Double Integral Characterization for Bergman Spaces

Mostafa Hassanloua,*, Hamid Vaezib

aShahid Bakeri High Education Center of Miandoab, Urmia University, Urmia, Iran.
bFaculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran.

E-mail: m_hasanloo@tabrizu.ac.ir
E-mail: hvaezi@tabrizu.ac.ir

Abstract. In this paper we characterize Bergman spaces with respect to double integral of the functions $|f(z) - f(w)|/|z - w|$, $|f(z) - f(w)|/\rho(z, w)$, and $|f(z) - f(w)|/\beta(z, w)$, where ρ and β are the pseudo-hyperbolic and hyperbolic metrics. We prove some necessary and sufficient conditions that implies a function to be in Bergman spaces.

Keywords: Bergman spaces, Pseudo-hyperbolic metric, Hyperbolic metric, Double integral.

1. INTRODUCTION

For $z = (z_1, \cdots, z_n)$ and $w = (w_1, \cdots, w_n)$ in \mathbb{C}^n, we define $\langle z, w \rangle = z_1\overline{w_1} + \cdots + z_n\overline{w_n}$, where $\overline{w_k}$ is the complex conjugate of w_k. We also write $|z| = \sqrt{\langle z, z \rangle} = \sqrt{|z_1|^2 + \cdots + |z_n|^2}$. Let \mathbb{B}_n denotes the open unit ball of \mathbb{C}^n, that is

$$\mathbb{B}_n = \{ z \in \mathbb{C}^n : |z| < 1 \}.$$

For any $a \in \mathbb{B}_n - \{0\}$, we define

$$\varphi_a(z) = \frac{a - P_a(z) - s_aQ_a(z)}{1 - \langle z, a \rangle} \quad z \in \mathbb{B}_n,$$

*Corresponding Author

Received 13 July 2013; Accepted 22 November 2015
©2016 Academic Center for Education, Culture and Research TMU
where \(s_n = \sqrt{1 - |a|^2} \), \(P_a \) is the orthogonal projection from \(\mathbb{C}^n \) onto the subspace \([a]\) generated by \(a \), and \(Q_a \) is the orthogonal projection from \(\mathbb{C}^n \) onto \(\mathbb{C}^n - [a] \). When \(a = 0 \), we define \(\varphi_a(z) = -z \). These functions are called involutions. (see [9] for more information about these functions)

The hyperbolic metric (Bergman metric) is defined by

\[
\beta(z, w) = \frac{1}{2} \log \frac{1 + |\varphi_z(w)|}{1 - |\varphi_z(w)|}, \quad z, w \in \mathbb{B}_n.
\]

For any \(z \in \mathbb{B}_n \) and \(r > 0 \), we denote Bergman metric ball at \(z \) by \(D(z, r) \).

That is

\[
D(z, r) = \{ w \in \mathbb{B}_n : \beta(z, w) < r \}.
\]

Also, pseudo-hyperbolic metric is defined by \(\rho(z, w) = |\varphi_z(w)| \).

For \(\alpha > -1 \) let

\[
dv_\alpha(z) = c_\alpha(1 - |z|^2)\alpha dv(z)
\]

where \(dv(z) \) is the Lebesgue volume measure on \(\mathbb{B}_n \) and \(c_\alpha \) is a positive constant with \(v_\alpha(\mathbb{B}_n) = 1 \). For \(0 < p < \infty \) and \(\alpha > -1 \), the weighted Bergman space \(A^p_\alpha \) consists of all holomorphic functions in \(L^p(\mathbb{B}_n, dv_\alpha) \), that is

\[
A^p_\alpha = \left\{ f \in H(\mathbb{B}_n) : \|f\|^p = \int_{\mathbb{B}_n} |f(z)|^p dv_\alpha(z) < \infty \right\}
\]

Wulan and Zhu [8], characterized Bergman spaces with standard weights in terms of Lipschitz type conditions in the Euclidean, hyperbolic, and pseudo-hyperbolic metrics. In [4] Li et al. proved that a holomorphic function \(f \) belongs to the \(A^p_\alpha \), \(p > n + 1 + \alpha \), if and only if the function \(|f(z) - f(w)|/|1 - \langle z, w \rangle| \) is in \(L^p(\mathbb{B}_n \times \mathbb{B}_n, dv_\alpha \times dv_\alpha) \), where \(\gamma = (p + \alpha - n - 1)/2 \).

Also, it was shown in [5] that for the case \(0 < p < n + 1 + \alpha \), \(f \in A^p_\alpha \) if and only if the function \(|f(z) - f(w)|/|1 - \langle z, w \rangle| \) is in \(L^p(\mathbb{B}_n \times \mathbb{B}_n, dv_\alpha \times dv_\alpha) \) if and only if the function \(|f(z) - f(w)|/|z - w| \) is in \(L^p(\mathbb{B}_n \times \mathbb{B}_n, dv_\alpha \times dv_\alpha) \).

Our aim in this paper is to prove, for \(f \in A^p_\alpha \), \(p > n + 1 + \alpha \), the function \(|f(z) - f(w)|/|z - w| \) is in \(L^p(\mathbb{B}_n \times \mathbb{B}_n, dv_\alpha \times dv_\alpha) \), where \(t = (p + \alpha - n - 1)/2 \) and if \(p = n + 1 + \alpha \), then \(|f(z) - f(w)|/|z - w| \) is in \(L^p(\mathbb{B}_n \times \mathbb{B}_n, dv_\alpha \times dv_\alpha) \), for any \(\gamma > \alpha \). Our results are applicable for studying the action of symmetric lifting operator on \(A^p_\alpha \) in all cases especially for the case \(p = \alpha + 2 \).

Also we replace the Euclidean metric with pseudo-hyperbolic metric \(\rho \) and Bergman metric \(\beta \).

2. Preliminaries

Lemma 2.1. [9] There exists a positive constant \(C \) such that

\[
|f(z)|^p \leq \frac{C}{(1 - |z|^2)^{n+1+\alpha}} \int_{D(z, r)} |f(w)|^p \ dv_\alpha(w)
\]

for all \(f \in H(\mathbb{B}_n) \) and \(z \in \mathbb{B}_n \).
Lemma 2.2. [9] Suppose $s > -1$, t is real, and
\[
I(z) = \int_{B_n} \frac{(1 - |w|^2)^s}{|1 - \langle z, w \rangle|^{n+1+s+t}} \, dv(w), \quad z \in B_n.
\]
Then $I(z)$ is bounded in B_n whenever $t < 0$, and $I(z)$ is bounded by $(1 - |z|^2)^{-t}$ whenever $t > 0$.

Theorem 2.3. [8] Suppose that $p > 0$, $\alpha > -1$ and f is analytic in B_n. Then the following conditions are equivalent.

1. $f \in A^p_{\alpha}$.
2. There exists a continuous function g in $L^p(B_n, dv_{\alpha})$ such that
 \[
 |f(z) - f(w)| \leq \rho(z, w)(g(z) + g(w)), \quad z, w \in B_n.
 \]
3. There exists a continuous function g in $L^p(B_n, dv_{\alpha})$ such that
 \[
 |f(z) - f(w)| \leq \beta(z, w)(g(z) + g(w)), \quad z, w \in B_n.
 \]
4. There exists a continuous function g in $L^p(B_n, dv_{p+\alpha})$ such that
 \[
 |f(z) - f(w)| \leq |z - w|(g(z) + g(w)), \quad z, w \in B_n.
 \]

Lemma 2.4. [4] Let $r > 0$. Then
\[
1 - |z|^2 \sim 1 - |w|^2 \sim |1 - \langle z, w \rangle|
\]
for all $z \in B_n$ and $w \in D(z, r)$. Furthermore, there exists a positive constant C such that
\[
(1 - |z|^2)^p |\nabla f(z)|^p \leq \frac{C}{(1 - |z|^2)^n+1} \int_{D(z, r)} |f(w) - f(z)|^pdv(w)
\]
for all $z \in B_n$ and $f \in H(B_n)$.

3. Pseudo-Hyperbolic Metric

Lemma 3.1. Suppose $\alpha > -1$ and $f \in H(B_n)$. Then there exists a positive constant C such that
\[
\int_{B_n} |f(z) - f(0)|^p \, dv_{\alpha}(z) \leq C \int_{B_n} \int_{B_n} \frac{|f(z) - f(w)|^p}{\rho(z, w)^p} \, dv_{\alpha}(z)dv_{\alpha}(w).
\]
Proof. Let
\[
J(f) = \int_{B_n} \int_{B_n} \frac{|f(z) - f(w)|^p}{\rho(z, w)^p} \, dv_{\alpha}(z)dv_{\alpha}(w).
\]
By making a change of variable, we have

\[
J(f) = \int_{B_n} dv_\alpha(z) \int_{B_n} \frac{|f(z) - f(\varphi(z))|^p}{\rho(z, \varphi(z))^p} \frac{(1 - |z|^2)^{n+1+\alpha}}{|1 - \langle z, w \rangle|^{2(n+1+\alpha)}} \ dv_\alpha(w)
\]

\[
\geq \int_{B_n} dv_\alpha(z) \int_{B_n} |f(z) - f(\varphi(z))|^p \frac{(1 - |z|^2)^{n+1+\alpha}}{|1 - \langle z, w \rangle|^{2(n+1+\alpha)}} \ dv_\alpha(w)
\]

From the first part of Lemma 2.4, there exists a positive constant \(C'\) such that

\[
J(f) \geq C' \int_{B_n} dv_\alpha(z) \int_{D(z,r)} |f(z) - f(\varphi(z))|^p \frac{(1 - |z|^2)^{n+1+\alpha}}{|1 - \langle z, w \rangle|^{2(n+1+\alpha)}} \ dv_\alpha(w).
\]

Then Lemma 2.1 implies that there exists another positive constant \(C\) such that

\[
J(f) \geq C \int_{B_n} |f(z) - f(\varphi(z))|^p \ dv_\alpha(z) = C \int_{B_n} |f(z) - f(0)|^p \ dv_\alpha(z).
\]

The proof is complete. \(\square\)

Lemma 3.2. Suppose \(\alpha > -1\) and \(f \in A_p^\infty\). Then

\[
\int_{B_n} \int_{B_n} \frac{|f(z) - f(w)|^p}{\rho(z, w)^p} \ dv_\alpha(z)dv_\alpha(w) < \infty.
\]

Proof. Given \(f \in A_p^\infty\), from Theorem 2.3, there exists a continuous function \(g \in L^p(B_n, dv_\alpha)\) such that for all \(z, w \in B_n\),

\[
|f(z) - f(w)| \leq \rho(z, w)(g(z) + g(w)).
\]

There exists a positive constant \(C\) such that

\[
\frac{|f(z) - f(w)|^p}{\rho(z, w)^p} \leq C(g(z)^p + g(w)^p).
\]

So,

\[
\int_{B_n} \int_{B_n} \frac{|f(w) - f(z)|^p}{\rho(z, w)^p} \ dv_\alpha(z)dv_\alpha(w) \leq C \int_{B_n} \int_{B_n} (g(z)^p + g(w)^p) \ dv_\alpha(z)dv_\alpha(w) = 2C \int_{B_n} g(z)^p \ dv_\alpha(z)dv_\alpha(w) < \infty.
\]

\(\square\)

We can combine these two lemmas and obtain the following theorem.
Theorem 3.3. Suppose that $\alpha > -1$. Then $f \in A^p_\alpha$ if and only if
\[
\int_{\mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|f(z) - f(w)|^p}{\rho(z,w)^p} \, dv_\alpha(z)dv_\alpha(w) < \infty.
\]

4. BERGMAN METRIC

Now, we replace metric ρ by Bergman metric β.

Lemma 4.1. Suppose that $\alpha > -1$ and $f \in H(\mathbb{B}_n)$. If
\[
\int_{\mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|f(z) - f(w)|^p}{\beta(z,w)^p} \, dv_\alpha(z)d\tau(w) < \infty,
\]
then $f \in A^p_\alpha$, where
\[
d\tau(w) = \frac{dv(w)}{(1 - |w|^2)^{n+1}}
\]
is the Mobius invariant volume measure on \mathbb{B}_n.

Proof. By Lemma 2.4, there exists a positive constant C such that
\[
(1 - |z|^2)^p |\nabla f(z)|^p \leq \frac{C}{(1 - |z|^2)^{n+1}} \int_{D(z,r)} |f(z) - f(w)|^p dv(w)
\]
\[
\leq \frac{C}{(1 - |z|^2)^{n+1+\alpha}} \int_{D(z,r)} |f(z) - f(w)|^p dv_\alpha(w).
\]
Since $D(z,r)$ is open unit ball in metric β, we have
\[
(1 - |z|^2)^p |\nabla f(z)|^p \leq \frac{Cr^p}{(1 - |z|^2)^{n+1+\alpha}} \int_{D(z,r)} \frac{|f(z) - f(w)|^p}{\beta(z,w)^p} \, dv_\alpha(w).
\]

After integrating
\[
\int_{\mathbb{B}_n} (1 - |z|^2)^p |\nabla f(z)|^p dv_\alpha(z) \leq Cr^p \int_{\mathbb{B}_n} \int_{D(z,r)} \frac{|f(z) - f(w)|^p}{\beta(z,w)^p} \, dv_\alpha(w)d\tau(z)
\]
\[
\leq Cr^p \int_{\mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|f(z) - f(w)|^p}{\beta(z,w)^p} \, dv_\alpha(z)d\tau(w).
\]
Therefore $(1 - |z|^2)\nabla f(z) \in A^p_\alpha$. It follows from Theorem 2.16 of [9] that $f \in A^p_\alpha$. \hfill \Box

By the same reason as in Lemma 3.2, we can prove the following lemma.

Lemma 4.2. Suppose $\alpha > -1$ and $f \in H(\mathbb{B}_n)$. If $f \in A^p_\alpha$, then
\[
\int_{\mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|f(z) - f(w)|^p}{\beta(z,w)^p} \, dv_\alpha(z)d\tau(w) < \infty.
\]
5. Euclidean metric

Theorem 5.1. Suppose $\alpha > -1$, $p = n + 1 + \alpha$ and $f \in A^p_\alpha$, then

$$I(f) = \int_{B_n} \int_{B_n} \frac{|f(z) - f(w)|^p}{|z - w|^p} d\nu_\gamma(z) d\nu_\gamma(w) < \infty,$$

for any $\gamma > \alpha$.

Proof. Given $f \in A^p_\alpha$, from Theorem 2.3, there exists a continuous function $g \in L^p(\mathbb{B}_n, d\nu_\alpha)$ such that for all $z, w \in \mathbb{B}_n$,

$$|f(z) - f(w)| \leq \rho(z, w)(g(z) + g(w)) \leq |z - w| \left(1 - \langle z, w \rangle\right)^{\alpha}.$$

There exists a positive constant C such that

$$I(f) \leq 2C \int_{\mathbb{B}_n} g(z)^p d\nu_\gamma(z) \int_{\mathbb{B}_n} \frac{d\nu_\gamma(w)}{|1 - \langle z, w \rangle|^p}$$

$$= 2C \int_{\mathbb{B}_n} g(z)^p d\nu_\gamma(z) \int_{\mathbb{B}_n} \frac{d\nu_\gamma(w)}{|1 - \langle z, w \rangle|^{n+1+\alpha}}.$$

Since $\alpha - \gamma < 0$, by Lemma 2.2, the last integral is bounded. Then there exists another positive constant M such that

$$I(f) \leq M \int_{\mathbb{B}_n} g(z)^p d\nu_\gamma(z)$$

$$= Mc^\alpha \int_{\mathbb{B}_n} g(z)^p (1 - |z|^2)^{-\alpha} d\nu_\gamma(z)$$

$$< Mc^\alpha \int_{\mathbb{B}_n} g(z)^p d\nu_\gamma(z) < \infty.$$

□

Lemma 5.2. Suppose $\alpha > -1$, $f \in H(\mathbb{B}_n)$ and δ and γ are real parameters such that

$$\delta + \gamma = p + \alpha - (n + 1), \quad -1 < \gamma < p - (n + 1).$$

If $f \in A^p_\alpha$, then

$$I(f) = \int_{\mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|f(z) - f(w)|^p}{|z - w|^p} d\nu_\delta(z) d\nu_\gamma(w) < \infty.$$

Proof. By the proof of the previous lemma, there exists a positive constant C such that

$$I(f) \leq 2C \int_{\mathbb{B}_n} g(z)^p d\nu_\delta(z) \int_{\mathbb{B}_n} \frac{d\nu_\gamma(w)}{|1 - \langle z, w \rangle|^p}$$

$$= 2C \int_{\mathbb{B}_n} g(z)^p d\nu_\delta(z) \int_{\mathbb{B}_n} \frac{d\nu_\gamma(w)}{|1 - \langle z, w \rangle|^{n+1+\gamma(\delta-\alpha)}}.$$
Since $\delta - \alpha > 0$, by Lemma 2.2, there exists another positive constant M such that
\[
I(f) \leq M \int_{B_n} \frac{g(z)^p}{(1 - |z|^2)^{\delta - \alpha}} \, dv_\delta(z) = M \int_{B_n} g(z)^p \, dv_\alpha(z) < \infty.
\]
\[\square\]

Corollary 5.3. Suppose that $\alpha > -1$, $p > n + 1 + \alpha$ and $f \in A_\alpha^n$, then
\[
\int_{B_n} \int_{B_n} \frac{|f(z) - f(w)|^p}{|z - w|^p} \, dv_\alpha(z)dv_\alpha(w) < \infty,
\]
where $t = \frac{p + \alpha - (n + 1)}{2}$.

If $n = 1$, then we obtain the following corollary.

Corollary 5.4. Suppose that $\alpha > -1$, $p > \alpha + 2$ and $f \in A_\alpha^p(\mathbb{D})$, then
\[
\int_{\mathbb{D}} \int_{\mathbb{D}} \frac{|f(z) - f(w)|^p}{|z - w|^p} \, dA_t(z)dA_t(w) < \infty,
\]
where $t = \frac{p + \alpha - 2}{2}$.

The symmetric lifting operator $L : H(\mathbb{D}) \to H(\mathbb{D} \times \mathbb{D})$ is defined by
\[
L(f)(z, w) = \frac{f(z) - f(w)}{z - w}.
\]

The action of symmetric lifting operator on $A_\alpha^p(\mathbb{D})$ in the cases $p > \alpha + 2$ and $p < \alpha + 2$ was studied in [8]. In the case $p = \alpha + 2$, we have the following result.

Corollary 5.5. Suppose that $\alpha > -1$, $p = \alpha + 2$. Then the symmetric lifting operator maps $A_\alpha^p(\mathbb{D})$ into $A_\gamma^p(\mathbb{D}^2)$, for any $\gamma > \alpha$.

Proof. The result follows by letting $n = 1$ in Theorem 5.1. \square

If $\alpha > -1$, $p > \alpha + 2$ and $f \in A_\alpha^p(\mathbb{D})$, then by Corollary 5.4, $L(f) \in A_\gamma^p(\mathbb{D}^2)$, which means that the symmetric lifting operator maps $f \in A_\alpha^p(\mathbb{D})$ into $A_t^p(\mathbb{D}^2)$, for $t = \frac{p + \alpha - 2}{2}$. This is the Theorem 4.4 in [8].

Acknowledgments

The authors would like to thank the referees for their useful comments.

References