On the 2-absorbing Submodules

Sh. Payrovi*, S. Babaei
Imam Khomieni International University, Postal Code: 34149-1-6818, Qazvin, Iran.
E-mail: shpayrovi@sci.ikiu.ac.ir
E-mail: sbabaei@edu.ikiu.ac.ir

Abstract. Let \(R \) be a commutative ring and \(M \) be an \(R \)-module. In this paper, we investigate some properties of 2-absorbing submodules of \(M \). It is shown that \(N \) is a 2-absorbing submodule of \(M \) if and only if whenever \(IJL \subseteq N \) for some ideals \(I, J \) of \(R \) and a submodule \(L \) of \(M \), then \(IL \subseteq N \) or \(JL \subseteq N \) or \(IJ \subseteq N :_R M \). Also, if \(N \) is a 2-absorbing submodule of \(M \) and \(M/N \) is Noetherian, then a chain of 2-absorbing submodules of \(M \) is constructed. Furthermore, the annihilation of \(E(R/p) \) is studied whenever \(0 \) is a 2-absorbing submodule of \(E(R/p) \), where \(p \) is a prime ideal of \(R \) and \(E(R/p) \) is an injective envelope of \(R/p \).

Keywords: 2-absorbing ideal, 2-absorbing submodule, A chain of 2-absorbing submodule.

1. Introduction

Throughout this paper \(R \) is a commutative ring with non-zero identity and \(M \) is an unitary \(R \)-module. We defined a submodule \(N \) of \(M \) is 2-absorbing whenever \(abm \in N \) for some \(a, b \in R, m \in M \), then \(am \in N \) or \(bm \in N \) or \(ab \in N :_R M \), see for instance [1, 3, 4, 6, 7, 9, 10]. It is well known that, a submodule \(N \) of \(M \) is prime if and only if \(IL \subseteq N \) for an ideal \(I \) of \(R \) and

*Corresponding Author

Received 30 October 2013; Accepted 09 September 2014
©2015 Academic Center for Education, Culture and Research TMU
a submodule L of M, then either $L \subseteq N$ or $I \subseteq N :_R M$. This statement persuaded us to prove that, a submodule N of M is 2-absorbing if and only if $IJL \subseteq N$ for some ideals I, J of R and a submodule L of M, then $IL \subseteq N$ or $JL \subseteq N$ or $IJ \subseteq N :_R M$. As a corollary of this theorem, it is shown that $L = \{m \in M : p \subseteq r(N : m)\}$ is a 2-absorbing submodule of M, where N is a 2-absorbing submodule of M with $r(N :_R M) = p \cap q$ for some prime ideals p, q of R. Also, it is shown that if M/N is Noetherian, then there exists a chain of 2-absorbing submodules of M that begins with N. Assume that $E(R/p)$ is an injective envelope of R/p, it is shown that if 0 is a 2-absorbing submodule of $E(R/p)$, then $r(0 :_R E(R/p)) = p$ and $0 :_R x$ is determined for all nonzero element x of $E(R/p)$.

Now, we define the concepts that we will use later. For a submodule L of M let $L :_R M$ denote the ideal $\{r \in R : rM \subseteq L\}$. Similarly, for an element $m \in M$ let $L :_R m$ denote the ideal $\{r \in R : rm \in L\}$. If I is an ideal of R, then $r(I)$ denotes the radical of I. We say that $p \in \text{Spec}(R)$ is an associated prime ideal of M if there exists $m \in M$ with $0 :_R m = p$. The set of associated prime ideals of M is denoted by $\text{Ass}_R(M)$, the set of integers is denoted by \mathbb{Z}.

2. 2-absorbing Submodules

Let N be a proper submodule of M. We say that N is a 2-absorbing submodule of M if whenever $a, b \in R$, $m \in M$ and $abm \in N$, then $am \in N$ or $bm \in N$ or $ab \in N :_R M$.

Lemma 2.1. Let I be an ideal of R and N be a 2-absorbing submodule of M. If $a \in R$, $m \in M$ and $Iam \subseteq N$, then $am \in N$ or $Im \subseteq N$ or $Ia \subseteq N :_R M$.

Proof. Let $am \notin N$ and $Ia \notin N :_R M$. Then there exists $b \in I$ such that $ba \notin N :_R M$. Now, $bam \in N$ implies that $bm \in N$, since N is a 2-absorbing submodule of M. We have to show that $Im \subseteq N$. Let c be an arbitrary element of I. Thus $(b + c)am \in N$. Hence, either $(b + c)m \in N$ or $(b + c)a \in N :_R M$. If $(b + c)m \in N$, then by $bm \in N$ it follows that $cm \in N$. If $(b + c)a \in N :_R M$, then $ca \notin N :_R M$, but $cam \in N$. Thus $cm \in N$. Hence, we conclude that $Im \subseteq N$. □

Lemma 2.2. Let I, J be ideals of R and N be a 2-absorbing submodule of M. If $m \in M$ and $IJm \subseteq N$, then $Im \subseteq N$ or $Jm \subseteq N$ or $IJ \subseteq N :_R M$.

Proof. Let $I \nsubseteq N :_R m$ and $J \nsubseteq N :_R m$. We have to show that $IJ \subseteq N :_R M$. Assume that $c \in I$ and $d \in J$. By assumption there exists $a \in I$ such that $am \notin N$ but $aJm \subseteq N$. Now, Lemma 2.1 shows that $aJ \subseteq N :_R M$ and so $(I \setminus N :_R m)J \subseteq N :_R M$, similarly there exists $b \in J \setminus N :_R m$ such that $Ib \subseteq N :_R M$ and also $(J \setminus N :_R m)I \subseteq N :_R M$. Thus we have $ab \in N :_R M$, $ad \in N :_R M$ and $cb \in N :_R M$. By $a + c \in I$ and $b + d \in J$ it follows that $(a + c)(b + d)m \in N$. Therefore, $(a + c)m \in N$ or $(b + d)m \in N$ or
On the 2-absorbing Submodules 133

(a + c)(b + d) ∈ N : R M. If (a + c)m ∈ N, then cm ̸∈ N hence, c ∈ I \ N : R m which implies that cd ∈ N : R M. Similarly by (b + d)m ∈ N, we can deduce that cd ∈ N : R M. If (a + c)(b + d) ∈ N : R M, then ab + ad + cb + cd ∈ N : R M and so cd ∈ N : R M. Therefore, IJ ⊆ N : R M.

\[\square \]

Theorem 2.3. Let N be a proper submodule of M. The following statement are equivalent:

(i) N is a 2-absorbing submodule of M;

(ii) If IJL ⊆ N for some ideals I, J of R and a submodule L of M, then IL ⊆ N or JL ⊆ N or IJ ⊆ N : R M.

Proof. (ii) ⇒ (i) is obvious. To prove (i) ⇒ (ii), assume that IJL ⊆ N for some ideals I, J of R and a submodule L of M and IJ ⊄ N : R M. Then by Lemma 2.2 for all m ∈ L either Im ⊆ N or Jm ⊆ N. If Im ⊆ N, for all m ∈ L we are done. Similarly if Jm ⊆ N, for all m ∈ L we are done. Suppose that m, m' ∈ L are such that Im ⊄ N and Jm' ⊄ N. Thus Jm ⊆ N and Im' ⊆ N. Since IJ(m + m') ⊆ N we have either I(m + m') ⊆ N or J(m + m') ⊆ N. By I(m + m') ⊆ N, it follows that Im ⊆ N which is a contradiction, similarly by J(m + m') ⊆ N we get a contradiction. Therefore either IL ⊆ N or JL ⊆ N.

A submodule N of M is called strongly 2-absorbing if it satisfies in condition (ii), see [5]. Therefore, Theorem 2.3 shows that N is a 2-absorbing submodule of M if and only if N is a strongly 2-absorbing submodule of M.

Corollary 2.4. Let M be an R-module and N be a 2-absorbing submodule of M. Then N : M I = \{ m ∈ M : Im ⊆ N \} is a 2-absorbing submodules of M for all ideal I of R. Furthermore N : M I^n = N : M I^{n+1}, for all n ≥ 2.

Proof. Let I be an ideal of R, a, b ∈ R, m ∈ M and abm ∈ N : M I. Thus Iabm ⊆ N. Hence, Im ⊆ N or Iab ⊆ N : R M or abm ∈ N, by Lemma 2.2. If Im ⊆ N we are done. If Iab ⊆ N : R M, then ab ∈ (N : R M) : R I = (N : M I) : R M. If abm ∈ N, then am ∈ N or bm ∈ N or ab ∈ N : R M. Thus Iam ⊆ N or Ibm ⊆ N or Iab ⊆ N : R M which complete the proof.

For the second statement, it is enough to show that N : M I^2 = N : M I^3. It is clear that N : M I^2 ⊆ N : M I^3. Let m ∈ N : M I^3. Then I^3m ⊆ N. Now, by Lemma 2.2, we have I^2m ⊆ N or Im ⊆ N or I^3 ⊆ N : R M. If I^2m ⊆ N or Im ⊆ N or I^3 ⊆ N : R M, we are done. If I^2 ⊆ N : R M, then I^2 ⊆ N : R M since N : R M is a 2-absorbing ideal of R by [9, Theorem 2.3].

\[\square \]

It is clear that, nZ is a 2-absorbing ideal of Z if and only if n = 0, p, p^2, pq, where p, q are distinct prime integers. It is easy to see that 4Z :Z 6Z = 2Z but 4Z :Z 36Z = Z. Hence, the equality mentioned in the Corollary 2.4, is not necessarily true for n = 1.
Theorem 2.5. Let N be a 2-absorbing submodule of M such that $r(N : R M) = p \cap q$ where p and q are the only distinct prime ideals of R that are minimal over $N : R M$. Then $L = \{m \in M : p \subseteq r(N : R m)\}$ is a 2-absorbing submodule of M containing N. Also, either $r(L : R M) = q$ or $r(L : R M) = p' \cap q$, where p' is a prime ideal of R containing p.

Proof. It is clear that L is a submodule of M containing N. Assume that $a, b \in R$, $m \in M$ and $abm \in L$. We have to show that $am \in L$ or $bm \in L$ or $ab \in L : R M$. Since $p \subseteq r(N : R abm)$, thus $p^2abm \subseteq N$, by [9, Theorem 2.4] and [2, Theorem 2.4]. Therefore, by Lemma 2.1, we have $abm \in N$ or $p^2m \subseteq N$ or $p^2ab \subseteq N : R M$. If $abm \in N$, then $am \in N$ or $bm \in N$ or $ab \in N : R M$ which implies that $am \in L$ or $bm \in L$ or $ab \in L : R M$. If $p^2m \subseteq N$, then $p^2 \subseteq N : R m$ and so $p \subseteq r(N : R m)$ thus $m \in L$ and we are done. If $p^2ab \subseteq N : R M$, then by [2, Theorem 2.13], we have $p^2a \subseteq N : R M$ or $p^2b \subseteq N : R M$ or $ab \in N : R M$. In the first case we conclude that $p^2 \subseteq N : R am$ and so $am \in L$. By a similar argument in the second case we can deduced that $bn \in L$. If $ab \in N : R M$, then $ab \in L : R M$. Therefore, the result follows.

For the second statement, first we show that $r(N : R M) = r(L : R M) \cap p$. It is clear $r(N : R M) \subseteq r(L : R M) \cap p$. Assume that $a \in (L : R M) \cap p$. Thus $aM \subseteq L$ and so, by definition of L, $p \subseteq r(N : R am)$, for all $m \in M$. Hence, [2, Theorem 2.4] shows that $p^2 \subseteq N : R am$, for all $m \in M$. Therefore, $a^3 \in N : R m$, for all $m \in M$. So that $a^3 \in N : R M$ and then $a \in r(N : R M)$. Thus $r(L : R M) \cap p \subseteq r(N : R M)$. Now, $L : R M$ is a 2-absorbing ideal of R, therefore either $r(L : R M) = p'$ or $r(L : R M) = p' \cap q'$, for some prime ideals p', q' of R. In the first case we have $r(N : R M) = p \cap p'$ which implies that $p' = q$ and in the second case we have $r(N : R M) = p \cap p' \cap q'$ which implies that either $p' = q$ or $q' = q$. \qed

Corollary 2.6. Let N be a 2-absorbing submodule of M such that $r(N : R M) = p \cap q$ where p and q are the only distinct prime ideals of R that are minimal over $N : R M$. If M/N is a Noetherian R-module, then

(i) there exists a chain $N = L_0 \subseteq L_1 \subseteq \cdots \subseteq L_{n-1} \subseteq L_n = M$ of 2-absorbing submodules of M. Furthermore, $\text{Ass}(M) \subseteq \text{Ass}(M/L_{n-1}) \cup \text{Ass}(L_{n-1}/L_{n-2}) \cup \text{Ass}(L_{n-2}/L_{n-3}) \cup \cdots \cup \text{Ass}(L_1/N)$, where $\text{Ass}(L_i/N)$ is the union of at most two totally ordered set, for all i.

(ii) there exists a chain $N \subseteq L_n \subseteq L_{n-1} \subseteq \cdots \subseteq L_1 \subseteq L_0 = M$ of submodules of M such that L_i is a 2-absorbing submodule of L_{i+1}, for all $0 \leq i \leq n - 1$.

Proof. (i) Let $L_1 = \{m \in M : p \subseteq r(N : R m)\}$. Then by Corollary 2.4, L_1 is a 2-absorbing submodule of M and so either $r(L_1 : R M) = q$ or $r(L_1 : R M) = p_1 \cap q$, where p_1 is a prime ideal of R containing p. If $r(L_1 : R M) = q$, then choose $L_2 = \{m \in M : q \subseteq r(L_1 : R M)\} = M$. Hence, $N \subseteq L_1 \subseteq L_2 = M$ is requested chain. If $r(L_1 : R M) = p_1 \cap q$, set $L_2 = \{m \in M : p_1 \subseteq r(L_2 : R M)\}$.
and so either \(r(L_2 :_R M) = q \) or \(r(L_2 :_R M) = p_2 \cap q \), where \(p_2 \) is a prime ideal of \(R \) containing \(p_1 \). Proceeding in this way, we can achieve \(N \subseteq L_0 \subseteq L_1 \subseteq \cdots \subseteq L_{n-1} \subseteq L_n = M \) of 2-absorbing submodules of \(M \). The last statement is obvious, by [9, Theorem 2.6].

(ii) Let \(L_1 = \{m \in M : p \subseteq r(N :_R M)\} \). Then \(N \) is a 2-absorbing submodule of \(L_1 \). So that either \(r(N :_R L_1) = p_1 \) or \(r(N :_R L_1) = p_1 \cap q_1 \), for some prime ideals \(p_1, q_1 \) of \(R \). If \(r(N :_R L_1) = p_1 \), then choose \(L_2 = \{x \in L_1 : p_1 \subseteq r(N :_R x)\} = N \). Hence, in this case \(N \subseteq L_1 \subseteq L_0 = M \) is the requested chain. If \(r(N :_R L_1) = p_1 \cap q_1 \), then set \(L_2 = \{x \in L_1 : p_1 \subseteq r(N :_R x)\} \) and continue the same way to achieve the chain \(N \subseteq L_n \subseteq L_{n-1} \subseteq \cdots \subseteq L_1 \subseteq L_0 = M \) of 2-absorbing submodules of \(M \).

Theorem 2.7. Let \(N \) be a 2-absorbing submodule of \(M \). Then \(N :_R M \) is a prime ideal of \(R \) if and only if \(N :_R m \) is a prime ideal of \(R \) for all \(m \in M \setminus N \).

Proof. Assume that \(a, b \in R, m \in M \setminus N \) and \(ab \in N :_R m \). Then \(abm \subseteq N \). We have \(am \in N \) or \(bm \in N \) or \(ab \in N :_R M \) since \(N \) is a 2-absorbing submodule of \(M \). If \(am \in N \) or \(bm \in N \) we are done. If \(ab \in N :_R M \), then by assumption either \(a \in N :_R M \) or \(b \in N :_R M \). Thus either \(a \in N :_R m \) or \(b \in N :_R m \). So \(N :_R m \) is a prime ideal.

Conversely, suppose that \(ab \in N :_R M \) for some \(a, b \in R \) and assume that there exist \(m, m' \in M \) such that \(am \notin N \) and \(bm' \notin N \). By \(abm, abm' \in N \) it follows that \(bm \in N \) and \(am' \in N \) since \(N :_R m \) and \(N :_R m' \) are prime ideals of \(R \). If \(m + m' \in N \), then \(am \in N \) which is a contradiction. Thus \(m + m' \notin N \). Now by \(ab(m' + m'') \in N \) we have \(a(m' + m'') \in N \) or \(b(m' + m'') \in N \) which is a contradiction. Thus \(aM \subseteq N \) or \(bM \subseteq N \) which implies that \(N :_R M \) is prime.

Corollary 2.8. Let \(N \) be a 2-absorbing submodule of \(M \). Then \(N :_R M \) is a prime ideal of \(R \) if and only if \(N :_R K \) is a prime ideal of \(R \) for all submodules \(K \) of \(M \) containing \(N \).

Proof. By Theorem 2.7 and [9, Theorem 2.6] it follows that \(\{N :_R x : x \in K \setminus N\} \) is a totally ordered set of prime ideals of \(R \). Hence, \(N :_R K = \cap_{x \in K \setminus N} N :_R x \) is a prime ideal of \(R \).

Theorem 2.9. Let \(p \) be a prime ideal of \(R \) and \(E(R/p) \) be an injective envelop of \(R/p \). If \(0 \) is a 2-absorbing submodule of \(E(R/p) \), then

(i) \(p^2 \subseteq 0 :_R E(R/p) \subseteq p \) so that \(r(0 :_R E(R/p)) = p \).

(ii) \(p^2 \subseteq 0 :_R x \subset 0 :_R ax = p \), for all non-zero element \(x \) of \(E(R/p) \) and all \(a \in p \setminus 0 :_R x \).

(iii) \(p^2 \subseteq 0 :_R x = 0 :_R a^nx \subseteq p \), for all \(a \notin p \).

Proof. (i) We have \(r(0 :_R x) = p \) for all non-zero element \(x \) of \(E(R/p) \), by [8, Theorem 18.4]. Also it is obvious \(0 :_R E(R/p) \subseteq 0 :_R x \). Thus \(0 :_R E(R/p) \subseteq p \).
Now, assume that \(a \in p^2 \) and \(x \) is a non-zero element of \(E(R/p) \). Since 0 is a 2-absorbing submodule of \(M \), 0 : \(R x \) is a 2-absorbing ideal of \(R \), by [9, Theorem 2.4]. Therefore we have \(p^2 \) is a subset of 0 : \(R x \), by [2, Theorem 2.4]. Hence, \(ax = 0 \) and therefore \(aE(R/p) = 0 \) and \(p^2 \subseteq 0 : R E(R/p) \).

(ii) Let \(x \) be a non-zero element of \(E(R/p) \). Then we have \(p^2 \subseteq 0 : R x \subseteq p \). Assume that \(a \in p \setminus 0 : R x \). Thus \(ax \neq 0 \) but \(a^2 x = 0 \) which shows that \(0 : R x \subseteq 0 : R ax \). If \(b \in p \), then \(ab \in p^2 \) and \(abx = 0 \). Thus \(b \in 0 : R ax \) and so \(p \subseteq 0 : R ax \).

(iii) Assume that \(a \notin p \). It is obvious that \(0 : R x \subseteq 0 : R a^n x \), for all \(n \in \mathbb{N} \). Let \(b \in \text{Ann}_R(a^n x) \). Thus \(ba^n x = 0 \). But multiplication by \(a^n \) is an automorphism on \(E(R/p) \), so that \(bx = 0 \) and \(b \in 0 : R x \). Therefore, \(0 : R x = 0 : R a^n x \).

Corollary 2.10. Let \(R \) be a principal ideal domain and \(p \) is a prime ideal of \(R \). If 0 is a 2-absorbing submodule of \(E(R/p) \), then for all non-zero element \(x \) of \(E(R/p) \) either \(0 : R x = p^2 \) or \(0 : R x = p \).

Proof. Let \(p = (a) \). Then \(p^2 = (a^2) \). Let \(x \) be a non-zero element of \(E(R/p) \). Then \(p^2 \subseteq 0 : R x = (b) \subseteq p \) by Theorem 2.9(ii). Thus \(a^2 = bc \) and \(b = ae \) for some \(c, e \in R \). Hence, \(a^2 = ace \). So \(a = ec \in p \). Therefore, either \(c \in p \) or \(e \in p \). If \(c \in p \), then \(c = ec' \) and so \(a = eac' \) which implies that \(1 = ec' \) and \(a = bc' \) thus \(0 : R x = p \). If \(e \in p \), then \(e = ae' \) and so \(a = ae'c \) which implies that \(1 = e'c \) and \(b = a^2e' \) thus \(0 : R x = p^2 \).

The following example shows that the condition “0 is a 2-absorbing submodule of \(E(R/p) \)” is essential. It is well-known that \(E(\mathbb{Z}/p\mathbb{Z}) = \mathbb{Z}(p^\infty) = \{m/n + \mathbb{Z} : m, n \in \mathbb{Z}, n \neq 0\} \), where \(p \) is a prime integer. But neither \(p^2 \mathbb{Z} = 0 : 1/p^3 + \mathbb{Z} \) nor \(0 : 1/p^3 + \mathbb{Z} = p\mathbb{Z} \). Hence, 0 is not a 2-absorbing submodule of \(E(\mathbb{Z}/p\mathbb{Z}) \). Also, this example shows that if 0 is a 2-absorbing submodule of \(M \), then it is not necessarily a 2-absorbing submodule of \(E(M) \).

Acknowledgments

We would like to thank the referee for a careful reading of our article.

References