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1. Introduction

Several authors (e.g. [3], [1], [6]) have discussed the conics whose equations

are satisfied by pairs of successive terms of generalized Fibonacci sequences.

The second order recurrence Wn(a, b; p, q), is defined by

W0 = a, W1 = b, Wn+1 = pWn − qWn−1, n ≥ 1

where a, b, p and q are arbitrary integers.

In [7], McDaniel proved that, if x and y are positive integers, then the pair

(x, y) is a solution of y2 − Pxy − x2 = ±1 iff there exists a positive integer n

such that x = Un and y = Un+1, where Un = Wn(0, 1;P,−1).
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McDaniel’s results was generalized by Melham in [9], where for example

he proved that if m is even, then the points with integer coordinates on the

conics y2 − Vmxy + x2 ∓ U2
m = 0, are precisely the pairs ∓(Un, Un+m), where

Vn = Wn(2, P ;P,−1).

Kilic and Omur in [5] considered all given results on special conics, and

then gave more general results, generalizing work of Melham and McDaniel.

For example they proved the following theorem which is the combination of

Theorems 3 and 4 of [5].

Theorem 1.1. The points with integer coordinates on the conics y2−Vkmxy+

(−1)mx2 ∓ U2
km = 0 are precisely the pairs ∓(Ukn, Uk(n+m)).

Marlewski and Zarzycki in [8] proved that the equation x2−kxy+y2+x = 0

with k ∈ N has an infinite number of positive integer solutions x and y if and

only if k = 3.

Now let

(1.1) ϕ0 = 0, ϕ1 = 1, ϕn+1 = kϕn + ϕn−1, n ≥ 1.

In this paper we will prove that the equation

(1.2) x2 ± kxy − y2 ± x = 0

with k ∈ N has infinite number of positive integer solutions x and y, and

describe the structure of solutions, using Eq. (1.1).

In general, the standard approach to solve these equations is via reduction

of quadratic forms and a parallel approach which uses pell equation and gener-

alized pell equation. The generalized pell equation is the Diophantine equation

x2 −Dy2 = N , where D and N are integers and D > 0 is not a perfect square.

This equation is usually solved using continued fractions.

2. Some Preliminary Results

Let k be a positive integer. It is possible to rewrite Eq. (1.1) as a matrix

equation. To do this, we assume that Q :=

(

k 1

1 0

)

. Then

(

ϕ1

ϕ0

)

=

(

1

0

)

and

(

ϕn+1

ϕn

)

= Q

(

ϕn

ϕn−1

)

.

Since

(

ϕn+1

ϕn

)

= Qn−1

(

k

1

)

and

(

ϕn

ϕn−1

)

= Qn−1

(

1

0

)

, one can see that

Qn =

(

ϕn+1 ϕn

ϕn ϕn−1

)

, n ≥ 1.
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Using Q0 = I,Q−1 =

(

0 1

1 −k

)

, Q−n = (Qn)−1 we can extend the sequence

(1.1) to Z by setting

(

ϕ−n+1 ϕ−n

ϕ−n ϕ−n−1

)

= (−1)n
(

ϕn−1 −ϕn

−ϕn ϕn+1

)

. Thus ϕ−n =

(−1)n+1ϕn.

Since det(Qn) = (−1)n we have ϕn+1ϕn−1 − ϕ2
n = (−1)n. Therefore

(2.1) kϕnϕn+1 + ϕ2
n + (−1)n = ϕ2

n+1.

The equality Qm+n = QmQn gives

(2.2) ϕm+n = ϕm+1ϕn + ϕmϕn−1 = ϕmϕn+1 + ϕm−1ϕn,

for all integers m and n.

Now let D be a positive integer not a perfect square and suppose that
√
D

is written as an infinite simple continued fraction
√
D = [a0, a1, a2, ...]. For

each nonnegative n the rational number [a0, a1, ..., an] = hn/kn is called the

nth convergent to the infinite simple continued fraction [a0, a1, a2, ...].

It is easy to see that for any integer k > 1 the number k2+4 is not a square,

and we have the following infinite simple continued fraction of
√
k2 + 4

(2.3)
√

k2 + 4 =

{

[k, (k − 1)/2, 1, 1, (k− 1)/2, 2k] k is odd,

[k, k/2, 2k] k is even.

If [a0, a1, a2, ...] is an infinite simple continued fraction and hn/kn is the nth

convergent to it, then

(2.4)
h0 = a0, h1 = a1a0 + 1, hn = anhn−1 + hn−2,

k0 = 1 , k1 = a1, kn = ankn−1 + kn−2,
n ≥ 2.

To simplify our calculations we define h−1 = 1 and k−1 = 0.

The next two theorems give the convergents of
√
k2 + 4 in terms of the

sequence ϕn. These results are proved in [7] using different arguments.

We first assume that k is odd. Then by Eq. (2.3) we have

a0 = k, a5n−4 = (k−1)/2, a5n−3 = 1, a5n−2 = 1, a5n−1 = (k−1)/2, a5n = 2k, n ≥ 1.

It is easy to see that Eq. (2.4) can be written as
(

hn kn
hn−1 kn−1

)

=

(

an 1

1 0

)(

hn−1 kn−1

hn−2 kn−2

)

, n ≥ 1.

Let An =

(

an 1

1 0

)

and Pn =

(

hn kn
hn−1 kn−1

)

. Then we have

(2.5) Pn = AnPn−1, (n ≥ 1).
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If we set N = A5A4A3A2A1, then using Eq. (2.2) and by induction, we can

prove the following Lemma.

Lemma 2.1. For any positive integer t, N t =

(

ϕ3t+1 2ϕ3t

1/2ϕ3t ϕ3t−1

)

.

Theorem 2.2. Let k be a positive odd integer and hn/kn be the nth convergent

to the infinite simple continued fraction of
√
k2 + 4. Then for all nonnegative

integer n

a) h10n = ϕ6n + ϕ6n+2,

b) k10n = ϕ6n+1,

c) h10n+4 = 1/2(ϕ6n+2 + ϕ6n+4),

d) k10n+4 = 1/2(ϕ6n+3),

e) h10n+8 = ϕ6n+4 + ϕ6n+6,

f) k10n+8 = ϕ6n+5.

Proof. To calculate h10n and k10n, using Eq. (2.5) we have

P5n = A5nP5n−1 = · · · = A5nA5n−1A5n−2A5n−3A5n−4P5n−5

= A5A4A3A2A1P5n−5

= NP5n−5.

Hence P10n = N2nP0, and by Lemma 2.1, we derive

P10n =

(

ϕ6n+1 2ϕ6n

1/2ϕ6n ϕ6n−1

)(

h0 k0
h−1 k−1

)

=

(

ϕ6n+1 2ϕ6n

1/2ϕ6n ϕ6n−1

)(

k 1

1 0

)

.

Thus

h10n = kϕ6n+1 + 2ϕ6n = ϕ6n+2 + ϕ6n,

k10n = ϕ6n+1.

Also

P10n+4 = A10n+4A10n+3A10n+2A10n+1N
2nP0

=

(

1/2ϕ3 ϕ2

ϕ2 2

)(

ϕ6n+1 2ϕ6n

1/2ϕ6n ϕ6n−1

)(

k 1

1 0

)

=

(

1/2ϕ6n+3 ϕ6n+2

ϕ6n+2 2ϕ6n+1

)(

k 1

1 0

)

,

and so,

h10n+4 = 1/2(kϕ6n+3 + 2ϕ6n+2) = 1/2(ϕ6n+4 + ϕ6n+2),

k10n+4 = 1/2ϕ6n+3.

Finally

P10n+8 = A10n+8A10n+7A10n+6N
2n+1P0.
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Hence

h10n+8 = kϕ6n+5 + 2ϕ6n+4 = ϕ6n+6 + ϕ6n+4,

k10n+8 = ϕ6n+5.

�

We now assume that k is even. By Eq. (2.3) we have

a0 = k, a2n−1 = k/2, a2n = 2k, n ≥ 1.

Then Eq. (2.4) implies that
(

hn kn
hn−1 kn−1

)

=

(

an 1

1 0

)(

hn−1 kn−1

hn−2 kn−2

)

, n ≥ 1.

Using previous notations, this equation can be written as Pn = AnPn−1

where A2n =

(

2k 1

1 0

)

and A2n−1 =

(

k/2 1

1 0

)

for all n ≥ 1. Now

(2.6) P2n = A2nP2n−1 = A2nA2n−1P2n−2.

Let M = A2nA2n−1. Then again using Eq. (2.2) and induction, we can prove

the following lemma.

Lemma 2.3. For all positive integer t, M t =

(

ϕ2t+1 2ϕ2t

1/2ϕ2t ϕ2t−1

)

.

Theorem 2.4. Let k be a positive even integer and hn/kn be the nth convergent

to the infinite simple continued fraction of
√
k2 + 4. Then for all nonnegative

integer n

a) h2n = ϕ2n + ϕ2n+2,

b) k2n = ϕ2n+1.

Proof. Using Eq. (2.6) and Lemma 2.3, we have

P2n = MP2n−2 = MnP0 =

(

ϕ2n+1 2ϕ2n

1/2ϕ2n ϕ2n−1

)(

k 1

1 0

)

,

and so
h2n = kϕ2n+1 + 2ϕ2n = ϕ2n+2 + ϕ2n,

k2n = ϕ2n+1.

�

3. The Diophantine Equations x2 ± kxy − y2 ± x = 0

In this section we show that the Diophantine equations x2±kxy−y2±x = 0

are solvable in integers for all positive integer k.

We first consider the equation

(3.1) x2 − kxy − y2 + x = 0.
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We will prove that all the solutions of Eq. (3.1) are the followings

(3.2)

(ϕ2
2n, ϕ2n−1ϕ2n),

(ϕ2
2n,−ϕ2nϕ2n+1),

(−ϕ2
2n+1, ϕ2n+1ϕ2n+2),

(−ϕ2
2n+1,−ϕ2nϕ2n+1).

Lemma 3.1. If (x, y) is a solution of Eq. (3.1), then the followings are also

solutions of the same equation

a) (x,−kx− y),

b) (ky − x− 1, y).

Proof. The proof is straightforward. �

Clearly (0, 0) is a solution of Eq. (3.1). Using the above Lemma, and starting

from (0, 0) we get a sequence of solutions of Eq. (3.1) as

(0, 0), (−1, 0), (−1, k), (k2, k), (k2,−k(k2 + 1)), (−(k2 + 1)2,−k(k2 + 1)), · · · .

These solutions can be written as

(0, 0) = (ϕ2
0,−ϕ0ϕ1), (−1, 0) = (−ϕ2

1,−ϕ0ϕ1), (−1, k) = (−ϕ2
1, ϕ1ϕ2),

(k2, k) = (ϕ2
2, ϕ1ϕ2), · · · .

Theorem 3.2. For all nonnegative integers n, the pairs in Eq. (3.2) satisfy

Eq. (3.1).

Proof. Induction on n. Clearly (0, 0) = (ϕ2
0,−ϕ0ϕ1) is a solution of Eq. (3.1).

Suppose that (x, y) = (ϕ2
2n,−ϕ2nϕ2n+1) satisfies Eq. (3.1). Then by Lemma

3.1(b) and Eq. (2.1),

(x, y) = (k(−ϕ2nϕ2n+1)− ϕ2
2n − 1,−ϕ2nϕ2n+1)

= (−(kϕ2nϕ2n+1 + ϕ2
2n + 1),−ϕ2nϕ2n+1)

= (−ϕ2
2n+1,−ϕ2nϕ2n+1)

is a solution of Eq. (3.1).

Now since (x, y) = (−ϕ2
2n+1,−ϕ2nϕ2n+1) is a solution of Eq. (3.1), by

Lemma 3.1(a) and Eq. (1.1),

(x, y) = (−ϕ2
2n+1,−k(−ϕ2

2n+1)− (−ϕ2nϕ2n+1))

= (−ϕ2
2n+1, kϕ

2
2n+1 + (ϕ2nϕ2n+1))

= (−ϕ2
2n+1, ϕ2n+1ϕ2n+2)

is a solution of Eq. (3.1).

Similar reasoning shows that if (−ϕ2
2n+1, ϕ2n+1ϕ2n+2) satisfies Eq. (3.1),

then (ϕ2
2n+2, ϕ2n+1ϕ2n+2) satisfies Eq. (3.1), and if (ϕ2

2n+2, ϕ2n+1ϕ2n+2) is a

solution of Eq. (3.1), then (ϕ2
2n+2,−ϕ2n+2ϕ2n+3) satisfies Eq. (3.1). �
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Next we prove that the solutions described in Eq. (3.2) are all the solutions

of Eq. (3.1). We first consider the positive solutions.

A similar argument to that of ([8] Theorem 1), proves the following theorem.

Theorem 3.3. If positive integers k, x and y satisfy the equation x2 − kxy −
y2 + x = 0, then there exist positive integers c,e such that x = c2 , y = ce and

gcd(c, e) = 1.

We need some properties of the Pell equation

(3.3) x2 −Dy2 = M

where D is a given positive integer not a perfect square and M is a given

integer.

Clearly, if x2
0−Dy20 = M is fulfilled for some integers x0, y0 and ϕ2

0−Dv20 = 1,

for some integers ϕ0, v0, then for any integer n, the pair (xn, yn) defined as

xn + yn
√
D = (x0 + y0

√
D)(ϕ0 + v0

√
D)n,

which satisfies Eq. (3.3).

Theorem 3.4. Let the integer M satisfies |M | <
√
D. Then, any positive

integer solution (s, t) of Eq. (3.3) with gcd(s, t) = 1 satisfies s = hn, t = kn for

some positive integer n, where hn

kn

is the nth convergent to the infinite simple

continued fraction of
√
D = [a0, a1, ...].

Proof. see ([10], Theorem 7.24). �

Theorem 3.5. Let [a0, a1, ...] be the infinite simple continued fraction of
√
D

and suppose that mn and qn are two sequences given by

m0 = 0, q0 = 1, mn+1 = anqn −mn, qn+1 = (D −m2
n+1)/qn.

Then

a) mn and qn are integers for any positive integer n,

b) h2
n −Dk2n = (−1)n+1qn+1 for any integer n ≥ −1.

Proof. see ([10], Theorem 7.22). �

Now we are ready to prove that all positive solutions of the Eq. (3.1) are

in the form (x, y) = (ϕ2
2n, ϕ2n−1ϕ2n). Using Theorem 3.3, there exist positive

integers c and e such that x = c2 , y = ce and gcd(c, e) = 1. Substituting in

Eq. (3.1),we have

c2 − kce− e2 + 1 = 0.

We can consider this equation as a quadratic equation with respect to the

indeterminate c. This equation has integer solutions if and only if ∆ = (k2 +

4)e2 − 4, is a square. i.e, there exists an integer t such that

(3.4) t2 − (k2 + 4)e2 = −4.
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And in this case

(3.5) c = (ke± t)/2.

Now we solve Eq. (3.4). We first assume that k is odd. From Eq. (2.3),
√

k2 + 4 = [k, (k − 1)/2, 1, 1, (k− 1)/2, 2k].

Applying Theorem 3.5, with

a0 = k, a5n−4 = (k−1)/2, a5n−3 = 1, a5n−2 = 1, a5n−1 = (k−1)/2, a5n = 2k, n ≥ 0,

we get two eventually periodic sequences

{mn}∞n=0 = {0, k, k − 2, 2, k − 2, k},

and

(3.6) {(−1)n+1qn+1}∞n=−1 = {1,−4, k,−k, 4,−1, 4,−k, k,−4, 1}.

Now we assume that (t, e) is a positive solution of Eq. (3.4). Then from Eq.

(3.4) we deduce that gcd(t, e) = 1 or 2. The sequence in Eq. (3.6) and Theorem

3.5, imply that

(3.7)

h2
10n − (k2 + 4)k210n = −4,

h2
10n+4 − (k2 + 4)k210n+4 = −1,

h2
10n+8 − (k2 + 4)k210n+8 = −4

for all n ≥ 0.

Now from Eq. (3.7) we deduce that

(2h10n+4)
2 − (k2 + 4)(2k10n+4)

2 = −4.

Moreover all of the solutions of Eq. (3.4) are as follows

(t, e) = (h10n, k10n), (2h10n+4, 2k10n+4), (h10n+8, k10n+8) n ≥ 0.

From Eq. (3.5), the solutions (c, e) are

(3.8)

((kk10n + h10n)/2, k10n),

(kk10n+4 + h10n+4, 2k10n+4),

((kk10n+8 + h10n+8)/2, k10n+8),

for all n ≥ 0. Now using Theorem 2.2, and rearranging Eq. (3.8), we have

(c, e) = ((kϕ6n+1 + ϕ6n + ϕ6n+2)/2, ϕ6n+1) = (ϕ6n+2, ϕ6n+1),

(c, e) = (k(12ϕ6n+3) +
1
2 (ϕ6n+2 + ϕ6n+4), 2(

1
2ϕ6n+3)) = (ϕ6n+4, ϕ6n+3),

(c, e) = ((kϕ6n+5 + ϕ6n+4 + ϕ6n+6)/2, ϕ6n+5) = (ϕ6n+6, ϕ6n+5),

and finally from Theorem 3.3, (x, y) = (c2, ce). So

(x, y) = (ϕ2
6n+2, ϕ6n+1ϕ6n+2),

(ϕ2
6n+4, ϕ6n+3ϕ6n+4),

(ϕ2
6n+6, ϕ6n+5ϕ6n+6),
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and therefore (x, y) = (ϕ2
2n, ϕ2n−1ϕ2n) for every positive integer n. Thus we

proved

Theorem 3.6. If k is an odd positive integer, then every positive solutions of

x2 − kxy − y2 + x = 0 is of the form (x, y) = (ϕ2
2n, ϕ2n−1ϕ2n).

Now we consider the case when k is even. In this case from Eq. (2.3),√
k2 + 4 = [k, k/2, 2k]. Let

a0 = k, a2n+1 = k/2, a2n+2 = 2k,

for all n ≥ 0. We get two eventually periodic sequences

{mn}∞n=0 = {0, k}
and

{(−1)n+1qn+1}∞n=−1 = {1,−4}.
From this and Theorem 3.5, we have

(3.9) h2
2n − (k2 + 4)k22n = −4

for all n ≥ 0. Moreover in this case all solutions of Eq. (3.4) are (t, e) =

(h2n, k2n), and using Eq. (3.5), (c, e) = ((kk2n + h2n)/2, k2n). But from The-

orem 2.4, h2n = ϕ2n + ϕ2n+2 and k2n = ϕ2n+1. Substituting in Eq. (3.5) we

get (c, e) = ((kϕ2n+1 + ϕ2n + ϕ2n+2)/2, ϕ2n+1). Therefore (x, y) = (c2, ce) =

(ϕ2
2n+2, ϕ2n+1ϕ2n+2). Thus we proved,

Theorem 3.7. If k is a positive even integer, then every positive solution of

the equation x2 − kxy − y2 + x = 0 is in the form (x, y) = (ϕ2
2n, ϕ2n−1ϕ2n).

Now we find all (not necessarily positive) solutions of the equation x2 −
kxy − y2 + x = 0. First assume that x > 0 and y < 0. By substituting x → x

and y → −y, it is enough to consider the new equation x2 + kxy − y2 + x = 0

and its positive solutions

(x, y) = (ϕ2
2n, ϕ2nϕ2n+1).

Similarly if x < 0 and y > 0, then substituting x → −x

and y → y and considering the equation x2 + kxy − y2 − x = 0, we have

(x, y) = (ϕ2
2n+1, ϕ2n+1ϕ2n+2).

Finally if x < 0 and y < 0, then by substituting x → −x

and y → −y, it is enough to consider the equation x2 − kxy − y2 − x = 0

and find its positive solutions, that are

(x, y) = (ϕ2
2n+1, ϕ2nϕ2n+1).

In general and using the above discussions we have

Theorem 3.8. If k is an integer, then all the solutions of the equation x2 −
kxy − y2 + x = 0 are
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i) (ϕ2
2n, ϕ2n−1ϕ2n),

ii) (ϕ2
2n,−ϕ2nϕ2n+1),

iii) (−ϕ2
2n+1, ϕ2n+1ϕ2n+2),

iv) (−ϕ2
2n+1,−ϕ2nϕ2n+1),

where n ≥ 0 is an integer.

Finally any solution of the equations x2 ± kxy − y2 ± x = 0, corresponds to

the solution of the equation x2 − kxy − y2 + x = 0. In the following table, we

summarize our calculation

Table 1. solution of the equations x2 ± kxy − y2 ± x = 0

equation solutions

(ϕ2
2n, ϕ2n−1ϕ2n)

x2 − kxy − y2 + x = 0 (ϕ2
2n,−ϕ2nϕ2n+1)

(−ϕ2
2n+1, ϕ2n+1ϕ2n+2)

(−ϕ2
2n+1,−ϕ2nϕ2n+1)

(ϕ2
2n, ϕ2nϕ2n+1)

x2 + kxy − y2 + x = 0 (ϕ2
2n,−ϕ2n−1ϕ2n)

(−ϕ2
2n+1, ϕ2nϕ2n+1)

(−ϕ2
2n+1,−ϕ2n+1ϕ2n+2)

(ϕ2
2n+1, ϕ2nϕ2n+1)

x2 − kxy − y2 − x = 0 (ϕ2
2n+1,−ϕ2n+1ϕ2n+2)

(−ϕ2
2n, ϕ2nϕ2n+1)

(−ϕ2
2n,−ϕ2n−1ϕ2n)

(ϕ2
2n+1, ϕ2n+1ϕ2n+2)

x2 + kxy − y2 − x = 0 (ϕ2
2n+1,−ϕ2nϕ2n+1)

(−ϕ2
2n, ϕ2n−1ϕ2n)

(−ϕ2
2n,−ϕ2nϕ2n+1)
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