^j \frac{\partial}{\partial x^j} \left[\ln \sigma_F(x) \right],
\]
where \(y = y^j \frac{\partial}{\partial y^j} \big|_x \in T_x M\). \(S\) is said to be isotropic if there is a scalar functions \(c = c(x)\) on \(M\) such that \(S = (n + 1)cF\).

For an \((\alpha, \beta)\)-metric \(F = \alpha \phi(s), s = \beta/\alpha\), put
\[
\Phi := -(q - sq')[n\Delta + 1 + sq] - (b^2 - s^2)(1 + sq)q'',
\]
where
\[
q := \frac{\phi'}{\phi - sq'}, \quad \Delta := 1 + sq + (b^2 - s^2)q'.
\]
In [4], Cheng-Shen characterize \((\alpha, \beta)\)-metrics with isotropic S-curvature.

Lemma 2.1. ([4]) Let \(F = \alpha \phi(s), s = \beta/\alpha\), be a non-Riemannian \((\alpha, \beta)\)-metric on a manifold \(M\) of dimension \(n \geq 3\). Suppose that \(\phi \neq c_1 \sqrt{1 + c_2 s^2} + c_3 s\) for any constant \(c_1 > 0, c_2\) and \(c_3\). Then \(F\) is of isotropic S-curvature \(S = (n + 1)cF\) if and only if one of the following holds

(a) \(\beta\) satisfies
\[
 r_{ij} = \varepsilon(b^2 a_{ij} - b_i b_j), \quad s_j = 0,
\]
where $\varepsilon = \varepsilon(x)$ is a scalar function, $b := \|\beta x\|_\alpha$ and $\phi = \phi(s)$ satisfies
\[
\Phi = -2(n+1)k\phi \Delta^2 b^2 \ldots + C_3 b^j y_{i00} = C_4 y_{jsi}^0 + C_5 \left(b_{jsi}^0 + s_j s_i^0 \right) + C_6 s_j t_i^0,
\]

(b) β satisfies
\[
r_{ij} = 0, \quad s_j = 0
\]

In this case, $S = 0$.

The characterization of Finsler metrics with isotropic S-curvature in Cheng-Shen’s paper is not complete [4]. Their result is correct for dimension $n \geq 3$. For the case $\text{dim}(M) = 2$, see [16].

3. Proof of Main Results

Let $F := \alpha \phi(s)$, $s = \beta/\alpha$, be an (α, β)-metric on a manifold M, where $\alpha = \sqrt{a_{ij}(x) y^i y^j}$ and $\beta(y) = b_i(x) y^i$. Define b_{ij} by $b_{ij} \theta^i := db_i - b_j \theta^j$, where $\theta^i := dx^i$ and $\theta_i^j := \tilde{\Gamma}_{ik}^j dx^k$ denote the Levi-Civita connection forms of α. Let
\[
\begin{align*}
 r_{ij} &:= \frac{1}{2} \left[b_{ij} + b_{ji} \right], \quad s_{ij} := \frac{1}{2} \left[b_{ij} - b_{ji} \right], \\
 r_{00} &:= r_{ij} y^i, \quad r_{00} := r_{ij} y^j, \quad r_j := b^i r_{ij}, \quad t_j^i := s^i_m s^m_j \\
 s_{00} &:= s_{ij} y^i, \quad s_j := b^i s_{ij}, \quad r_0 := r_{ij} y^j, \quad s_0 := s_j y^j.
\end{align*}
\]

Then $\beta = b_i(x) y^i$ is a constant Killing one-form on M if $r_{ij} = s_j = 0$ hold. By definition, we have
\[
b_{ij} = s_{ij} + r_{ij}.
\]

Since $y^i |_s = 0$, then for a constant Killing 1-form β we have
\[
r_{00} = 0, \quad r_i + s_i = 0.
\]

For an (α, β)-metric $F = \alpha \phi(s)$, $s = \beta/\alpha$, the following hold.

Proposition 3.1. Let $F = \alpha \phi(s)$, $s = \beta/\alpha$, be an (α, β)-metric on an n-dimensional manifold M of dimension $n \geq 3$, where $\alpha = \sqrt{a_{ij}(x) y^i y^j}$ is a Riemannian metric and $\beta = b_i(x) y^i$ is a one-form on M. Suppose that F is of vanishing S-curvature. Then F is a GDW-metric if and only if the following holds
\[
C_1 s_{j0} y^i + (C_2 y_j + C_3 b_j) y^i t_{00} = C_4 y_j s^i_{0j0} + C_5 \left(b_j s^i_{0j0} + s_{j0} s^i_0 \right) + C_6 s^i_{j0j} + C_7 (y_j t_i^0 + s_{j0} s^i_0) + C_8 b_j t_i^0,
\]
where

\[C_1 := - \left[(n + 1)Q_\alpha + 2\beta Q_{\alpha\beta} \right] \alpha^{-3} - \left[Q_{\alpha\alpha} + b^2 Q_{\beta\beta} \right] \alpha^{-2}, \]
\[C_2 := (n + 1) \left[\left(Q_\alpha^2 + Q_{\alpha\alpha} - \alpha^{-1} Q_{Q_\alpha} \right) \alpha^{-4} - 2 \left(Q_{a\beta} + Q_{Q_{a\alpha}} \right) \beta \alpha^{-5} \right. \]
\[+ \left. 2 \left[2Q_{a\alpha} Q_{\alpha\beta} + Q_{\alpha\alpha} Q_{\beta} + Q_{Q_{\alpha\alpha}} \right] \beta \alpha^{-4} + b^2 \left[2Q_{a\beta} Q_{\beta} + Q_{a} Q_{\beta\beta} \right] \alpha^{-3} \right. \]
\[+ \left. b^2 Q_{\alpha\beta} + 3Q_{a\alpha} + Q_{Q_{\alpha\alpha}} \right] \alpha^{-3}, \]
\[C_3 := (n + 3) \left[Q_{a\alpha} Q_{\alpha\beta} + Q Q_{a\beta} \right] \alpha^{-3} + 2 \left[Q_{a\alpha} Q_{\alpha\beta} + Q Q_{a\beta} \right] \beta \alpha^{-3} \]
\[+ \left[2Q_{a\alpha} Q_{\alpha\beta} + Q_{\alpha\alpha} + Q_{Q_{a\alpha}} + 4\beta^{-1} Q_{Q_{a\beta}} \right] \alpha^{-2} \]
\[+ b^2 \left[3Q_{Q_{a\beta}} + Q_{Q_{a\alpha}} \right] \alpha^{-1}, \]
\[C_4 := - \left[(n + 1)Q_\alpha + 2\beta Q_{\alpha\beta} \right] \alpha^{-3} + 2 \left[\beta Q_{\alpha\alpha} + Q_{\alpha} \right] \alpha^{-2} \]
\[+ \left[b^2 Q_{\alpha\beta} + Q_{\alpha\alpha} \right] \alpha^{-1}, \]
\[C_5 := (n + 3) \alpha^{-1} Q_{a\beta} + Q_{\alpha\alpha} + 2\beta \alpha^{-1} Q_{a\alpha} + b^2 Q_{\beta\beta}, \]
\[C_6 := (n + 1) \alpha^{-1} Q_{a\beta} + Q_{\alpha\alpha} + 2\beta \alpha^{-1} Q_{a\alpha} + b^2 Q_{\beta\beta}, \]
\[C_7 := (n + 1) \alpha^{-3} Q_{\alpha} - (n + 1) \alpha^{-2} \left(Q_\alpha^2 + Q_{Q_{\alpha\alpha}} \right) - 2\beta \alpha^{-2} Q_{Q_{\alpha\alpha}} \]
\[+ 2 \left[Q_{Q_{\alpha\beta}} + Q_{Q_{\beta}} \right] \beta \alpha^{-3} - b^2 \left[Q_{Q_{a\beta}} + 2Q_{a\beta} Q_{\beta} \right] \alpha^{-1} \]
\[- 2 \left[2Q_{a\alpha} Q_{\alpha\beta} + Q_{\alpha} Q_{\alpha} \right] \beta \alpha^{-2} \]
\[- b^2 \alpha^{-1} Q_{a\alpha} Q_{\beta} - 3\alpha^{-1} Q_{a\alpha} Q_{\alpha} - 2\alpha^{-1} Q_{Q_{\alpha\alpha}}, \]
\[C_8 := - (n + 3) \left[Q_{Q_{\alpha\beta}} + Q_{Q_{\beta}} \right] \alpha^{-1} - 2 \left[2Q_{a\beta} Q_{a\beta} + Q_{Q_{a\beta}} + Q_{a} Q_{\beta\beta} \right] \beta \alpha^{-1} \]
\[- b^2 \left[Q_{Q_{\alpha\beta}} + 3Q_{Q_{\beta}} \right] - Q_{\beta} Q_{\alpha} - Q_{Q_{\alpha\beta}} - 2Q_{a} Q_{a\beta}. \]

Proof. Let \(G^i \) and \(G^i_\alpha \) denote the spray coefficients of \(F \) and \(\alpha \), respectively, in the same coordinate system. Then, we have

\[G^i = G^i_\alpha + Py^i + Q^i, \quad (3.2) \]

where

\[Q := \Theta, \]
\[P := \alpha^{-1} \Theta(r_{00} - 2Qs_0), \]
\[Q^i := Qs^i_0 + \Psi(r_{00} - 2Qs_0)b^i, \]
\[\Theta := \frac{q - sq^0}{2\Delta} = \frac{\phi' - s(\phi'' + \phi' \phi')}{2\phi[(\phi - s\phi') + (b^2 - s^2)\phi'']} \]
\[\Psi := \frac{q'}{2\Delta} = \frac{\phi'}{2(\phi - s\phi') + (b^2 - s^2)\phi''}. \]
By Lemma 2.1, we have $r_{00} = s_0 = 0$. Then (3.2) reduces to following
\[G^i = G^i_\alpha + Qs^i_0. \]
(3.3)

Let "∥" and "\textquoteleft\textquoteleft" denote the covariant differentiations with respect to G^i and G^i_α respectively. Then by (3.3), we have
\[D^i_{jkl\|} y^m = D^i_{jkl\|} y^m - 2Qs^i_0 \frac{\partial D^i_{jkl}}{\partial y^p} + D^p_{jkl} \tilde{N}^i_p - D^i_{jkl} \tilde{N}^p_k \]
(3.4)

where
\[D^i_{jkl\|} y^m = \alpha^{-4}(Q_{\alpha\alpha} - \alpha^{-1}Q_{\alpha})(A_{jkl}y_l + A_{klj}y_j + A_{jyk}y_k)s^i_{0j0}
+ \alpha^{-3}Q_{\alpha}(A_{jki}y_i + A_{klj}y_j + A_{jyk}y_k)s^i_{0j0}
+ \alpha^{-3}Q_{\alpha\beta}(A_{jkl}b_l + A_{klj}b_j + A_{jyk}b_k)s^i_{0j0}
+ (A_{jkl}s_{00} + A_{klj}s_{0j0} + A_{jyk}s_{i00})s^i_{00}
+ \alpha^{-2}Q_{\alpha\beta\gamma}(y_{jkl}y_{b0} + y_{jykl}y_{bj} + y_{kjy}b_k)s^i_{0j0}
+ (y_{jkl}y_{b0} + y_{jykl}y_{bj} + y_{kjy}b_k)s^i_{0j0}
+ \alpha^{-1}Q_{\alpha\beta\gamma}(y_{jkl}b_l + y_{jykl}b_j + y_{kjy}b_k)s^i_{0j0}
+ (y_{jkl}b_l + y_{jykl}b_j + y_{kjy}b_k)s^i_{0j0} \]
(3.5)

and
\[A_{ij} = \alpha^2 a_{ij} - y_{iyj}, \]
(3.6)
\[\tilde{N}^i_p = Qs^i_p + \left[\alpha^{-1}Q_{\alpha\gamma}y_p + \alpha^{-1}Q_{\beta\gamma}b_p \right] s^i_0, \]
(3.7)
\[\frac{\partial D^i_{jkl}}{\partial y^p} = Q_{ijkl} s^i_{00} + Q_{jkl} s^i_{p0} + Q_{jkl} s^i_{p0} + Q_{jkl} s^i_{k0} + Q_{jkl} s^i_{k0} + Q_{jkl} s^i_{k0}. \]
(3.8)

Let F is a GDW-metric. Then there exists a tensor D^i_{jkl} such that
\[D^i_{jkl\|} y^m = D^i_{jkl} y^i. \]
By (3.4), we have
\[
D_{jkl} y^i = D_{jkl|m} y^m - 2Q \frac{\partial D_{jkl}^i}{\partial y^p} s^p_0 + D_{jkl}^p \tilde{N}^i_p - D_{pkl}^p \tilde{N}^i_p \quad (3.9)
\]
By contracting (3.9) with \(y_i \) and using (3.5), (3.7) and (3.8) we get the following
\[
D_{jkl} = D_{jkl} = D_{jkl} + D_{klj} + D_{kjl} + D_{jlk} + D_{ljk} + D_{kjl} + D_{ljk} + D_{kjl} + D_{ljk} + D_{kjl} + D_{ljk} + D_{kjl}
\]
where
\[
D_1 := -\alpha^{-5} Q \alpha, \\
D_2 := -\alpha^{-4} Q \alpha \alpha, \\
D_3 := -\alpha^{-3} Q \alpha \beta, \\
D_4 := -\alpha^{-2} Q \beta \beta, \\
D_5 := -\alpha^{-6} Q \alpha^2 - \alpha^{-6} Q Q \alpha \alpha + \alpha^{-7} Q Q \alpha, \\
D_6 := -\alpha^{-5} Q \alpha Q \beta - \alpha^{-5} Q Q \alpha \beta, \\
D_7 := -\alpha^{-4} Q \alpha \alpha Q \beta - 2\alpha^{-4} Q \alpha \beta Q \alpha - \alpha^{-4} Q Q \alpha \alpha \beta, \\
D_8 := -\alpha^{-3} Q \beta \beta Q \alpha - 2\alpha^{-3} Q \alpha \beta Q \beta - \alpha^{-3} Q Q \alpha \beta \beta, \\
D_9 := -3\alpha^{-5} Q \alpha \alpha Q \alpha - \alpha^{-5} Q Q \alpha \alpha \alpha, \\
D_{10} := -3\alpha^{-2} Q \beta \beta Q \beta - \alpha^{-2} Q Q \beta \beta \beta, \\
D_{11} := -2\alpha^{-3} Q \alpha \beta + 2\alpha^{-3} Q \alpha^2 + 2\alpha^{-4} Q Q \alpha \alpha - 2\alpha^{-5} Q Q \alpha, \\
D_{12} := -2\alpha^{-2} Q \beta \beta + 2\alpha^{-3} Q Q \alpha \beta + 2\alpha^{-3} Q Q \beta \beta.
\]
Now, by plugging (3.10) into (3.9), and contracting the obtained result with $a^k l$, we get (3.1).

Proof of Theorem 1.1: Let $F = \alpha \phi(s), s = \beta/\alpha$, be an (α, β)-metric on an n-dimensional manifold M. By multiplying (3.1) with y_i and y^j, we get

$$-\alpha Q_{\alpha \alpha} t_{00} = 0.$$

(3.11)

If $Q_{\alpha \alpha} = 0$ then

$$Q = c_1 \alpha + c_2 \alpha^2,$$

where c_1 and c_2 are real constants. Thus, we get

$$F = c_3 \alpha \left(\frac{\beta}{\alpha} \right)^{\frac{c_2}{1+c_2}} \left(c_1 \frac{\beta}{\alpha} + c_2 + 1 \right)^{\frac{1}{1+c_2}},$$

where c_3 is a real constant. This is a contradiction with our assumption. Then by (3.11), we get $t_{00} = 0$ which results that $s_{i0} = 0$. This means that β is a closed one-form. By assumption, β is parallel one-form and then F reduces to a Berwald metric. □

Acknowledgments

The authors are very grateful to the anonymous referee for his or her comments and suggestions.

References