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Abstract. In this paper we introduce the concept of generalized weakly

contractiveness for a pair of multivalued mappings in a metric space. We

then prove the existence of a common fixed point for such mappings in a

complete metric space. Our result generalizes the corresponding results

for single valued mappings proved by Zhang and Song [14], as well as

those proved by D. Doric [4].
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1. Introduction

A fundamental result in fixed point theory is the Banach contraction princi-

ple. Over the years, this result has been generalized in different directions and

different spaces by mathematicians.
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In 1997, Alber and Guerre-Delabriere [1] introduced the concept of weak

contraction:

Definition 1.1. Let (E, d) be a metric space. A mapping T : E → E is said

to be weakly contractive provided that

d(Tx, T y) ≤ d(x, y)− φ(d(x, y))

where x, y ∈ E and φ : [0,∞) → [0,∞) is a continuous and nondecreasing

function such that φ(t) = 0 if and only if t = 0.

Using the concept of weakly contractiveness, Alber and Guerre-Delabriere

succeeded to establish the existence of fixed points for such mappings in Hilbert

spaces. Later on Rhoades [9] proved that the result of [1] is also valid in com-

plete metric spaces. Rhoades [9] also proved the following fixed point theorem

which is a generalization of the Banach contraction principle, because it con-

tains contractions as special cases when we assume φ(t) = (1 − k)t for some

0 ≤ k < 1.

Theorem 1.2. Let (E, d) be a complete metric space and let T : E → E be a

weakly contractive mapping. Then T has a fixed point.

In 2008, Dutta and Choudhury [5] proved the following theorem which in

turn generalizes Rhoades’ theorem.

Theorem 1.3. Let (E, d) be a complete metric space and T : E → E be a

self-mapping satisfying the inequality

ψ(d(Tx, T y)) ≤ ψ(d(x, y)) − φ(d(x, y))

where φ, ψ : [0,∞) → [0,∞) are two continuous and monotone nondecreas-

ing functions with φ(t) = 0 = ψ(t) if and only if t = 0. Then T has a fixed point.

During the last few decades, a number of hybrid contractive mapping results

have been obtained by many researchers; see [2, 3, 7, 8, 10, 11, 12] and the refer-

ences therein. Recently Zhang and Song [14] have proved the following theorem.

Theorem 1.4. Let (E, d) be a complete metric space, and T, S : E → E be

two mappings such that for all x, y ∈ E we have

d(Tx, Sy) ≤M(x, y)− φ(M(x, y)),

where φ : [0,∞) → [0,∞) is a lower semicontinuous function and φ(t) = 0 if

and only if t = 0, and

M(x, y) = max

{

d(x, y), d(Tx, x), d(Sy, y),
d(y, Tx) + d(x, Sy)

2

}

.
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Then there exists a unique point u ∈ E such that u = Tu = Su.

This theorem was generalized by D. Doric [4] in the following way:

Theorem 1.5. Let (E, d) be a complete metric space, and T, S : E → E be

two mappings such that for all x, y ∈ E we have

ψ(d(Tx, Sy)) ≤ ψ(M(x, y))− φ(M(x, y))

where ψ, φ : [0,∞) → [0,∞) and φ is a lower semicontinuous function with

φ(t) = 0 if and only if t = 0, and ψ is a continuous monotone nondecreasing

function with ψ(t) = 0 if and only if t = 0, and

M(x, y) = max

{

d(x, y), d(Tx, x), d(Sy, y),
d(y, Tx) + d(x, Sy)

2

}

.

Then there exists a unique point u ∈ E such that u = Tu = Su.

Let (E, d) be a metric space, and let B(E) denote the family of all nonempty

bounded subsets of E. Then for A,B ∈ B(E), define the distance between A

and B by

D(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}

and the diameter of A and B by

δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B}.

Let T : E → B(E) be a multivalued mapping, then an element x ∈ E is called

a fixed point of T provided that x ∈ T (x).

For T : E → B(E), we define

QT (x) = {y ∈ T (x) : d(x, y) = δ(x, T (x)}.

In the present paper we shall establish a common fixed point theorem for

generalized weakly contractive multivalued mappings. The result we obtain

generalizes recent results of Zhang and Song [14], as well as those of D. Doric

[4].

2. The Main Result

This section is devoted to the main result of this paper. In the sequel, we

shall define

(2.1) N(x, y) = max

{

d(x, y), δ(Tx, x), δ(y, Sy),
D(y, Tx) +D(x, Sy)

2

}

.

Now we state the main result of this paper.
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Theorem 2.1. Let (E, d) be a complete metric space, and let T, S : E → B(E)

be two mappings such that for all x, y ∈ E

(2.2) ψ(δ(Tx, Sy)) ≤ ψ(N(x, y)) − φ(N(x, y))

where φ : [0,∞) → [0,∞) is a lower semicontinuous function with φ(t) = 0

if and only if t = 0, and ψ : [0,∞) → [0,∞) is a continuous and monotone

nondecreasing function with ψ(t) = 0 if and only if t = 0. We further assume

that for each x ∈ E, both QT (x) and QS(x) are nonempty. Then S and T have

a unique common fixed point z ∈ E. Moreover Sz = Tz = {z}.

Proof. We choose x0 ∈ E. Since by assumption for each x ∈ E, both QT (x)

and QS(x) are nonempty, we can define a sequence in the following way:

x2n+1 ∈ Tx2n such that δ(Tx2n, x2n) = d(x2n, x2n+1) and

x2n+2 ∈ Sx2n+1 such that δ(Sx2n+1, x2n+1) = d(x2n+1, x2n+2).

Now we have

N(x2n, x2n+1) = max{d(x2n, x2n+1), δ(Tx2n, x2n), δ(Sx2n+1, x2n+1),

D(Tx2n, x2n+1) +D(Sx2n+1, x2n)

2
}

= max{d(x2n, x2n+1), d(x2n+1, x2n+2)}.

Similarly

N(x2n+1, x2n+2) = max{d(x2n+1, x2n+2), d(x2n+2, x2n+3)}.

If for some n we have either x2n = x2n+1 or x2n+1 = x2n+2, then we conclude

that the sequence {xn} is constant and thus it is a Cauchy sequence. Suppose

xn 6= xn+1 for each n. If

max{d(x2n, x2n+1), d(x2n+1, x2n+2)} = d(x2n+1, x2n+2),

then

ψ(d(x2n+1, x2n+2)) ≤ ψ(δ(Tx2n, Sx2n+1))

≤ ψ(N(x2n, x2n+1))− φ(N(x2n, x2n+1))

= ψ(d(x2n+1, x2n+2))− φ(d(x2n+1, x2n+2))

which is a contradiction. Hence d(x2n+1, x2n+2) ≤ d(x2n, x2n+1) and

ψ(d(x2n+1, x2n+2)) ≤ ψ(d(x2n, x2n+1))− φ(d(x2n, x2n+1)).

Similarly d(x2n+2, x2n+3) ≤ d(x2n+1, x2n+2) and

ψ(d(x2n+2, x2n+3)) ≤ ψ(d(x2n+1, x2n+2))− φ(d(x2n+1, x2n+2)).

So for each n we have d(xn+1, xn) ≤ d(xn, xn−1). Therefore the sequence

{d(xn+1, xn)} is monotone decreasing and bounded below. Thus there exists
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r ≥ 0 such that limn→∞ d(xn+1, xn) = r. Because of

d(xn+1, xn) ≤ N(xn, xn−1) ≤ d(xn, xn−1),

we conclude that limn→∞N(xn+1, xn) = r. Then (by the lower semicontinuity

of φ), we have

φ(r) ≤ lim inf
n→∞

φ(N(xn, xn−1)).

We now claim that r = 0. In fact taking upper limits as n→ ∞ on either sides

of the inequality

ψ(d(xn, xn+1)) ≤ ψ(N(xn, xn−1))− φ(N(xn, xn−1)),

we obtain, by the continuity of ψ, that

ψ(r) ≤ ψ(r)− lim inf
n→∞

φ(N(xn, xn−1)) ≤ ψ(r)− φ(r),

i.e. φ(r) ≤ 0. Thus φ(r) = 0 (by the property of the function φ), and further-

more

(2.3) lim
n→∞

d(xn, xn+1) = 0.

Next we show that {xn} is a Cauchy sequence. In view of (2.3) it suffices to

show that {x2n} is a Cauchy sequence. Suppose not. Then there exists ε > 0

such that for any k ∈ N, there exists nk > mk ≥ k, such that

(2.4) d(x2mk
, x2nk) ≥ ε.

Furthermore, assume that for each k, nk is the smallest positive integer greater

than mk for which (2.4) holds; this implies that

d(x2mk
, x2nk−2) < ε.

Therefore we have

ε ≤ d(x2mk
, x2nk

) ≤ d(x2mk
, x2nk−2) + d(x2nk−2, x2nk−1) + d(x2nk−1, x2nk

)

< ε+ d(x2nk−2, x2nk−1) + d(x2nk−1, x2nk
)

Now, letting k → ∞ we obtain d(x2mk
, x2nk

) → ε. We note that

|d(x2mk
, x2nk+1)− d(x2mk

, x2nk
)| ≤ d(x2nk

, x2nk+1)

and

|d(x2mk−1, x2nk
)− d(x2mk

, x2nk
)| ≤ d(x2mk

, x2mk−1),

from which it follows that

lim
n→∞

d(x2mk−1, x2nk
) = lim

n→∞

d(x2mk
, x2nk+1) = ε.

It is not difficult to see that

d(x2mk
, x2nk+1)− d(x2mk+1, x2mk

)− d(x2nk+2, x2nk+1) ≤ d(x2mk+1, x2nk+2)

≤ d(x2mk
, x2nk+1) + d(x2mk+1, x2mk

) + d(x2nk+2, x2nk+1).
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Thus

lim
k→∞

d(x2mk+1, x2nk+2) = ε.

Now, it can be verified that

N(x2mk+1, x2nk+2)

= max{d(x2mk+1, x2nk+2), δ(Tx2nk+2, x2nk+2), δ(x2mk+1, Sx2mk+1),

D(Tx2nk+2, x2mk+1) +D(Sx2mk+1, x2nk+2)

2
}

tends to ε as k → ∞. Finally, by letting k → ∞, we conclude from

ψ(d(x2mk+2, x2nk+3)) ≤ ψ(δ(Tx2nk+2, Sx2mk+1))

≤ ψ(N(x2nk+2, x2mk+1))− φ(N(x2nk+2, x2mk+1))

that ψ(ε) ≤ ψ(ε) − φ(ε), or equivalently φ(ε) ≤ 0 which is a contradiction.

Therefore {xn} is a Cauchy sequence. Notice that E is complete, hence {xn}

is convergent. Let us write limn→∞ xn = z for some z ∈ E. Now we prove

that δ(Tz, z) = 0. Suppose that this is not true, then δ(Tz, z) > 0. For large

enough n, we claim that the following equations are true:

N(z, x2n+1) = max{d(z, x2n+1), δ(z, T z), δ(Sx2n+1, x2n+1),

D(Tz, x2n+1) +D(Sx2n+1, z)

2
} = δ(z, T z).

Indeed, since limn→∞ d(z, x2n+1) = 0, and

lim
n→∞

δ(Sx2n+1, x2n+1) = lim
n→∞

d(x2n+2, x2n+1) = 0,

it follows that

lim
n→∞

D(Tz, x2n+1) +D(Sx2n+1, z)

2

≤ lim
n→∞

δ(Tz, z) + d(z, x2n+1) + δ(Sx2n+1, x2n+1) + d(x2n+1, z)

2

=
δ(Tz, z)

2
.

Therefore, there exists k ∈ N such that N(z, x2n+1) = δ(z, T z) for n > k. Note

that

ψ(δ(Tz, x2n+2)) ≤ ψ(δ(Tz, Sx2n+1)) ≤ ψ(N(z, x2n+1)) − φ(N(z, x2n+1)).

Letting n→ ∞, we have

ψ(δ(Tz, z)) ≤ ψ(δ(Tz, z))− φ(δ(Tz, z))
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i.e, φ(δ(Tz, z)) ≤ 0. This is a contradiction, therefore δ(Tz, z) = 0 i.e., Tz =

{z}. Since

N(z, z) = max

{

d(z, z), δ(Tz, z), δ(z, Sz),
D(Tz, z) +D(Sz, z)

2

}

= max{δ(Sz, z),
D(Sz, z)

2
} = δ(Sz, z),

we conclude that

ψ(δ(z, Sz)) ≤ ψ(δ(Tz, Sz))

≤ ψ(N(z, z))− φ(N(z, z))

≤ ψ(δ(z, Sz))− φ(δ(Sz, z)).

which in turn implies that Sz = {z}. Hence the point z is a common fixed

point of S and T .

Now let y ∈ E be another common fixed point of S and T . Note that

N(y, y) = max{d(y, y), δ(Ty, y), δ(y, Sy),
D(Ty, y) +D(Sy, y)

2
}

= max{δ(Sy, y), δ(y, T y)}.

Hence

ψ(δ(y, T y)) ≤ ψ(δ(Sy, T y)) ≤ ψ(N(y, y))− φ(N(y, y))

≤ ψ(max{δ(y, Sy), δ(y, T y)})− φ(max{δ(y, Sy), δ(y, T y)}.

Similarly, we have

ψ(δ(y, Sy)) ≤ ψ(δ(Ty, Sy)) ≤ ψ(N(y, y))− φ(N(y, y))

≤ ψ(max{δ(y, Sy), δ(y, T y)} − φ(max(δ(y, Sy), δ(y, T y)}.

Therefore

ψ(max{δ(y, Sy), δ(y, T y)}) ≤

ψ(max{δ(y, Sy), δ(y, T y)})− φ(max{δ(y, Sy), δ(y, T y)})

which implies that max{δ(y, Sy), δ(y, T y)} = 0, hence δ(Ty, y) = δ(Sy, y) = 0.

Now we have

N(z, y) = max{d(z, y), δ(z, T z), δ(y, Sy),
D(y, T z) + d(z, Sy)

2
} = d(z, y)

and

ψ(d(z, y)) = ψ(δ(Sz, T y)) ≤ ψ(N(z, y))− φ(N(z, y))

= ψ(d(z, y))− φ(d(z, y))

. That imply d(z, y) = 0 i.e, z = y. Hence z is the unique common fixed point

of S and T . �
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Example 2.2. Let E = [0, 1] and d(x, y) = |x − y|. For all x ∈ E define

S, T : E → B(E) by

Tx = [
x

4
,
x

2
], Sx = [0,

x

5
].

Then

δ(Tx, Sy) =

{

x
2 0 ≤ y

5 ≤ x
2

max{ y

5 − x
4 ,

x
2 }

x
2 ≤ y

5 ≤ 1.

and

δ(x, Tx) =
3x

4
, δ(y, Sy) = y.

We also consider ψ(t) = 2t and φ(t) = t
2 . We note that if y

5 ≤ x
2 , then

ψ(δ(Tx, Sy) = x ≤
9x

8
=

3

2
δ(x, Tx)

≤
3

2
(N(x, y)) = ψ(N(x, y)) − φ(N(x, y))

and if x
2 ≤ y

5 , then

ψ(δ(Tx, Sy) = 2.(
y

5
−
x

4
) ≤

2y

5
≤

3y

2

=
3

2
δ(y, Sy) ≤

3

2
(N(x, y)) = ψ(N(x, y)) − φ(N(x, y)).

This arguments show that the mappings T and S satisfy the conditions of The-

orem 2.1. Now it is easy to see that 0 is the only common fixed point of these

two mappings.

In the following we shall see that Theorems 1.4 and 1.5 are easily derived

from our main result.

Remark 2.3. In Theorem 2.1, if E is bounded and T, S : E → E are given,

then we obtain Theorem 1.5. Furthermore if ψ(t) = t for all t ∈ [0,∞) then we

obtain Theorem 1.4.

Note that in the above theorems there are just two control functions; namely,

φ and ψ. For instance, in Theorem 1.3 above due to Dutta and Choudhury [5],

we have

ψ(d(Tx, T y)) ≤ ψ(d(x, y)) − φ(d(x, y))

for all x, y ∈ E. This can be generalized to the following theorem.

Theorem 2.4. Let (E, d) be a complete metric space, and T : E → E be a

self-mapping satisfying

ψ1(d(Tx, T y)) ≤ ψ2(d(x, y)) − ψ3(d(x, y)) x, y ∈ E
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where ψ1, ψ2, ψ3 : [0,∞) → [0,∞) are functions satisfying the following condi-

tions:

(i) ψ1 is continuous and monotone nondecreasing,

(ii) ψ2 is continuous,

(iii) ψ3 is lower semicontinuous,

(iv) ψ1(t) = 0 = ψ2(t) = 0 = ψ3(t) if and only if t = 0,

(v) ψ1(t)− ψ2(t) + ψ3(t) > 0 for t > 0.

Then T has a unique fixed point.

For a proof and an illustrative example satisfying all the conditions of the

theorem, we refer the reader to a preprint by the current authors [6].

Acknowledgement. We wish to express our thanks to the referee for his

useful comments which were very helpful to improve this paper.
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