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Abstract. We study the double cosets of a Lie group by a compact

Lie subgroup. We show that a Weil formula holds for double coset Lie
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1. Introduction

Many classical examples of topological groups are indeed smooth manifolds.

This makes many aspects of harmonic analysis (like the notion of Haar measure)

much simpler and more natural. Hypergroups are generalizations of (topologi-

cal) groups coming originally from hypercomplex systems. Roughly speaking,

a hypergroup is a (locally compact, Hausdorff) space K with a convolution and
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involution on the measure space M(K) making it a Banach ∗-algebra. In con-

trast to the group case, in hypergroups the convolution of point masses could

have a large (but compact) support [6], [12], [19]. A typical example is the dou-

ble coset space of a locally compact group by a compact subgroup. We refer

the reader to the monograph [5] for more details (we should warn the reader

that our approach is topological and is different from the algebraic approach,

for instance in [4] or [16]).

A natural question is that if the ambient space of a topological hypergroup

is a manifold, could one make sense of the smoothness of convolution in a way

that the theory of Lie groups naturally extend to Lie hypergroups? As the

multiplication map in a hypergroup sends a pair of elements into a probability

measure, the notion of smooth multiplication is more involved here and should

be handled with care.

The authors introduced and studied the notion of Lie hypergroups in [1] and

showed that many classical hypergroups, including the double coset space of

a Lie group by a compact Lie subgroup, are indeed Lie hypergroups. In this

paper we prove a Weil formula for the double coset Lie hypergroup and use it

to study double homogeneous spaces and smooth (analytic) vectors of smooth

representations of double coset spaces.

2. Lie Hypergroups

A (locally compact) hypergroup is a locally compact, Hausdorff space K

with an involution ¯ and a binary operation ∗, called a convolution, on the

Banach space M(K) of all (complex) bounded Radon measures on K such

that (M(K), ∗) is an algebra and for each x, y ∈ K,

(i) δx ∗ δy is a probability measure on K with compact support,

(ii) the maps (x, y) ∈ K2 7→ δx ∗ δy ∈ M(K) and (x, y) ∈ K2 7→ supp (δx ∗
δy) ∈ C(K) are continuous,

(iii) K admits an identity element e satisfying δe ∗ δx = δx ∗ δe = δx such

that e ∈ supp (δx ∗ δy) if and only if x = ȳ.

(iv) (δx ∗ δy )̄ = δȳ ∗ δx̄,

where C(K) is the space of nonvoid compact subsets of K with the Michael

topology [5, 17].

If K is a locally compact hypergroup, M(K) is a Banach space in norm

topology. However in the next sectionK is also a real C∞ (or complex analytic)

manifold and we need to considerM(K) as a flat (infinite dimensional) manifold

and give it the structure of a topological vector space. The appropriate topology

on M(K) is the w∗
∞-topology induced by the space C∞

c (K) of C∞-functions of

compact support on K. A net (µα) converges to µ in the w∗
∞-topology if and

only if
∫
K
fdµα →

∫
K
fdµ as α → ∞, for each f ∈ C∞

c (K).
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We use the notation M∞(K) to denote the locally convex topological vector

space M(K) with w∗
∞-topology and save the notation M(K) for the Banach

space with the norm topology.

A Lie hypergroup is a hypergroup which is also a C∞ (or real analytic)

manifold K (possibly with boundary) such that the convolution map m : K ×
K −→ M∞(K);, (x, y) 7→ δx ∗ δy, and involution map i : K −→ K; x 7→ x̄

are C∞ (real analytic) [1]. The smoothness of the convolution means that the

map (x, y) 7→
∫
K
fd(δx ∗ δy) is C∞ on K×K, for each f ∈ C∞

c (K). Note that,

unlike Lie groups, a Lie hypergroup K may be a manifold with boundary [1],

and in such a case, the C∞ maps on K are defined on local charts using half

space Hn := {(x1, . . . , xn) : xn ≥ 0} (in the real case) where the boundary

points are those mapped to xn = 0 by a chart.

3. Double Coset Lie Hypergroups

A typical example of a locally compact hypergroup is the double coset space

H\G/H = {HxH : x ∈ G}, where G is a locally compact group and H is a

compact subgroup [5, 1.1.9]. The space H\G/H (also denoted by G//H) is

considered with the quotient topology. The identity element is H = HeH and

the involution and convolution are given by (HxH )̄ = Hx−1H and δHxH ∗
δHyH =

∫
H
δHxtyHdt, where the integral is taken against the (normalized)

Haar measure of H. The authors showed in [1] that if G is a Lie group and H

a compact Lie subgroup of G such that the double coset space H\G/H is a

manifold (possibly with boundary), then H\G/H is a Lie hypergroup. Same

holds for the orbit space GH , if H is a compact Lie group acting smoothly on

G and GH is a manifold.

As a concrete example, Let S2 be the unit sphere in R3 and G = SO(3), let

n = (0, 0, 1) be the north pole in S2 and H = {g ∈ G : gn = n}, then G is a

Lie group and H is a compact Lie subgroup, topologically isomorphic to the

compact group T, and two elements of G are H-conjugate if and only if they

rotate S2 through the same angle. Hence GH is a compact commutative Lie

hypergroup, homeomorphic to [0, π] and H\G/H is a compact commutative

Lie hypergroup, homeomorphic to [−1, 1] [5, 1.1.17]. Note that in GH we have

supp(δπ ∗ δπ) = [0, π] where as in H\G/H, δ−1 ∗ δ−1 = δ1, hence the two

hypergroups are not topologically isomorphic. Similarly, the one dimensional

hypergroup R+ (of non compact type) with convolution δr∗δs = 1
2 (δ|r−s|+δr+s)

is a Lie hypergroup as the double coset hypergroup withG = R⋊Z2 andH = Z2

[5, 3.4.5]. This should be handled with care: if we identify the orbit space with

R+ via the quotient map t 7→ |t|, a function f ∈ C∞(R+) is identified with an

even function f̃ ∈ C∞(R). Now the smoothness of the map

(s, t) ∈ (R+ × R+) 7→
∫

fd(δs ∗ δt) =
1

2
[f(s+ t) + f(|s− t|)]
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follows from that of

(s, t) ∈ R2 7→ 1

2
[f̃(s+ t) + f̃(s− t)].

The same holds for the one dimensional hypergroup [0, 1] under δr ∗ δs =
1
2 (δ|r−s|+δ|1−|1−r−s||) with G = T⋊Z2 and H = Z2 [5, 3.4.6]. The Chebychev

hypergroup of the second kind identifies with Z+ with convolution

δm ∗ δn =
m∧n∑
k=0

|m− n|+ 2k + 1

(m+ 1)(n+ 1)
δ|m−n|+2k

whose dual object is the Lie hypergroup SO(3)\SO(4)/SO(3). More sophis-

ticated examples [1] come from polynomial hypergroups [5]. The disc poly-

nomial hypergroup is Jα = (Z2
+, ∗(Qα

m,n)) with α > −1 [13] and its diagonal

H ≃ (Z+, ∗(Qα,0
n )) is a subhypergroup [3]. The dual hypergroup Ĵα is equal to

the closure D̄ of the open disc D = {(z, z̄) ∈ C2 : |z| < 1}. For the compact Lie

group G = U(d) and closed subgroup H = U(d−1) the double coset Lie hyper-

groupK = H\G/H is identified with D̄ as the dual of Jd−2 = (Z2
+, ∗(Qd−2

m,n)) [3],

[5, 3.1.14]. When α = 0, D̄ is the hypergroup with convolution
∫
D̄
fd(δz1 ∗ δz2)

defined as
1

2π

∫ 2π

0

f
(
z1z̄2 + eit(1− |z1|2)

1
2 (1− |z2|2)

1
2

)
dt

for f ∈ C(D̄), which is smooth on D̄ when f ∈ C∞(D̄), turning D̄ into a Lie

hypergroup.

3.1. Invariant Measures. Let G be locally compact group with a closed sub-

group H and a compact subgroup K. Let dx, dh, dk, ∆G and ∆H denote the

corresponding left Haar measures (normalized for K) and modular functions.

The double quotient space of G by H and K, denoted by K\G/H, consists of

double cosets KxH for x ∈ G. This is a locally compact space under the quo-

tient topology and the quotient map q : G → K\G/H is open and continuous

[15] on which the normalizer N of K in G acts by translation,

n.(KxH) = KnxH (n ∈ N, x ∈ G).

For f ∈ Cc(G) define

Qf(KxH) =

∫
K

∫
H

f(kxh)dkdh.

This is well defined by [15, Lem. 2.3] and Q : Cc(G) → Cc(K\G/H) and

supp(Qf) ⊆ q(supp(f)) for f ∈ Cc(G).

The next two results are proved as in the classical case [7]. We give a sketch

of the proof for the sake of completeness.

Lemma 3.1. For each f ∈ Cc(G) and φ ∈ Cc(K\G/H), Q((φ◦ q).f) = φ.Qf.

If E ⊆ K\G/H is compact, there is a compact subset F ⊆ G and a function

f ∈ Cc(G)+ such that q(F ) = E and Qf = 1 on E.
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Proof. The first statement is trivial. Let V be a relatively compact open neigh-

bourhood of identity in G and cover E by the sets q(xV ), x ∈ G. Choose a

subcover {q(xjV )}n1 and put F = q−1(E) ∩ (∪n
j=1xj V̄ ). Let E0 be a com-

pact neighbourhood of E in K\G/H and choose a compact set F0 in G with

q(F0) = E0. Choose g ∈ Cc(G)+ such that g > 0 on F0 and φ ∈ Cc(K\G/H)

with supp(φ) ⊆ E0 and φ = 1 on E. Put f = φ◦q
Qg◦q .g, then since Qg > 0 on

supp(φ), we have f ∈ Cc(G), supp(f) ⊆ supp(g) and Qf = Q((φ ◦ q). g
Qg◦q ) =

φ.Q( g
Qg◦q ) = φ. □

Proposition 3.2. If φ ∈ Cc(K\G/H) then there is a function f ∈ Cc(G)

such that Qf = φ and q(supp(f)) ⊆ supp(φ). Moreover if φ ≥ 0 we may

choose f ≥ 0. When G is a Lie group, the restriction Q∞ of Q to C∞
c (G) is a

surjective linear map onto C∞
c (K\G/H).

Proof. There is g ∈ Cc(G)+ such that Qg = 1 on supp(φ). Put f = (φ ◦ q).g.
For the case of Lie groups, use a similar argument with a smooth version of

Urysohn’s lemma. □

Now we are ready to prove a version of Weil’s formula for double coset spaces

(see [15, Thm. 3.2]).

Theorem 3.3. There is a (unique up to constant factors) N -invariant Radon

measure µ on K\G/H if and only if ∆G

∣∣
H

= ∆H . In this case, µ could be

suitably to be chosen such that∫
G

f(x)dx =

∫
K\G/H

∫
K

∫
H

f(kxh)dkdhdµ(ẋ),

for f ∈ Cc(G).

Proof. If µ exists then the uniqueness and the above relation follow from the

fact that the (left) Haar measure on G is unique (up to constant factors) and

that f 7→
∫
K\G/H

Qfdµ is clearly a left invariant positive linear functional on

Cc(G). If µ exists, by the above lemma, an argument similar to [7, 2.49] shows

that ∆G = ∆H on H. Conversely let this equality hold. Take any f ∈ Cc(G)

with Qf = 0. Use Lemma 3.1.1 to get an element φ ∈ Cc(G) with Qφ = 1 on

q(supp(f)) ⊆ K\G/H. Since

Qf(ẋ) =

∫
K

∫
H

∆G(h
−1k−1)∆K(k)f(kxh−1)dkdh,

vanishes, so does∫
G

∫
K

∫
H

∆G(h
−1k−1)∆K(k)φ(x)f(kxh−1)dkdhdx

=

∫
G

f(x)

∫
H

∫
K

φ(kxh)dkdhdx =

∫
G

f(x)dx.
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Hence the map Qf 7→
∫
G
f is a well-defined N -invariant positive linear func-

tional on Cc(K\G/H), and the corresponding Radon measure µ satisfies the

desired properties. □

When K = 1, the above theorem gives the well-known Weil’s formula. When

H is compact and K = H, we get a Weil’s formula for H\G/H.

Theorem 3.4. Let G be a Lie group and H be a Lie subgroup with Lie algebras

g and h, and let K be a compact Lie subgroup. Then there is an N -invariant

Radon measure µ on K\G/H iff∣∣∣det(Adgh)
det(Adhh)

∣∣∣ = 1 (h ∈ H).

The above condition holds if H is a connected nilpotent, or connected semisim-

ple, or compact Lie subgroup.

Proof. It is a classical result [7, 2.30] that for a Lie group G with Lie algebra

g, the modular function of G is calculated via

∆G(x) = |det(Adgx−1)| (x ∈ G).

Hence the restriction of ∆G toH is equal to ∆H iff the equality in the statement

of the theorem holds. In particular, H is connected and nilpotent, then ∆H =

1 on H. Also if H is connected and semisimple, then h is a direct sum of

simple algebras, hence [h, h] = h. Now [h, h] is the Lie algebra of [H,H] hence

[H,H] = H, since H is connected. Now clearly ∆H = 1 on [H,H], hence

∆H = 1 on H. Finally if H is compact, then ∆H(H) is a compact subgroup

of the multiplicative group R+, and hence is the trivial subgroup, and again

∆H = 1 on H. It is easy to see that in these cases, ∆G = 1 on H [7] and the

result follows. □

3.2. Smooth vectors. In this section we study smooth (analytic) vectors for

representations of double coset Lie hypergroups. To motivate our problem,

let us consider the Fourier transform in the complex domain as the analytic

continuation of a representation of the additive group R to its complexification

C. Let U be the regular representation of R on L2(R) defined by U(t)f(x) =

f(x+ t). Suppose that the Fourier-Plancherel transform of f ∈ L2(R) satisfies
Paley-Wiener condition ∫ +∞

−∞
e2r|ξ||f̂(ξ)|2dξ < ∞,

for some r > 0 then f has an analytic continuation to the function f(z) =∫
eizξ f̂(ξ)dξ on the strip |Imz| < r and U(z)f(x) = f(x + z) , |Imz| < r

defines a local representation of the additive group C on a subspace of L2(R).
To get the right idea for a generalization to representations of Lie groups,

the space of functions satisfying Paley-Wiener condition should be replaced by



Representations of Double Coset Lie Hypergroups 93

the space of analytic vectors for the representation U , namely those functions

f for which U(t)f is an analytic function from R to L2(R). These are shown

to be the functions f holomorphic in some strip |Imz| < r satisfying

sup
|y|<r

∫ +∞

−∞
|f(x+ iy)|2dx < ∞.

The first Paley-Wiener condition means that f is an analytic vector for the

operator B = [1 − (d/dx)2]
1
2 , defined by (Bf )̂(ξ) = (l + ξ2)

1
2 f̂(ξ). To define

such an operator for general Lie groups, let π be a strongly continuous unitary

representation of a Lie group G on a Hilbert space Hπ and g be the Lie algebra

of G, lift π to the representation ∂π of the universal enveloping algebra of g on

the space H∞
π of the C∞ vectors of π. Choose a basis X1, ..., Xd for g and put

∆ = X2
1 + ...+X2

d and A = ∂π(1−∆) ,̄ where the bar stands for the operator

closure. The operator A is selfadjoint and positive, as shown by Nelson and

Stinespring [18], and for B = A
1
2 , the space Hω

π of analytic vectors for π is

precisely the space of analytic vectors for the operator B [8].

For a vector v ∈ Hπ, the map x 7→ π(x)v is C∞ on G iff the complex valued

maps x 7→ ⟨π(x)v, w⟩ are C∞ on G for each w ∈ Hπ. In this case we call v

a C∞-vector of π and write v ∈ H∞
π . The analytic vectors Hω

π are defined

similarly [9].

For a locally compact group G and compact subgroup H with Haar measure

σ such that σ(H) = 1, let π ∈ Rep(G) be a unitary representation of G such

that π(σ) ̸= 0. Then π̇(ẋ) = π(σ ∗ δx ∗ σ) defines a representation of H\G/

H [12, section 14]. When π is irreducible, the condition π(σ) ̸= 0 holds and

the restriction of π̇ to π(σ)Hπ is irreducible, and the set of all such liftings

exhaust all irreducible representations of H\G/H [10, Lemma 4.1]. If each

positive definite function on H\G/H lifts to a positive definite function on

G, Rep(H\G/H) is homeomorphic to the open subset of Rep(G) consisting of

those unitary representations π for which π(σ) ̸= 0 [11, 12]. If the quotient

map q : G → H\G/H is open, the above lifting property of positive definite

functions holds [2].

Let G be a Lie group and H be a compact subgroup with Haar measure σ

such that σ(H) = 1.

Lemma 3.5. If π ∈ Rep(G) and π(σ) ̸= 0, then for each v ∈ H∞
π we have

v̇ := π(σ)v ∈ H∞
π̇ . A similar statement is valid for analytic vectors.

Proof. SinceH is compact, σ is self-adjoint idempotent in the Banach ∗-algebra
M(G), that is σ∗ = σ and σ ∗ σ = σ, and

π̇(ẋ)v̇ = π(σ ∗ δx ∗ σ ∗ σ)v
= π(σ ∗ δx ∗ σ)v,
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similarly for each w ∈ Hπ,

⟨π̇(ẋ)v̇, ẇ⟩ = ⟨π(σ∗ ∗ σ ∗ δx ∗ σ)v, w⟩
= ⟨π(σ ∗ δx ∗ σ)v, w⟩.

Consider f(x) := ⟨π(x)v, w⟩ then f ∈ C∞(G) and by Proposition 3.1.2, Q∞f ∈
C∞(H\G/H) and

Q∞f(ẋ) =

∫
G

⟨π(t)v, w⟩d(σ ∗ δx ∗ σ)(t)

= ⟨π(σ ∗ δx ∗ σ)v, w⟩
= ⟨π̇(ẋ)v̇, ẇ⟩,

hence v̇ ∈ H∞
π̇ . A similar argument works for analytic vectors. □

Next let X1, . . . , Xr be a basis for the Lie algebra g of G and put Ẋk :=

Xk + h ∈ g/h. We may suppose that Ẋ1, . . . , Ẋd is a basis for the linear space

g/h, where d = dimg − dimh. Let π ∈ Rep(G) be a unitary representation of

G and let

∂π(X)v =
d

dt

(
π(etX)v

)∣∣
t=0

(X ∈ g, v ∈ H∞
π )

be the corresponding representation of g. Put

∂π̇(Ẋ)v̇ =

∫
H

∫
H

π(k)∂π(X)π(h)vdkdh,

then if X,X
′ ∈ g and X = X

′
+ Y for some Y ∈ h,

∂π̇(Ẋ)v̇ =

∫
H

∫
H

d

dt

(
π(ketX

′
+tY h)

)∣∣
t=0

vdkdh

=

∫
H

∫
H

d

dt

(
π(ketX

′

)π(h)
)∣∣

t=0
vdkdh

= ∂π̇(Ẋ
′
)v̇,

hence ∂π̇ is well-defined.

Theorem 3.6. Let π ∈ Rep(G) and π(σ) ̸= 0. For each v ∈ Hπ, if v̇ :=

π(σ)v ∈ Hπ̇ is in the domain of ∂π̇((Ẋk)
n) for each n ≥ 1 and 1 ≤ k ≤ d, then

v̇ := π(σ)v ∈ H∞
π̇ .

Proof. Let vk(t) = π(etXk)v for 1 ≤ k ≤ r then vk : R → Hπ is C∞ and(
d
dt

)n
vk
∣∣
t=0

= ∂π((Xk)
n)v [9, Theorem 1.1]. Let ϕ ∈ C∞

c (G) and w ∈ Hπ,

then by the proof of [9, Theorem 1.1],∫
G

ϕ(x)⟨π(x)∂π((Xk)
n)v, w⟩dx

= (−1)n
∫
G

X̃n
k ϕ(x)⟨π(x)v, w⟩dx,



Representations of Double Coset Lie Hypergroups 95

where X̃ϕ(x) = d
dtϕ(xe

tX)
∣∣
t=0

. Note that each Ẋj , for d+1 ≤ j ≤ r is a finite

linear combination of Ẋk’s for 1 ≤ k ≤ d and hence the right hand side of the

above equality makes sense for each 1 ≤ k ≤ r. Now by Theorem 3.1.4 and

Proposition 3.1.2, the left hand side is equal to∫
H\G/H

Q∞ϕ(ẋ)⟨π̇(ẋ)∂π̇((Ẋk)
n)v̇, ẇ⟩dµ(ẋ),

and the right hand side is equal to

(−1)n
∫
H\G/H

˜̇Xn
k ϕ̇(ẋ)⟨π̇(ẋ)v̇, ẇ⟩dµ(ẋ),

where ˜̇Xϕ̇(ẋ) = d
dt ϕ̇(ẋt)

∣∣
t=0

with xt = xetX .

Consider the elliptic operator ∆m = X̃2m
1 + . . . X̃2m

r on G and let ∆̇m =
˜̇X2m
1 + . . . ˜̇X2m

r be the corresponding elliptic operator on H\G/H, then the

above observation means that fw(ẋ) := ⟨π̇(ẋ)v̇, ẇ⟩ is a weak solution of the

elliptic differential equation ∆̇mfw = gm where

gm(ẋ) =
r∑

k=1

⟨π̇(ẋ)∂π((Ẋk)
2m)v̇, ẇ⟩.

Now fw is continuous and ∆̇m is elliptic of order 2m, hence by local regularity

theorem, fw has locally-L2-derivatives up to order 2m, for each m. By Sobolev

lemma, fw is C∞ and therefore v̇ ∈ H∞
π̇ . □
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