Iranian Journal of Mathematical Sciences and Informatics

Vol. 11, No. 1 (2016), pp 27-34 DOI: 10.7508/ijmsi.2016.01.003

Double Integral Characterization for Bergman Spaces

Mostafa Hassanlou a,* , Hamid Vaezi b

^aShahid Bakeri High Education Center of Miandoab, Urmia University, Urmia, Iran.

 ${}^b{\rm Faculty}$ of Mathematical Sciences, University of Tabriz, Tabriz, Iran.

E-mail: m_hasanloo@tabrizu.ac.ir E-mail: hvaezi@tabrizu.ac.ir

ABSTRACT. In this paper we characterize Bergman spaces with respect to double integral of the functions |f(z)-f(w)|/|z-w|, $|f(z)-f(w)|/\rho(z,w)$ and $|f(z)-f(w)|/\beta(z,w)$, where ρ and β are the pseudo-hyperbolic and hyperbolic metrics. We prove some necessary and sufficient conditions that implies a function to be in Bergman spaces.

Keywords: Bergman spaces, Pseudo-hyperbolic metric, Hyperbolic metric, Double integral.

2000 Mathematics subject classification: 32A36.

1. Introduction

For $z=(z_1,\cdots,z_n)$ and $w=(w_1,\cdots,w_n)$ in \mathbb{C}^n , we define $\langle z,w\rangle=z_1\overline{w_1}+\cdots+z_n\overline{w_n}$, where $\overline{w_k}$ is the complex conjugate of w_k . We also write $|z|=\sqrt{\langle z,z\rangle}=\sqrt{|z_1|^2+\cdots+|z_n|^2}$. Let \mathbb{B}_n denotes the open unit ball of \mathbb{C}^n , that is

$$\mathbb{B}_n = \{ z \in \mathbb{C}^n : |z| < 1 \}.$$

For any $a \in \mathbb{B}_n - \{0\}$, we define

$$\varphi_a(z) = \frac{a - P_a(z) - s_a Q_a(z)}{1 - \langle z, a \rangle} \quad z \in \mathbb{B}_n,$$

Received 13 July 2013; Accepted 22 November 2015 © 2016 Academic Center for Education, Culture and Research TMU

^{*}Corresponding Author

where $s_a = \sqrt{1 - |a|^2}$, P_a is the orthogonal projection from \mathbb{C}^n onto the subspace [a] generated by a, and Q_a is the orthogonal projection from \mathbb{C}^n onto $\mathbb{C}^n - [a]$. When a = 0, we define $\varphi_a(z) = -z$. These functions are called involutions. (see [9] for more information about these functions)

The hyperbolic metric (Bergman metric) is defined by

$$\beta(z, w) = \frac{1}{2} \log \frac{1 + |\varphi_z(w)|}{1 - |\varphi_z(w)|}, \quad z, w \in \mathbb{B}_n.$$

For any $z \in \mathbb{B}_n$ and r > 0, we denote Bergman metric ball at z by D(z, r). That is

$$D(z,r) = \{ w \in \mathbb{B}_n : \beta(z,w) < r \}.$$

Also, pseudo-hyperbolic metric is defined by $\rho(z, w) = |\varphi_z(w)|$. For $\alpha > -1$ let

$$dv_{\alpha}(z) = c_{\alpha}(1 - |z|^2)^{\alpha} dv(z)$$

where dv(z) is the Lebesgue volume measure on \mathbb{B}_n and c_{α} is a positive constant with $v_{\alpha}(\mathbb{B}_n) = 1$. For $0 and <math>\alpha > -1$, the weighted Bergman space A^p_{α} consists of all holomorphic functions in $L^p(\mathbb{B}_n, dv_{\alpha})$, that is

$$A_{\alpha}^{p} = \left\{ f \in H(\mathbb{B}_{n}) : ||f||_{\alpha,p}^{p} = \int_{\mathbb{B}_{n}} |f(z)|^{p} dv_{\alpha}(z) < \infty. \right\}$$

Wulan and Zhu [8], characterized Bergman spaces with standard weights in terms of Lipschitz type conditions in the Euclidean, hyperbolic, and pseudo-hyperbolic metrics. In [4] Li et al. proved that a holomorphic function f belongs to the A^p_{α} , $p > n + 1 + \alpha$, if and only if the function $|f(z) - f(w)|/|1 - \langle z, w \rangle|$ is in $L^p(\mathbb{B}_n \times \mathbb{B}_n, dv_{\gamma} \times dv_{\gamma})$, where $\gamma = (p + \alpha - n - 1)/2$.

Also, it was shown in [5] that for the case $0 , <math>f \in A^p_\alpha$ if and only if the function $|f(z) - f(w)|/|1 - \langle z, w \rangle|$ is in $L^p(\mathbb{B}_n \times \mathbb{B}_n, dv_\alpha \times dv_\alpha)$ if and only if the function |f(z) - f(w)|/|z - w| is in $L^p(\mathbb{B}_n \times \mathbb{B}_n, dv_\alpha \times dv_\alpha)$.

Our aim in this paper is to prove, for $f \in A_{\alpha}^{p}$, $p > n + 1 + \alpha$, the function |f(z) - f(w)|/|z - w| is in $L^{p}(\mathbb{B}_{n} \times \mathbb{B}_{n}, dv_{t} \times dv_{t})$, where $t = (p + \alpha - n - 1)/2$ and if $p = n + 1 + \alpha$, then |f(z) - f(w)|/|z - w| is in $L^{p}(\mathbb{B}_{n} \times \mathbb{B}_{n}, dv_{\gamma} \times dv_{\gamma})$, for any $\gamma > \alpha$. Our results are applicable for studying the action of symmetric lifting operator on A_{α}^{p} in all cases especially for the case $p = \alpha + 2$.

Also we replace the Euclidean metric with pseudo-hyperbolic metric ρ and Bergman metric β .

2. Preliminaries

Lemma 2.1. [9] There exists a positive constant C such that

$$|f(z)|^p \le \frac{C}{(1-|z|^2)^{n+1+\alpha}} \int_{D(z,r)} |f(w)|^p \ dv_{\alpha}(w)$$

for all $f \in H(\mathbb{B}_n)$ and $z \in \mathbb{B}_n$.

Double Integral Characterization for Bergman Spaces

29

Lemma 2.2. [9] Suppose s > -1, t is real, and

$$I(z) = \int_{\mathbb{B}_n} \frac{(1 - |w|^2)^s}{|1 - \langle z, w \rangle|^{n+1+s+t}} \ dv(w), \quad z \in \mathbb{B}_n.$$

Then I(z) is bounded in \mathbb{B}_n whenever t < 0, and I(z) is bounded by $(1-|z|^2)^{-t}$ whenever t > 0.

Theorem 2.3. [8] Suppose that p > 0, $\alpha > -1$ and f is analytic in \mathbb{B}_n . Then the following conditions are equivalent.

- (1) $f \in A^p_{\alpha}$.
- (2) There exists a continuous function g in $L^p(\mathbb{B}_n, dv_\alpha)$ such that

$$|f(z) - f(w)| \le \rho(z, w)(g(z) + g(w)), \quad z, w \in \mathbb{B}_n.$$

(3) There exists a continuous function g in $L^p(\mathbb{B}_n, dv_\alpha)$ such that

$$|f(z) - f(w)| \le \beta(z, w)(g(z) + g(w)), \quad z, w \in \mathbb{B}_n.$$

(4) There exists a continuous function g in $L^p(\mathbb{B}_n, dv_{p+\alpha})$ such that

$$|f(z) - f(w)| \le |z - w|(g(z) + g(w)), \quad z, w \in \mathbb{B}_n.$$

Lemma 2.4. [4] Let r > 0. Then

$$1 - |z|^2 \sim 1 - |w|^2 \sim |1 - \langle z, w \rangle|$$

for all $z \in \mathbb{B}_n$ and $w \in D(z, r)$. Furthermore, there exists a positive constant C such that

$$(1-|z|^2)^p |\nabla f(z)|^p \le \frac{C}{(1-|z|^2)^{n+1}} \int_{D(z,r)} |f(w) - f(z)|^p dv(w)$$

for all $z \in \mathbb{B}_n$ and $f \in H(\mathbb{B}_n)$.

3. Pseudo-Hyperbolic Metric

Lemma 3.1. Suppose $\alpha > -1$ and $f \in H(\mathbb{B}_n)$. Then there exists a positive constant C such that

$$\int_{\mathbb{B}_n} |f(z) - f(0)|^p \ dv_{\alpha}(z) \le C \int_{\mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|f(z) - f(w)|^p}{\rho(z, w)^p} \ dv_{\alpha}(z) dv_{\alpha}(w).$$

Proof. Let

$$J(f) = \int_{\mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|f(z) - f(w)|^p}{\rho(z, w)^p} \ dv_{\alpha}(z) dv_{\alpha}(w).$$

By making a change of variable, we have

$$\begin{split} J(f) &= \int_{\mathbb{B}_n} dv_{\alpha}(z) \int_{\mathbb{B}_n} \frac{|f(z) - f(\varphi_z(w))|^p}{\rho(z, \varphi_z(w))^p} \frac{(1 - |z|^2)^{n+1+\alpha}}{|1 - \langle z, w \rangle|^{2(n+1+\alpha)}} \ dv_{\alpha}(w) \\ &= \int_{\mathbb{B}_n} dv_{\alpha}(z) \int_{\mathbb{B}_n} \frac{|f(z) - f(\varphi_z(w))|^p}{|w|^p} \frac{(1 - |z|^2)^{n+1+\alpha}}{|1 - \langle z, w \rangle|^{2(n+1+\alpha)}} \ dv_{\alpha}(w) \\ &\geq \int_{\mathbb{B}_n} dv_{\alpha}(z) \int_{\mathbb{B}_n} |f(z) - f(\varphi_z(w))|^p \frac{(1 - |z|^2)^{n+1+\alpha}}{|1 - \langle z, w \rangle|^{2(n+1+\alpha)}} \ dv_{\alpha}(w) \\ &\geq \int_{\mathbb{B}_n} dv_{\alpha}(z) \int_{D(z,r)} |f(z) - f(\varphi_z(w))|^p \frac{(1 - |z|^2)^{n+1+\alpha}}{|1 - \langle z, w \rangle|^{2(n+1+\alpha)}} \ dv_{\alpha}(w). \end{split}$$

From the first part of Lemma 2.4, there exists a positive constant C' such that

$$J(f) \ge C' \int_{\mathbb{B}_n} dv_{\alpha}(z) \int_{D(z,r)} \frac{|f(z) - f(\varphi_z(w))|^p}{(1 - |z|^2)^{n+1+\alpha}} dv_{\alpha}(w).$$

Then Lemma 2.1 implies that there exists another positive constant C such that

$$J(f) \ge C \int_{\mathbb{B}_n} |f(z) - f(\varphi_z(z))|^p \ dv_\alpha(z) = C \int_{\mathbb{B}_n} |f(z) - f(0)|^p \ dv_\alpha(z).$$

The proof is complete.

Lemma 3.2. Suppose $\alpha > -1$ and $f \in A^p_{\alpha}$. Then

$$\int_{\mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|f(z) - f(w)|^p}{\rho(z, w)^p} \ dv_{\alpha}(z) dv_{\alpha}(w) < \infty.$$

Proof. Given $f \in A^p_\alpha$, from Theorem 2.3, there exists a continuous function $g \in L^p(\mathbb{B}_n, dv_\alpha)$ such that for all $z, w \in \mathbb{B}_n$,

$$|f(z) - f(w)| \le \rho(z, w)(g(z) + g(w)).$$

There exists a positive constant C such that

$$\frac{|f(z) - f(w)|^p}{\rho(z, w)^p} \le C(g(z)^p + g(w)^p).$$

So,

$$\begin{split} \int_{\mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|f(w) - f(z)|^p}{\rho(z, w)^p} \ dv_{\alpha}(z) dv_{\alpha}(w) \\ & \leq C \int_{\mathbb{B}_n} \int_{\mathbb{B}_n} (g(z)^p + g(w)^p) \ dv_{\alpha}(z) dv_{\alpha}(w) \\ & = 2C \int_{\mathbb{B}_n} \int_{\mathbb{B}_n} g(z)^p \ dv_{\alpha}(z) dv_{\alpha}(w) < \infty. \end{split}$$

We can combine these two lemmas and obtain the following theorem.

Double Integral Characterization for Bergman Spaces

31

Theorem 3.3. Suppose that $\alpha > -1$. Then $f \in A^p_{\alpha}$ if and only if

$$\int_{\mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|f(z) - f(w)|^p}{\rho(z, w)^p} \ dv_{\alpha}(z) dv_{\alpha}(w) < \infty.$$

4. Bergman metric

Now, we replace metric ρ by Bergman metric β .

Lemma 4.1. Suppose that $\alpha > -1$ and $f \in H(\mathbb{B}_n)$. If

$$\int_{\mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|f(z) - f(w)|^p}{\beta(z, w)^p} \ dv_{\alpha}(z) d\tau(w) < \infty,$$

then $f \in A^p_{\alpha}$, where

$$d\tau(w) = \frac{dv(w)}{(1 - |w|^2)^{n+1}}$$

is the Mobius invariant volume measure on \mathbb{B}_n .

Proof. By Lemma 2.4, there exists a positive constant C such that

$$(1-|z|^2)^p |\nabla f(z)|^p \le \frac{C}{(1-|z|^2)^{n+1}} \int_{D(z,r)} |f(z)-f(w)|^p dv(w)$$

$$\le \frac{C}{(1-|z|^2)^{n+1+\alpha}} \int_{D(z,r)} |f(z)-f(w)|^p dv_{\alpha}(w).$$

Since D(z,r) is open unit ball in metric β , we have

$$(1-|z|^2)^p |\nabla f(z)|^p \le \frac{Cr^p}{(1-|z|^2)^{n+1+\alpha}} \int_{D(z,r)} \frac{|f(z)-f(w)|^p}{\beta(z,w)^p} \ dv_{\alpha}(w).$$

After integrating

$$\int_{\mathbb{B}_{n}} (1 - |z|^{2})^{p} |\nabla f(z)|^{p} dv_{\alpha}(z) \leq Cr^{p} \int_{\mathbb{B}_{n}} \int_{D(z,r)} \frac{|f(z) - f(w)|^{p}}{\beta(z,w)^{p}} dv_{\alpha}(w) d\tau(z)
\leq Cr^{p} \int_{\mathbb{B}_{n}} \int_{\mathbb{B}_{n}} \frac{|f(z) - f(w)|^{p}}{\beta(z,w)^{p}} dv_{\alpha}(w) d\tau(z).$$

Therefore $(1-|z|^2)\nabla f(z)\in A^p_\alpha$. It follows from Theorem 2.16 of [9] that $f\in A^p_\alpha$.

By the same reason as in Lemma 3.2, we can prove the following lemma.

Lemma 4.2. Suppose $\alpha > -1$ and $f \in H(\mathbb{B}_n)$. If $f \in A^p_{\alpha}$, then

$$\int_{\mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|f(z) - f(w)|^p}{\beta(z, w)^p} \ dv_{\alpha}(z) dv_{\alpha}(w) < \infty.$$

Downloaded from ijmsi.ir at 19:37 +0430 on Thursday April 26th 2018

Theorem 5.1. Suppose $\alpha > -1$, $p = n + 1 + \alpha$ and $f \in A^p_{\alpha}$, then

$$I(f) = \int_{\mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|f(z) - f(w)|^p}{|z - w|^p} \ dv_{\gamma}(z) dv_{\gamma}(w) < \infty,$$

for any $\gamma > \alpha$.

32

Proof. Given $f \in A^p_{\alpha}$, from Theorem 2.3, there exists a continuous function $g \in L^p(\mathbb{B}_n, dv_\alpha)$ such that for all $z, w \in \mathbb{B}_n$,

$$|f(z) - f(w)| \le \rho(z, w)(g(z) + g(w)) \le \frac{|z - w|}{|1 - \langle z, w \rangle|} (g(z) + g(w)).$$

There exists a positive constant C such that

$$\begin{split} I(f) \leq & 2C \int_{\mathbb{B}_n} g(z)^p \ dv_{\gamma}(z) \int_{\mathbb{B}_n} \frac{dv_{\gamma}(w)}{|1 - \langle z, w \rangle|^p} \\ = & 2C \int_{\mathbb{B}_n} g(z)^p \ dv_{\gamma}(z) \int_{\mathbb{B}_n} \frac{dv_{\gamma}(w)}{|1 - \langle z, w \rangle|^{n+1+\alpha}}. \end{split}$$

Since $\alpha - \gamma < 0$, by Lemma 2.2, the last integral is bounded. Then there exists another positive constant M such that

$$\begin{split} I(f) &\leq M \int_{\mathbb{B}_n} g(z)^p dv_{\gamma}(z) \\ &= M c_{\gamma} \int_{\mathbb{B}_n} g(z)^p (1 - |z|^2)^{\gamma - \alpha} (1 - |z|^2)^{\alpha} dv(z) \\ &< M \frac{c_{\gamma}}{c_{\alpha}} \int_{\mathbb{B}_n} g(z)^p dv_{\alpha}(z) < \infty. \end{split}$$

Lemma 5.2. Suppose $\alpha > -1$, $f \in H(\mathbb{B}_n)$ and δ and γ are real parameters such that

$$\delta + \gamma = p + \alpha - (n+1), -1 < \gamma < p - (n+1).$$

If $f \in A^p_{\alpha}$, then

$$I(f) = \int_{\mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|f(z) - f(w)|^p}{|z - w|^p} dv_{\delta}(z) dv_{\gamma}(w) < \infty.$$

Proof. By the proof of the previous lemma, there exists a positive constant C such that

$$\begin{split} I(f) \leq & 2C \int_{\mathbb{B}_n} g(z)^p \ dv_{\delta}(z) \int_{\mathbb{B}_n} \frac{dv_{\gamma}(w)}{|1 - \langle z, w \rangle|^p} \\ = & 2C \int_{\mathbb{B}_n} g(z)^p \ dv_{\delta}(z) \int_{\mathbb{B}_n} \frac{dv_{\gamma}(w)}{|1 - \langle z, w \rangle|^{n+1+\gamma+(\delta-\alpha)}}. \end{split}$$

Downloaded from ijmsi.ir at 19:37 +0430 on Thursday April 26th 2018

Since $\delta - \alpha > 0$, by Lemma 2.2, there exists another positive constant M such that

$$I(f) \leq M \int_{\mathbb{B}_n} \frac{g(z)^p}{(1-|z|^2)^{\delta-\alpha}} \ dv_{\delta}(z) = M \int_{\mathbb{B}_n} g(z)^p \ dv_{\alpha}(z) < \infty.$$

Corollary 5.3. Suppose that $\alpha > -1$, $p > n + 1 + \alpha$ and $f \in A^p_{\alpha}$, then

$$\int_{\mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|f(z) - f(w)|^p}{|z - w|^p} \ dv_t(z) dv_t(w) < \infty,$$

where $t = \frac{p+\alpha-(n+1)}{2}$.

If n = 1, then we obtain the following corollary.

Corollary 5.4. Suppose that $\alpha > -1$, $p > \alpha + 2$ and $f \in A^p_{\alpha}(\mathbb{D})$, then

$$\int_{\mathbb{D}} \int_{\mathbb{D}} \frac{|f(z) - f(w)|^p}{|z - w|^p} \ dA_t(z) dA_t(w) < \infty,$$

where $t = \frac{p+\alpha-2}{2}$.

The symmetric lifting operator $L: H(\mathbb{D}) \to H(\mathbb{D} \times \mathbb{D})$ is defined by

$$L(f)(z,w) = \frac{f(z) - f(w)}{z - w}.$$

The action of symmetric lifting operator on $A^p_{\alpha}(\mathbb{D})$ in the cases $p > \alpha + 2$ and $p < \alpha + 2$ was studied in [8]. In the case $p = \alpha + 2$, we have the following result.

Corollary 5.5. Suppose that $\alpha > -1$, $p = \alpha + 2$. Then the symmetric lifting operator maps $A^p_{\alpha}(\mathbb{D})$ into $A^p_{\gamma}(\mathbb{D}^2)$, for any $\gamma > \alpha$.

Proof. The result follows by letting n = 1 in Theorem 5.1.

If $\alpha > -1$, $p > \alpha + 2$ and $f \in A^p_{\alpha}(\mathbb{D})$, then by Corollary 5.4, $L(f) \in A^p_t(\mathbb{D}^2)$, which means that the symmetric lifting operator maps $f \in A^p_{\alpha}(\mathbb{D})$ into $A^p_t(\mathbb{D}^2)$, for $t = \frac{p+\alpha-2}{2}$. This is the Theorem 4.4 in [8].

ACKNOWLEDGMENTS

The authors would like to thank the referees for their useful comments.

REFERENCES

- R. Aghalary, Application of the norm estimates for univalence of analytic functions, Iranian Journal of Mathematical Sciences and Informatics, 9(2), (2014), 101-108.
- P. Duren, A. Schuster, Bergman Spaces, American Mathematical Society, Prividence, Rhode Island, 2003.
- H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman Spaces, Springer, New York, 2000.
- 4. S. Li, H. Wulan, R. Zhao, K. Zhu, A characterization of Bergman spaces on the unit ball of \mathbb{C}^n , Glasg. Math. J., $\mathbf{51}(2)$, (2009), 315-330.

- 5. S. Li, H. Wulan, K. Zhu, A characterization of Bergman spaces on the unit ball of \mathbb{C}^n , II, Canad. Math. Bull., 55, (2012), 146-152.
- 6. M. Stessin, K. Zhu, Composition operators on embedded disks, *J. Operator Theory*, **56**, (2006), 423-449.
- A. Taghavi, R. Hosseinzadeh, Uniform boundedness principle for operators on hypervector spaces, Iranian Journal of Mathematical Sciences and Informatics, 7(2), (2012), 0.16
- 8. H. Wulan, K. Zhu, Lipschitz type characterizations for Bergman spaces, Canad. Math. Bull., 52(4), (2009), 613-626.
- 9. K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Springer, New York, 2005.