On the 2-absorbing Submodules

Sh. Payrovi∗, S. Babaei

Imam Khomieni International University, Postal Code: 34149-1-6818, Qazvin, Iran.

E-mail: shpayrovi@sci.ikiu.ac.ir
E-mail: sbabaei@edu.ikiu.ac.ir

Abstract. Let \(R \) be a commutative ring and \(M \) be an \(R \)-module. In this paper, we investigate some properties of 2-absorbing submodules of \(M \). It is shown that \(N \) is a 2-absorbing submodule of \(M \) if and only if whenever \(IJL \subseteq N \) for some ideals \(I, J \) of \(R \) and a submodule \(L \) of \(M \), then \(IL \subseteq N \) or \(JL \subseteq N \) or \(IJ \subseteq N \); \(R \). Also, if \(N \) is a 2-absorbing submodule of \(M \) and \(M/N \) is Noetherian, then a chain of 2-absorbing submodules of \(M \) is constructed. Furthermore, the annihilation of \(E(R/p) \) is studied whenever \(0 \) is a 2-absorbing submodule of \(E(R/p) \), where \(p \) is a prime ideal of \(R \) and \(E(R/p) \) is an injective envelope of \(R/p \).

Keywords: 2-absorbing ideal, 2-absorbing submodule, A chain of 2-absorbing submodule.

1. Introduction

Throughout this paper \(R \) is a commutative ring with non-zero identity and \(M \) is an unitary \(R \)-module. We defined a submodule \(N \) of \(M \) is 2-absorbing whenever \(abm \in N \) for some \(a, b \in R, m \in M \), then \(am \in N \) or \(bm \in N \) or \(ab \in N \); \(R \). It is well known that, a submodule \(N \) of \(M \) is prime if and only if \(IL \subseteq N \) for an ideal \(I \) of \(R \) and

∗Corresponding Author

Received 30 October 2013; Accepted 09 September 2014

©2015 Academic Center for Education, Culture and Research TMU
a submodule L of M, then either $L \subseteq N$ or $I \subseteq N :_R M$. This statement persuaded us to prove that, a submodule N of M is 2-absorbing if and only if $IJL \subseteq N$ for some ideals I,J of R and a submodule L of M, then $IL \subseteq N$ or $JL \subseteq N$ or $IJ \subseteq N :_R M$. As a corollary of this theorem, it is shown that $L = \{ m \in M : p \subseteq r(N : m) \}$ is a 2-absorbing submodule of M, where N is a 2-absorbing submodule of M with $r(N :_R M) = p \cap q$ for some prime ideals p,q of R. Also, it is shown that if M/N is Noetherian, then there exists a chain of 2-absorbing submodules of M that begins with N. Assume that $E(R/p)$ is an injective envelope of R/p, it is shown that if 0 is a 2-absorbing submodule of $E(R/p)$, then $r(0 :_R E(R/p)) = p$ and $0 :_R x$ is determined for all nonzero element x of $E(R/p)$.

Now, we define the concepts that we will use later. For a submodule L of M let $L :_R M$ denote the ideal \{ $r \in R : rM \subseteq L$ \}. Similarly, for an element $m \in M$ let $L :_R m$ denote the ideal \{ $r \in R : rm \subseteq L$ \}. If I is an ideal of R, then $r(I)$ denotes the radical of I. We say that $p \in \text{Spec}(R)$ is an associated prime ideal of M if there exists $m \in M$ with $0 :_R m = p$. The set of associated prime ideals of M is denoted by $\text{Ass}_R(M)$, the set of integers is denoted by \mathbb{Z}.

2. 2-absorbing Submodules

Let N be a proper submodule of M. We say that N is a 2-absorbing submodule of M if whenever $a,b \in R$, $m \in M$ and $abm \in N$, then $am \in N$ or $bm \in N$ or $ab \in N :_R M$.

Lemma 2.1. Let I be an ideal of R and N be a 2-absorbing submodule of M. If $a \in R$, $m \in M$ and $IAM \subseteq N$, then $am \in N$ or $Im \subseteq N$ or $Ia \subseteq N :_R M$.

Proof. Let $am \notin N$ and $Ia \notin N :_R M$. Then there exists $b \in I$ such that $ba \notin N :_R M$. Now, $bam \in N$ implies that $bm \in N$, since N is a 2-absorbing submodule of M. We have to show that $Im \subseteq N$. Let c be an arbitrary element of I. Thus $(b+c)am \in N$. Hence, either $(b+c)m \in N$ or $(b+c)a \in N :_R M$. If $(b+c)m \in N$, then by $bm \in N$ it follows that $cm \in N$. If $(b+c)a \in N :_R M$, then $ca \notin N :_R M$, but $cam \in N$. Thus $cm \in N$. Hence, we conclude that $Im \subseteq N$. ∎

Lemma 2.2. Let I,J be ideals of R and N be a 2-absorbing submodule of M. If $m \in M$ and $IJm \subseteq N$, then $Im \subseteq N$ or $Jm \subseteq N$ or $IJ \subseteq N :_R M$.

Proof. Let $I \not\subseteq N :_R M$ and $J \not\subseteq N :_R M$. We have to show that $IJ \not\subseteq N :_R M$. Assume that $c \in I$ and $d \in J$. By assumption there exists $a \in I$ such that $am \notin N$ but $aJm \subseteq N$. Now, Lemma 2.1 shows that $aJ \subseteq N :_R M$ and so $(I \setminus N :_R M)J \subseteq N :_R M$, similarly there exists $b \in J \setminus N :_R m$ such that $Ib \subseteq N :_R M$ and also $(I \setminus N :_R m)J \subseteq N :_R M$. Thus we have $ab \in N :_R M$, $ad \in N :_R M$ and $cb \in N :_R M$. By $a+c \in I$ and $b+d \in J$ it follows that $(a+c)(b+d)m \in N$. Therefore, $(a+c)m \in N$ or $(b+d)m \in N$ or
(a + c)(b + d) ∈ N : R M. If (a + c)m ∈ N, then cm ̸∈ N hence, c ∈ I \ N : R m
which implies that cd ∈ N : R M. Similarly by (b + d)m ∈ N, we can deduce
that cd ∈ N : R M. If (a + c)(b + d) ∈ N : R M, then ab + ad + cb + cd ∈ N : R M
and so cd ∈ N : R M. Therefore, IJ ⊆ N : R M. □

Theorem 2.3. Let N be a proper submodule of M. The following statement
are equivalent:

(i) N is a 2-absorbing submodule of M;
(ii) If IJL ⊆ N for some ideals I, J of R and a submodule L of M, then
IL ⊆ N or JL ⊆ N or IJ ⊆ N : R M.

Proof. (ii) ⇒ (i) is obvious. To prove (i) ⇒ (ii), assume that IJL ⊆ N for
some ideals I, J of R and a submodule L of M and IJ ⊄ N : R M. Then
by Lemma 2.2 for all m ∈ L either Im ⊆ N or Jm ⊆ N. If Im ⊆ N, for
all m ∈ L we are done. Similarly if Jm ⊆ N, for all m ∈ L we are done.
Suppose that m, m′ ∈ L are such that Im ⊄ N and Jm′ ⊄ N. Thus Jm ⊆ N
and Im′ ⊆ N. Since IJ(m + m′) ⊆ N we have either I(m + m′) ⊆ N or
J(m + m′) ⊆ N. By I(m + m′) ⊆ N, it follows that Im ⊆ N which is a
contradiction, similarly by J(m + m′) ⊆ N we get a contradiction. Therefore
either IL ⊆ N or JL ⊆ N. □

A submodule N of M is called strongly 2-absorbing if it satisfies in condition
(ii), see [5]. Therefore, Theorem 2.3 shows that N is a 2-absorbing submodule
of M if and only if N is a strongly 2-absorbing submodule of M.

Corollary 2.4. Let M be an R-module and N be a 2-absorbing submodule of
M. Then N : M I = {m ∈ M : Im ⊆ N} is a 2-absorbing submodules of M for
all ideal I of R. Furthermore N : M I^n = N : M I^{n+1}, for all n ≥ 2.

Proof. Let I be an ideal of R, a,b ∈ R, m ∈ M and abm ∈ N : M I. Thus
Iabm ⊆ N. Hence, Im ⊆ N or Iab ⊆ N : R M or abm ∈ N, by Lemma 2.2. If
Im ⊆ N we are done. If Iab ⊆ N : R M, then ab ∈ (N : R M) : R I = (N : M
I) : R M. If abm ∈ N, then am ∈ N or bm ∈ N or ab ∈ N : R M. Thus
Iam ⊆ N or Ibm ⊆ N or Iab ⊆ N : R M which complete the proof.

For the second statement, it is enough to show that N : M I^2 = N : M I^3. It
is clear that N : M I^2 ⊆ N : M I^3. Let m ∈ N : M I^3. Then I^3m ⊆ N. Now, by
Lemma 2.2, we have I^2m ⊆ N or Im ⊆ N or I^3 ⊆ N : R M. If I^2m ⊆ N or
Im ⊆ N, we are done. If I^3 ⊆ N : R M, then I^2 ⊆ N : R M since N : R M is a
2-absorbing ideal of R by [9, Theorem 2.3]. □

It is clear that, nZ is a 2-absorbing ideal of Z if and only if n = 0, p, p^2, pq,
where p, q are distinct prime integers. It is easy to see that 4Z : 2Z = 2Z
but 4Z : 2Z = 36Z = Z. Hence, the equality mentioned in the Corollary 2.4, is not
necessarily true for n = 1.
Theorem 2.5. Let \(N \) be a 2-absorbing submodule of \(M \) such that \(r(N : R M) = p \cap q \) where \(p \) and \(q \) are the only distinct prime ideals of \(R \) that are minimal over \(N : R M \). Then \(L = \{ m \in M : p \subseteq r(N : R m) \} \) is a 2-absorbing submodule of \(M \) containing \(N \). Also, either \(r(L : R M) = q \) or \(r(L : R M) = p' \cap q \), where \(p' \) is a prime ideal of \(R \) containing \(p \).

Proof. It is clear that \(L \) is a submodule of \(M \) containing \(N \). Assume that \(a, b \in R, m \in M \) and \(abm \in L \). We have to show that \(am \in L \) or \(bm \in L \) or \(ab \in L : R M \). Since \(p \subseteq r(N : R abm) \), thus \(p^2 abm \subseteq N \), by [9, Theorem 2.4] and [2, Theorem 2.4]. Therefore, by Lemma 2.1, we have \(abm \in N \) or \(p^2 m \subseteq N \) or \(p^2 ab \subseteq N : R M \). If \(abm \in N \), then \(am \in N \) or \(bm \in N \) or \(ab \in N : R M \) which implies that \(am \in L \) or \(bm \in L \) or \(ab \in L : R M \). If \(p^2 m \subseteq N \), then \(p^2 \subseteq N : R m \) and so \(p \subseteq r(N : R m) \) thus \(m \in L \) and we are done. If \(p^2 ab \subseteq N : R M \), then by [2, Theorem 2.13], we have \(p^2 a \subseteq N : R M \) or \(p^2 b \subseteq N : R M \) or \(ab \in N : R M \).

In the first case we conclude that \(p^2 \subseteq N : R am \) and so \(am \in L \). By a similar argument in the second case we can deduced that \(bm \in L \). If \(ab \in N : R M \), then \(ab \in L : R M \). Therefore, the result follows.

For the second statement, first we show that \(r(N : R M) = r(L : R M) \cap p \). It is clear \(r(N : R M) \subseteq r(L : R M) \cap p \). Assume that \(a \in (L : R M) \cap p \). Thus \(aM \subseteq L \) and so, by definition of \(L \), \(p \subseteq r(N : R am) \), for all \(m \in M \). Hence, [2, Theorem 2.4] shows that \(p^2 \subseteq N : R am \), for all \(m \in M \). Therefore, \(a^3 \in N : R m \), for all \(m \in M \). So that \(a^3 \in N : R M \) and then \(a \in r(N : R M) \). Thus \(r(L : R M) \cap p \subseteq r(N : R M) \). Now, \(L : R M \) is a 2-absorbing ideal of \(R \), therefore either \(r(L : R M) = p' \) or \(r(L : R M) = p' \cap q' \), for some prime ideals \(p', q' \) of \(R \). In the first case we have \(r(N : R M) = p \cap p' \) which implies that \(p' = q \) and in the second case we have \(r(N : R M) = p \cap p' \cap q' \) which implies that either \(p' = q \) or \(q' = q \).

\[\square \]

Corollary 2.6. Let \(N \) be a 2-absorbing submodule of \(M \) such that \(r(N : R M) = p \cap q \) where \(p \) and \(q \) are the only distinct prime ideals of \(R \) that are minimal over \(N : R M \). If \(M/N \) is a Noetherian \(R \)-module, then

(i) there exists a chain \(N = L_0 \subseteq L_1 \subseteq \cdots \subseteq L_{n-1} \subseteq L_n = M \) of 2-absorbing submodules of \(M \). Furthermore, \(\text{Ass}(M) \subseteq \text{Ass}(M/L_{n-1}) \cup \text{Ass}(L_{n-1}/L_{n-2}) \cup \cdots \cup \text{Ass}(L_1/N) \) where \(\text{Ass}(L_i/N) \) is the union of at most two totally ordered set, for all \(i \).

(ii) there exists a chain \(N \subseteq L_n \subseteq L_{n-1} \subseteq \cdots \subseteq L_1 \subseteq L_0 = M \) of submodules of \(M \) such that \(L_i \) is a 2-absorbing submodule of \(L_{i+1} \), for all \(0 \leq i \leq n-1 \).

Proof. (i) Let \(L_1 = \{ m \in M : p \subseteq r(N : R m) \} \). Then by Corollary 2.4, \(L_1 \) is a 2-absorbing submodule of \(M \) and so either \(r(L_1 : R M) = q \) or \(r(L_1 : R M) = p_1 \cap q \), where \(p_1 \) is a prime ideal of \(R \) containing \(p \). If \(r(L_1 : R M) = q \), then choose \(L_2 = \{ m \in M : q \subseteq r(L_1 : R m) \} = M \). Hence, \(N \subseteq L_1 \subseteq L_2 = M \) is requested chain. If \(r(L_1 : R M) = p_1 \cap q \), set \(L_2 = \{ m \in M : p_1 \subseteq r(L_1 : R m) \} \).
and so either \(r(L_2 :_RM) = q \) or \(r(L_2 :_RM) = p_2 \cap q \), where \(p_2 \) is a prime ideal of \(R \) containing \(p_1 \). Proceeding in this way, we can achieve \(N \subseteq L_0 \subseteq L_1 \subseteq \cdots \subseteq L_{n-1} \subseteq L_n = M \) of 2-absorbing submodules of \(M \). The last statement is obvious, by [9, Theorem 2.6].

(ii) Let \(L_1 = \{ m \in M : p \subseteq r(N :_R m) \} \). Then \(N \) is a 2-absorbing submodule of \(L_1 \). So that either \(r(N :_RL_1) = p_1 \) or \(r(N :_RL_1) = p_1 \cap q_1 \), for some prime ideals \(p_1, q_1 \) of \(R \). If \(r(N :_RL_1) = p_1 \), then choose \(L_2 = \{ x \in L_1 : p_1 \subseteq r(N :_Rx) \} = N \). Hence, in this case \(N \subseteq L_1 \subseteq L_0 = M \) is the requested chain. If \(r(N :_RL_1) = p_1 \cap q_1 \), then set \(L_2 = \{ x \in L_1 : p_1 \subseteq r(N :_Rx) \} \) and continue the same way to achieve the chain \(N \subseteq L_n \subseteq L_{n-1} \subseteq \cdots \subseteq L_1 \subseteq L_0 = M \) of 2-absorbing submodules of \(M \).

Theorem 2.7. Let \(N \) be a 2-absorbing submodule of \(M \). Then \(N :_RM \) is a prime ideal of \(R \) if and only if \(N :_Rm \) is a prime ideal of \(R \) for all \(m \in M \setminus N \).

Proof. Assume that \(a, b \in R, m \in M \setminus N \) and \(ab \in N :_Rm \). Then \(abm \subseteq N \). We have \(am \in N \) or \(bm \in N \) or \(ab \in N :_R M \) since \(N \) is a 2-absorbing submodule of \(M \). If \(am \in N \) or \(bm \in N \) we are done. If \(ab \in N :_R M \), then by assumption either \(a \in N :_RM \) or \(b \in N :_RM \). Thus either \(a \in N :_RM \) or \(b \in N :_RM \). So \(N :_Rm \) is a prime ideal.

 Conversely, suppose that \(ab \in N :_R M \) for some \(a, b \in R \) and assume that there exist \(m, m' \in M \) such that \(am \notin N \) and \(bm' \notin N \). By \(abm, abm' \in N \) it follows that \(bm \in N \) and \(am' \in N \) since \(N :_R m \) and \(N :_R m' \) are prime ideals of \(R \). If \(m + m' \in N \), then \(am \in N \) which is a contradiction. Thus \(m + m' \notin N \). Now by \(ab(m' + m'') \in N \) we have \(a(m' + m'') \in N \) or \(b(m' + m'') \in N \) which is a contradiction. Thus \(aM \subseteq N \) or \(bM \subseteq N \) which implies that \(N :_R M \) is prime.

Corollary 2.8. Let \(N \) be a 2-absorbing submodule of \(M \). Then \(N :_R M \) is a prime ideal of \(R \) if and only if \(N :_RK \) is a prime ideal of \(R \) for all submodules \(K \) of \(M \) containing \(N \).

Proof. By Theorem 2.7 and [9, Theorem 2.6] it follows that \(\{ N :_R x : x \in K \setminus N \} \) is a totally ordered set of prime ideals of \(R \). Hence, \(N :_RK = \cap_{x \in K} N :_Rx \) is a prime ideal of \(R \).

Theorem 2.9. Let \(p \) be a prime ideal of \(R \) and \(E(R/p) \) be an injective envelope of \(R/p \). If \(0 \) is a 2-absorbing submodule of \(E(R/p) \), then

(i) \(p^2 \subseteq 0 :_RE(R/p) \subseteq p \) so that \(r(0 :_RE(R/p)) = p \).

(ii) \(p^2 \subseteq 0 :_R x \subseteq 0 :_Rx \) for all non-zero element \(x \) of \(E(R/p) \) and all \(a \in p \setminus 0 :_Rx \).

(iii) \(p^2 \subseteq 0 :_Rx = 0 :_R a^n x \subseteq p \), for all \(a \notin p \).

Proof. (i) We have \(r(0 :_Rx) = p \) for all non-zero element \(x \) of \(E(R/p) \), by [8, Theorem 18.4]. Also it is obvious \(0 :_RE(R/p) \subseteq 0 :_Rx \). Thus \(0 :_RE(R/p) \subseteq p \).
Now, assume that $a \in p^2$ and x is a non-zero element of $E(R/p)$. Since 0 is a 2-absorbing submodule of M, $0:_R x$ is a 2-absorbing ideal of R, by [9, Theorem 2.4]. Therefore we have p^2 is a subset of $0:_R x$, by [2, Theorem 2.4]. Hence, $ax = 0$ and therefore $aE(R/p) = 0$ and $p^2 \subseteq 0:_R E(R/p)$.

(ii) Let x be a non-zero element of $E(R/p)$. Then we have $p^2 \subseteq 0:_R x \subseteq p$. Assume that $a \in p \setminus 0 :_R x$. Thus $ax \neq 0$ but $a^2x = 0$ which shows that $0 :_R x \subsetneq 0 :_R ax$. If $b \in p$, then $ab \in p^2$ and $abx = 0$. Thus $b \in 0 :_R ax$ and so $p \subseteq 0 :_R ax$.

(iii) Assume that $a \notin p$. It is obvious that $0 :_R x \subsetneq 0 :_R a^nx$, for all $n \in \mathbb{N}$. Let $b \in \text{Ann}_R(a^n x)$. Thus $ba^n x = 0$. But multiplication by a^n is an automorphism on $E(R/p)$, so that $bx = 0$ and $b \in 0 :_R x$. Therefore, $0 :_R x = 0 :_R a^nx$. □

Corollary 2.10. Let R be a principal ideal domain and p is a prime ideal of R. If 0 is a 2-absorbing submodule of $E(R/p)$, then for all non-zero element x of $E(R/p)$ either $0 :_R x = p^2$ or $0 :_R x = p$.

Proof. Let $p = (a)$. Then $p^2 = (a^2)$. Let x be a non-zero element of $E(R/p)$. Then $p^2 \subseteq 0 :_R x = (b) \subseteq p$ by Theorem 2.9(ii). Thus $a^2 = bc$ and $b = ae$ for some $c, e \in R$. Hence, $a^2 = ace$. So $a = ec \in p$. Therefore, either $c \in p$ or $e \in p$. If $c \in p$, then $c = ae'$ and so $a = eac'$ which implies that $1 = ec'$ and $a = bc' \therefore 0 :_R x = p$. If $e \in p$, then $e = ae'$ and so $a = ae'c$ which implies that $1 = e'c$ and $b = a^2c'$ thus $0 :_R x = p^2$. □

The following example shows that the condition “0 is a 2-absorbing submodule of $E(R/p)$” is essential. It is well-known that $E(\mathbb{Z}/p\mathbb{Z}) = \mathbb{Z}(p^{\infty}) = \{m/n + \mathbb{Z} : m, n \in \mathbb{Z}, n \neq 0\}$, where p is a prime integer. But neither $p^2\mathbb{Z} = 0 :\mathbb{Z} 1/p^3 + \mathbb{Z}$ nor $0 :\mathbb{Z} 1/p^3 + \mathbb{Z} = p\mathbb{Z}$. Hence, 0 is not a 2-absorbing submodule of $E(\mathbb{Z}/p\mathbb{Z})$. Also, this example shows that if 0 is a 2-absorbing submodule of M, then it is not necessarily a 2-absorbing submodule of $E(M)$.

Acknowledgments

We would like to thank the referee for a careful reading of our article.

References