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ABSTRACT. In this paper, we have generalized the definition of the vector
space by considering the group as a canonical m-ary hypergroup, the field
as a krasner (m, n)-hyperfield and considering the multiplication structure
of a vector by a scalar as hyperstructure. Also we will be consider a
normed m-ary hypervector space and introduce the concept of convergent

of sequence on m-ary hypernormed spaces and bundle subset.
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1. INTRODUCTION

Hypergroups were introduced in 1934 by a French mathematician Marty
[19] Marty [19]at the 8" Congress of Scandinavian Mathematicians. Since
then, hundreds of papers and several books have been written on this topic.
Nowadays, hyperstructures have a lot of applications to several domains of
mathematics and computer science [1, 2, 3]. Algebraic hyperstructures are a
suitable generalization of classical algebraic structures. In a classical algebraic
structure, the composition of two elements is an element, while in an algebraic
hyperstructure, the composition of two elements is a set. More exactly, if V is
a non-empty set and P*(V) is the set of all non-empty subsets of V', then we

Received 10 April 2013; Accepted 14 December 2015
(©2016 Academic Center for Education, Culture and Research TMU
23



24 S. Ostadhadi- Dehkordi

consider maps * : V x V. — P*(V). This maps are called (binary) hyperop-
erations. Sometimes, external hyperoperations are considered, which are maps
*: RxV — P*(V), where R # V. An example of a hyperstructure, endowed
both with an internal hyperoperation and an external hyperoperation is the
so-called hypermodule.

n-Ary generalizations of algebraic structures is the most natural way for fur-
ther development and deeper understanding of their fundamental properties.
The notion of n-ary group was introduced by Dérnte [12]. Since then many
papers concerning various n-ary algebras have appeared in the literature, for
example see [8, 9, 10, 13, 14, 18, 22]. The concept of n-ary hypergroup is de-
fined by Davvaz and Vougiouklis in [4], which is a generalization of the concept
of hypergroup in the sense of Marty and a generalization of n-ary group, too.
Then this concept was studied by Ghadiri and Waphare [15], Leoreanu-Fotea
and Davvaz [17, 18], Davvaz et al. [5, 6] and others. Also Leoreanu-Fotea and
Davvaz introduced and studied the notion of a partial n-hypergroupoid, associ-
ated with a binary relation and some important results, concerning Rosenberg
partial hypergroupoids, induced by relations, are generalized to the case of n-
hypergroupoids

Recently, the notation for (m,n)-hyperrings was defined by Mirvakili and
Davvaz [20] and they obtained (m,n)-rings from (m,n)-hyperrings using fun-
damental relations. Moreover, they defined a certain class of (m, n)-hyperrings
called Krasner (m,n)-hyperrings. Krasner (m,n)-hyperrings are a generaliza-
tion of (m,n)-rings and a generalization of Krasner hyperrings. Also, several
properties of Krasner (m,n)-hyperrings are presented.

The main purpose of this paper is to generalize and develop a few basic
properties of the vector space and normed vector space. Also, we have estab-
lished a few basic properties in m-ary hypervector space and several important
properties obtained. Moreover, we introduced the notion of bundle subspace
and we have established that the kernel of any linear functional is a bundle
subset and for every bundle subset there exists a linear functional such that
this bundle subset contained in the kernel of this lineal functional.

2. m-ARY HYPERVECTOR SPACE

Let R be a non-empty set and n € N, n > 2 and f : R* — P*(R),
where P*(R) is the set of all non-empty subsets of R. Then, f is called an
n-ary hyperoperation on R and the pair (R, f) is called an n-ary hypergroupoid.
If Ry, ..., R, are non-empty subsets of R, then we define

f(Ri,Ro,..,R,) = U{f(xl,xg, vy Tp) i € Ry, 1€ 1,2, .. ,n}.

The sequence x;, Ti+1,...,£; will be denoted by mz For j <4, xz is the empty
set. An n-ary hypergroupoid (R, f) will be called an n-ary semihypergroup if
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we have:

(i—1) (n+1 1) n 1) (n+j—1) (2n—1)
f<x17f< >x7(q,2+zl)) f(j17f< J >7xn+j)a

for every i,j € {1,2,...,n} and x1, 23, ...22,—1 € R. Suppose that the equation

(i—1)
) S f( X1 ,Z“l'z_i,_l)

has a solution z; € R for every x1,22,...,%i—1,%i41,..,Tn,y € R. Then, R is
called n-ary hypergroup. An n-ary hypergroupoid (R, f) is commutative if for
all 0 € Sy, f(x1,22,...,20) = f(Zo(1), To(2)s s To(ny). A commutative n-ary
hypergroupoid (R, f) is called canonical n-ary hypergroup if following axioms
hold for all 1 <4,j <n and x,x; € R:
(=1  (n—9)
(i) There exists a unique element 0 € R such that x = f | 0 ,z, 0 |,
(ii) There exists a unique operation — on R such that x € f(27) implies
that @; € f(—zi—1, —Ti—2,... — X1, Ty —Tp, .oy —Tip1)-

Definition 2.1. A Krasner (m,n)-hyperfield is an algebraic hyperstructure
(R, f,g) which satisfies the following axioms:

1. (R, f) is a canonical m-ary hypergroup,

2. (R, g) is an n-ary semigroup,

3. The n-ary operation is distributive with respect to the m-ary hyperop-
eration f, i.e, for every xﬁ_l, xl a1 <i<n

g( Ty af(a/l ) xi-i—l) = f (g( T1 aalaxi+1) 7"'79( Ty aamaxi-‘rl)) .

4. 0 is a zero element (absorbing element) of the n-ary operation g, i.e.,
for every =3 € R we have

9(0,23) = g(21,0,2%) = ... = g(z{"~",0) = 0,

5. there exists an element e € R, called the identity element such that
gla,e,...,e) = a, for every a € R,
——
n—1
6. for each non-zero element a € R there exists, an element a~! such that
gla,a=t a7t =e,
7. ¢ is a commutative operation.

ExXAMPLE 2.2. Let R be the set of all real numbers and G be a subgroup of
(R, -). We define (a,b) € p if and only if there exists g € G such that a = bg~!

This is an equivalence relation on R. Set [R: p] = {p(a) : a € R}, where p(a) is
an equivalence class a € R, and define the m-ary hyperoperation f and n-ary
multiplication g as follows:

f(par), p(az), ..., plam)) = {p(x): p(x) C p(a1) + plaz) + ... + plam)},
g(plar), p(az),...,plan)) = plaraz...an),
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then R is a Krasner (m, n)-hyperring.

Definition 2.3. Let R be the set of all real numbers. The Krasner (m,n)-
hyperfield denoted on R is called the real Krasner (m,n)-hyperfield.

Definition 2.4. Let (F, f,g) and (V, h) be a Krasner (mq,nq)-ary hyperfield
and be a canonical m-ary hypergroup, respectively. Then, V is said to be
m-ary hypervector space over Krasner (mq,n)-hyperfield F', if there exists a
hypermultiplication - : F' x V. — P*(V)(image to be denoted by z - v for
x € F and v € V) such that for all z,2]"*,z7* € F and v,v]" € V satisfies the
following axiom:

1oz (h(v") = h(z - v1, .0y - V),

2. fxT) - v="h(z1 v,22 v,..., T, - V),

3. ga) - v=um1- (2 (T3...20, - V),

4. (—z)-v=z-(-v) = —(x-v),

5. velp-v, 0=0-0.
where 1p is the identity element of F' and P*(V) is the set of all non-empty
subset of V. In this definition if V' is an m-ary group, then V is called additive
m-ary hypervector space.

Throughout this paper, by an m-ary hypervector space V', we mean a hyper-
vector space (V, h, ) and by a Krasner (m,n)-hyperfield F, we mean a Krasner
(m,n)-hyperfield (F, f, ).

EXAMPLE 2.5. Let (F, f, g) be a Krasner (m, 2)-hyperfield and V = F x F. We
define m-ary hyperoperation h on V as follows:

h((a1,b1), (a2,b2), ..; (Qm, b)) = {(x,y) : € f(ar,a2,....;am),y € f(b1,b2,....;bm)},

then (V,h) is a canonical m-ary hypergroup. Now we define a scalar multipli-
cation * : F' x V. — P(V) by

C* (avb) = (g(c, a)7g(ca b))7

where ¢ € F and (a,b) € V. Then we easily verify that V' is an m-ary hyper-
vector space.

Proposition 2.6. (Construction). Let (V,+,-) be a hypermodule over field F

and m-ary hyperoperation h on V defined by h(v]*) = Zvi. Then, V is an
i=1

m-ary hypermodule.

Proof. We prove that V is a canonical m-ary hypergroup. Since + is well-

defined implies that h is well-defined. Let 0 be the zero element of (V,+).

Then, 0 is a zero element of (V,h). Now, let v,o* € V and 1 < j < m,
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m
such that v € h(v1,v2, ..., Vj_1,V;,Vj41, ..., U ). Then, v € Z v; +vj. This

i=1,i£j
m
implies that there exists z € Z v3, such that v € z + v;. Hence v; €
i=1,i#j
m m
—z+wv. But —z € — Z v, | = Z —v;. This implies that v; €
i=1,i#j i=1,i#j
h(—vj_1, ..., —V1,0, =V, oo, Umt1)- S0, (V, k) is a canonical m-ary hypergroup.
Since the multiplication - is distributive with respect to the hyperoperation +,
it is not difficult to see that (V| h,-) is an m-ary hypermodule. a

A subset V; of an m-ary hypervector space V over F is called m-ary hyper-
vector space if V1 is an m~ary hypervector space over F'. So a subset V; of V is
an m-ary hypervector subspace if and only if following statements holds:

1. for every v]* € Vi, h(v(*) C V4,

2. for every x € Fand v; € V, x-v; C V7.
Definition 2.7. Let V3 and Vs be two m-ary hypervector space. We say that
T :Vy — V7 is a homomorphism if

T(h(vi,v2, ..., vm)) = A(T(v1), T(v2), ... T(vm)), T(A-v) =X-T(v),
where v, vs, .., v, v € V] and A € F.

Proposition 2.8. Let V| be a non-empty subset of V.. Then, Vi is an m-ary
hyper subspace if and only if h(x1 - v1, ..., Tm V) C V1, for every x* € F and
it € Vi.

Proof. Suppose that V; is an m-ary hyper subspace of V. So obviously, h(z; -
V1, X2 " V2, ooy Ty * U ) S V7.

Conversely, let v]* € V;. Since 1p € F', we have
h(v7") Ch(lp -v1,1p - ve,...,1p - vy) C V1.
Let € F and vy € V5. Hence z-v; = h(z-v1,0,0,...,0) = h(z-v1,0-vq,...,0-
———
m—1

v1) € V4. This complete the proof. O

Proposition 2.9. Let V be an m-ary hypervector space over an (m,n)-hyperfield
F. Then,

1. -0={0}, for every x € F,
2. z-v = {0}, implies that x =0 or v =0.

Proof. 1. Suppose that x € F. By axiom (5), for every v € V, 0-v = 0. Then

we have

z-0 = z-(0w) = z2-(0-(0v)) = ... = (0 - (0...(0 -v)) = ¢g(=,0,0,...,0)-v = 0-v =0.
———— ———

n—1 n—1
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2. Let 0 # 2 € F and v € V be such that z-v = 0. Since 27! € F, implies
that

O=zwv=a "(zv)=..=z Yo (..o tazw) =glx,2z 2™ o Ho=0
—_——— —_———
n—1 n—1

3. HYPERNORM SPACES

In this section we define a hypernorm on V and then we have established
some important results. Then we introduce the notion of innerproduct and
consider the relation between the structures of norm and innerproduct on hy-
perspaces. Moreover, we introduce the bundle subset and prove some important
theorems.

Definition 3.1. Let V be an m-ary hypervector space over the real Krasner
(m,n) hyperfield R. A hypernorm on V is a mapping || - || : V — R, where R
is a usual real space, such that for all x € R and v, v1,vs,...,v,,, € V following
conditions hold:

1. ||v]] > 0 and ||v||; 0 if and only if v = 0,
2. sup|lh (") | < Y ||oill, where [|h (o) || = {l|z] : @ € b (v")},
3. supllz v < |30HZ|Z|1|7 where [|lz- o] = {{ly[| : y € z - v}.
EXAMPLE 3.2. Let V = Z4U{0} and define 2-ary hyperoperation f as follows:

f(@,0) = f(0,a)={a} forallacV,
f(a,a) ={a,0} forallaecV,
f((_l, 6) = f(l;r C_L) = V\{EL’ B}

Then, (V, f) is a canonical 2-ary hypergroup. If we define the 2-ary multipli-
cation on F =V by

,0) =g(0,a)=0forallacV,
b) = ab.

then the map || T ||— « is a hypernorm on V. Then (F, f,g) is a Krasner
(2,2)- hyperfield. We define the scaler multiplication

x: I'xV —V
(a,b) — g(a,b).

It can be verified obviously that V' is a 2-ary hypervector space. We define
I -1]: V— R, by T — 2. Then (V,]| - ||) is normed 2-ary hypervector space.
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EXAMPLE 3.3. Let (Z,,+,-) be a field and V = Z,. We define a 2-ary hyper-
operation f as follows:
f@,b) ={a,b,a+b},forallabeZ,and a# —b,
f(@,0) = f(0,a) =a, for all a € Z,,
f(a,—a) =1Z,, foralla e Z,\0.
Then (V, f) is a canonical 2-ary hypergroup. Let F' = Z,, and scaler multipli-
cation on * : F' x V. — V be defined by (@,b) — ab. Then, V is a 2-ary

hypervector space. We define || - | V — R by || T ||— =z, for all T € V.
Then || - || is a hypernorm on V.
Suppose that || - || is a hypernorm on V then the couple (V, || - ||) is said to

be a normed m-ary hypervector space or hypernormed space. In this section V'
will be consider as a hypernormed space.
Let V4 and V5 be two m-ary hypervector space. A linear transformation is a
mapping T : Vi — V5 such that for every vy, vs,...,vm,v € V3 and A € F the
following hold:

1. T(h(v1,v2,..c; V) = B(T(z1), T(x2), ... T(1m)),

2. T(A-v)=X-T(v).
We define ker T = {v € V; : T(v) = 0}. A linear transformation T : V — F
is called lineal functional, where V is an m-ary hypervector space over F.

Proposition 3.4. Let V' be an m-ary hypervector space and Ty, T5 be two linear
transformations such that ker Ty = ker Ty. Then, there is A\ € F such that
Ty = N\T7.

Proof. Suppose that T; # 0. Indeed, it is trivial if T3 = 0. Let vy € V' be such

that Ty (vg) # 0. This implies that T5(vg) # 0. Let A = %Ezgg, v € V and

0= 72,11((;;)). So Ty (v) = ¢ - Ti(vg) = T1(d - vg). For every w € § - vy, we have
Ty (v —w) =0. Hence v — § - vg C ker Ty = ker Ty. Therefore,

Tg(’U) = T2(6 . 1}0) =4- TQ(UQ) =0\ T1(’Uo) =\ Tl(v).

This completes the proof. ([l

Proposition 3.5. Let V be a hypernormed space. Then, following assertions
holds:

Losup || h(Vi, Ve, Vin) €D sup Vil

=1
where Vi, Vo, ..., Vy,, are subsets of V,
2. |||l = || = vl|, for everyv eV,

(m—2) (m—2)
3. Hh(vh—vg, 0 > h<—017?}2, 0 )

(m—2

)
4. ifianh <vl,v2, 0 >H =0, then [jvi| = |lva]],

)
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. (m—2)
5. | o]l — lloall |< inf h(m,—vg, 0 ) |

Proof. 1. Let v; € V;, for 1 < i < m. Then, we have

m m
sup A1 <Y ol < sup [Vill.
i=1 i=1
Hence,

m m
sup viev; ([lsup h(of")[) <Y lloill < Y sup [Vill.

=1 =1

Therefore, sup [|h(Vi, Va, ..., V)| < Zsup Vil
=1

2. Suppose that v € V. Then we hiajve
—ve—l-v=| —vf| <supl| = 1-v]| = || —vl| < | = U[v]l = || = v]| < [lv]l.
Also
ve—1-—v=|v|| <supl| =1 —v]| = vl < | =1l = vl = [lvl| < || =2l

Hence, [[v] = || = v].
(m—2)
3. Suppose that v € h (Ul, —vg, 0 ) Then we have

(m—2) (m—2)
veh|v,—v2, 0 v €h|—(—v2),v, 0
(2 "0%)
<~ v €h v2,v, O
(o120 "0%)
<~ vy €h|v,—v, 0

(120 07)
<~ —veEh(vy,—v, 0 .
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(m—2) (m—2)
o )],

-2 (m—2)

4. Letv e h (vl, —s, mO ) and w € h (1}2, —v3, 0 ) Then, we have

This implies that

(m—2) (m—2)
—vg € h (v, —vy, 0 ) , U2 €Eh (UJ,—(—U?,), 0 )

(m—2) (m—2)
= —vy €h|v,—vy, 0 >, vg € h | w,vs, 0

(m—2) (m—2) (m—2)\ (m-2)
:>h<v2,v2, 0 >Qh<h<w,vg, 0 ),h(v,vl, 0 >, 0 >
(m—2) (m—2) (m—2)

:>0€h(h<v7w, 0 >7h(—v17v3, 0 >7 0 )

(m—2) (m—2) (m—2)
= 0€h(h|{v,w, 0 .2, 0 , for some z € h | —vy1,v3, 0
(0:0"0%)
= —z€h|v,w, 0
(m—2)
h{v,w, 0 < [loll + flwl|

(m—2) (m—2)
h|vi,—v3, 0 <sup||h|vi,—v2, 0 + sup

= || = 2] < sup

(m—2)
-

= sup

Moreover,

(m—1) (m—2) (m—1)
(067 (o e "0 o (07

(m—2)
‘h (— 0 )H T ool = ffor]) < freall

sup

= [v1]| < sup

and

sup

(m=1)
p (o"0")]

(m—1) (m—2)
h{ve, 0 < supl||lh|ve,—v1, 0 + sup

(m—2)
h/ U27 —U17 0 + ||U1H
(m—1)
‘h( 0 )H*””l'

= [lv2ll < joa]l-

= ool < sup

= |lva|| < sup
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(m—2) (m—2)
5. Suppose that v € h (vl, —vg, 0 ) Then v € h (v,vz, 0 )

(m—2)
— Joa]) < sup Hh ( 0 )H < Jloll + el

= [lvall = llvall < [l
(m—2)
o)
(m=2)

Moreover —vy € h (v, —-v1, 0 ) Then, we have

= [lvall = vzl < sup

(m—2)
— o] < sup Hh ( 0 )H < [loll + o
— ol = forll < 1ol

(m=2)
— ol = orl < sup [ (on, =, "0 |.
This completes the proof. O

Definition 3.6. Let {a,} be a sequence in a normed hypervector space V. We
say that this sequence is converge to a point a if for any € > 0; there exists a

(m—2)
h (ana —a, 0 > ’

a sequence {a,} converges to a point a in V', then we write lim,,_, ., = a and
we call a is a limit of {a,} in V.

positive integer m such that sup

< ¢, for every n > m. If

Proposition 3.7. Let {a,} be a sequence in a normed hypervector space V
such that lim,,__,sca, = a and lim,__.sca, =b. Then, a =b.

Proof. Suppose that ¢ > 0. Then there exists a positive integer m such that

(m—2) (m—2)
h|ap,—a, 0 < E, sup|lh | an,—b, 0 < E,
2 2
for every n > m. By the theorem 3.5, we have
(m—2) (m-1) (m=2)
(o) o oo 5) )
(m—2) (m—2) (m—2)
(h, (a,h <an7 —Qn, 0 ) 5 0 > 7_b7 0 > ‘
(m—2) (m—2) (m—2)
< sup ’h <h (h a,—apn, 0 ),an, 0 ),—b, 0 > ‘
(m—2) (m—2) (m—2)
h(h(a,—an, 0 ),h(an,—b, 0 ), 0 )‘

(m—2) (m—2)
e Yo

sup

< sup ’h

>
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(m—2)
i (a-2."0%)

(m—2)
for every € > 0. This implies that h (a, -b, 0 ) =0.

m—1 m—2 m—3
azh(a,( 0 )> gh(h(lx—b,( 0 )>,a,( 0 )>
(m—2) (m—3)
o (o) )

This completes the proof. (I

Therefore,

sup < €,

Proposition 3.8. Let {a,} be a sequence in V and lim,,—, o = a. Then, this
sequence is bonded.

Proof. Suppose that the sequence a sequence {a,, } converges to a point ¢ in V.
Then there exists a positive number m such that

(m—2)
h(am—a, 0 )

(m—-2) (m—2)
for every n > m. Let x € h (an, —a, 0 ) Then, a,, € h (ac,a, 0 ) This
implies that

sup

<

(m—2)
lanll < sup Hh (x 0 )H < llz] + Jlal.

So
(m=2)
lanll < llzll +llall = llanl < sup||h{ an,—a, 0 ||+l
= llan]l <1+ [la]
Let M = max{||a1]l,|laz]|, -, |am—-1l|,1 + ||a||}. Therefore, ||a,| < M for all

positive integer n.
This completes the proof. (I

Theorem 3.9. Let {a,} and {b,} be sequences in V' such that lim,—,a, = a
(m—2)
and limy, b, = b, respectively and ¢ € h (a,b, 0 . Then,there there
m—2
exists a sequence {c,} such that ¢, € h <an, bn, 0 ) and limy,— oo Cp, = C.

Proof. Suppose that {a,} and {b,} be two convergent sequences which are
convergent to a and b, respectively. There is a positive integer m such that

(m—2) (m—2)
‘h (anaaa lO > ‘h (bnaba mO )H < %7

sup sup

€
<§,
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(m—2) (m—2)
for every n > m. Let z € h|an,—a, 0 and y € h(bn,—b, 0 )

(m=2) (m=2)
Then, a, € h (x,a, 0 ) and b, € h|y,b, 0 ) This implies that a €

( 72
) Hence

(m—2
h(an,—m, 0 ) and beh

(b=
h <a,b, "y 2)) Ch <h (an, "y 2)) h <bn, "0 2)> 0
—h (h (h <an, “ 2)> b, 0 2)> Y 2)>
—h (h (h (am " 2)> —a, (m02)> —, (m02)>
—h (h (an, by, 02)) h (—33, y, (m02)> ,(m02)> .

(m—2) (m—2)
Hence for every n there exist x,, € h (an, bn, 0 ) andy, € h <—ac, -y, 0 >

(m —2) (m=2)
such that ¢ € h | zp, Yn, . Soyn, €h Tp, 0 .

(m—2)
lynll < sup \h (—%—y, 0 )H <l =2l + 1l - yll = llzll + 1yl

(m—2)

—sup |0 (—a =40 )Hs||x||+||y||
(m—2)

e sup[h (=, "0V < el + 1w

= sup ||h

(m=2) (m=2) (m=2)
h(anabna mO )767 mO ) S{||‘T|::E€h(anaav mO >}
(m=2)
(m=2)
(o= 0%)]

(m—2) (m—2)
h (a’na bn7 0 ) ,—¢ 0 ) < sup
(m—2)
(b 0"07)|
Therefore for every n, there exists a sequence ¢, such that
(m 2) (m 2)
h{cp, —c, < sup||h | ay,,—a, + sup

Therefore there exists a sequence c¢,, which converges to c.

= sup ||h

(m—2) (m—2)
— sup h(h(an,bn, 07}, e, ) < izl + Iyl
S

+sup

sup

(m—2

This completes the proof. O
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Proposition 3.10. Let a sequence {a,} converges to a in 'V and a sequence
t, converges tot in R. Then for every b € t.a there exists a sequence {b,} in
ty - an such that {b,} converges to b in V.

Proof. Suppose that {a,} and t, are convergent sequence in V. Then there
exist positive integer M; and My such that ||a,| < M; and |t,| < Ms. Since
{an} converges to a and {t¢,} is converges to ¢, for every ¢ > 0 there exists a
positive number m such that for every n > m

sup

L (7710—2) < € £ . (WO—Q) < €
an? a7 Ml + ‘Z\42 ) Sup ny 3 ‘Z\41 + M2 *

(m—2) (m—2)
Let x € h (an, —a, 0 ) and y € f (tn, —t, 0 > This implies that

(m—2) (m—2)
a€hl|a,,—z, 0 andt e f|ty,—y, 0O

(m—2) (m—2)
:}tagf tn,—Yy, O -h Gpy—2, 0

(m—2) (m—2)
{21'22521€f(tmy7 0 )722€h<an7xa 0 >}
(m—2) (m—2)
f(tnayv 0 )'22:22€h<an7xa 0 >}
( "07) e (o 07
tn - 22,—Y.22, 0 29 €hla,,—x, 0

h
(m—2) (m=2)\ (m-2)
(tnh <a’n7_l’7 0 ) 7_yh (an,—x, 0 ) ’ 0 )
(m—2) (m=2)\ (m=2)
- h (h (tn . anatn : (_'T)a 0 ) 7h <_y'a’n’ (_y)'(_x)’ 0 ) 0 )
< . . 0 0 0

Let b be any element of t.a. Then, there exists ¢, € t,.a,, and

dp € h <tn.(z), h <y.an, (=p).(=2), "0 2)) 0 2)> :
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(m=-2)
such that b € h (cn, dn, 0 ) Hence

(m—2)
dpn €| b,—cn, 0

(- o) (=pans - -0 7)o

(m—2)
sSuptmx>||+suth<y~an,<y>~<x>, 0 )H
< supllt - (=) + sup ||~y - anll + supll (=) - (~2)|

(m—2)
= sup h(b,—cm 0

= || dnl| < sup

<Itn [ Nzll+ Ty | lanll+ [y | ]
< Mollzl+ [y | Mat |y | l=]],

(m—2) (m—2)
this is true for every = € h (an, —a, 0 ) and y € f (tn, —t, 0 > This
implies that

sup

h< b(m02)> < € M € N4 € €
Cp, —0, ~
My + M, My + M, My + My My + M>

<{1+ 5 je < 2e.

€
(My + Ms)
Therefore {c,} converges to b.

This completes the proof. O

Proposition 3.11. Let {a,} be a convergent sequence in V. Then, every
subsequence of {an} is convergent to V.

Proof. Suppose that {a,} converges to a in V. Then for any € > 0 there exists

a positive integer k such that
(m—2) (m—2)
h{an,—a, 0 < E, sup ||h | apn,—am, 0 < ¢
2 2
for every m,m > k. Let {an, } be a subsequence of {a,}. Now we have
(m=2)
i (one e 07
(m—2) (m—2) (m—2)
S sup h (ank,h (_a7 h (ana —Qn, 0 ) ) 0 ) ) 0 )
= sup h a’nka an, —a, 0 ; —0np, 0 9 0
(m—2) (m=2)\ (m-2)
= sup h( (ank,— 0 )7h<a'n7_aa 0 ), 0 )

m 2) (m—=2)
Gy s —On + supl||lh | an,—a, 0O .

sup

sup

< sup||h




m-Ary Hypervector Space: Convergent Sequence and Bundle Subsets 37

Hence sup

(m 2)
h (ank, —a, )H < e. For every n,, > m. This implies that

{an, } converges to a.
This completes the proof. (I

Definition 3.12. Let V be a hypervector space over F' and C be a subspace
of V. We say that C' is a bundle subspace if for every x € V there exists A € F,

such that z e h | A-y,C,0,...,0 |, for every y such that 1-yNC = (.
——
m—2

Definition 3.13. In the Example 3.2, C = {0,1,0} is a bundle subspace.

Proposition 3.14. Let C be a bundle subspace of additive m-ary hypervector
space V and y € V such that 1-yNC = 0. Then, for every x € V there exists
a unique A € F such that

zeh|[ Az C0,..0
——

m—2

Proof. Suppose that A1, Ay € F such that A\; # Ay suchthatx € h | Ay -y, C,0,...,0
——

m—2

and z € h | X-y,C,0,...,0]. So there exist z1 € A\ -y, 22 € Ay -y and
——

m—2
c1,c0 € C'such that x = h | 21,¢1,0,...,0 | and z = h | 29,¢2,0,...,0 | . Hence
N—— N——

m—2 m—2

h|{z,—20,0,..,0] €h )\1'y,—/\2'y,0,...,0 :f A1, —X2,0,...,0 - Y.
-2 -2 -2

On the other hand

(m—2) (m—2) (m 2) (m—2)
h(zl,—zg, 0 ) =h h<x,—cl, 0 ),h( x, Co, ) 0
(m—2) (m—2) (m—2)
h <h (x, —c1, 0 ) ,—x, 0 ) 0
< < (m—Q)) (m 2) ) (m—2)
—-Z,T, 0 , —C1, 0

)
)
)
)

(m—2)
c2,—c1 0 )
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Since C is a vector space CN1g-y # 0, and this is contradiction. This completes
the proof. O

Proposition 3.15. Let V be an additive m- ary hypervector space over R and
T:V — R be a linear functional. Then, Kerl T is a bundle subspace.

Proof. One can see that Kerl T is a subspace of V. Suppose that 1p - 2o N

(m—2)
KerlT =0andx € V. Let A\ = TT((;)))' We prove that x € h ()\ -xo, KerlT, 0 )

(m=2)
LetyGh(x,TT((fo))omo, 0 >.Then

N (m—2) (m—2) N
T(y) GT(’”L (CU»—TT((IO)) o, 0 )) = {T (x7—z 0 ) 1z € 7?((1,0))}
() (m—2)
h{T(x),— {T(z) L2 € Ty -xo} , 0
N (m—2)
b (26— (H2m) "7

N (m—2)
h <T(x),—TT((wO))T(xO), 0 ) =0.

~ 3P ¢ 1)
Soy € kerl T. Since h | z,—y, 0 € Fao) * 205 then

(m—2) (m—2) T (m—2)
mzh(h(ac,—y, 0 >7y, 0 ) Eh( (z) -xo, Kerl T, 0 )

This completes the proof. (Il

Proposition 3.16. Let V' be an additive m-ary hypervector space and C' be
a bundle subset of V.. Then, there exists a linear functional T such that C C
Kerl T.

Proof. Suppose that zo € V, such that 1 -2oNC # (). By Proposition 3.14 for
(m—2)
every x € V| there exists a unique A\, € F' such that x € h (/\w ~20,C, 0

We define T': V — F by T(x) = Ay, then T is linearly functional. Indeed, for

every x € V, there exist A, € F, such that x € h | Ay - ¢, C,0,...,0 | . Then
——

m—2
we have
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(m—2) (m—2)
h(z1,22, .., Tm) €h|h| A 20, C, 0 s b g, s 20,0, 0

= h | By - %0, Aay - Tos ooy Aa,, - T0) B (C,C, ..., C) ,0,...,0

m—2

Ch h()\i?l "r07)‘12 '$07"'7Az

m

Hence
T(h(z1, 2y oy Tm)) = h (Aay, Azas ooy Az ) = R (T(21), T(22), .oy T(T1)) -

Also,
(m=2) (m=2) (m=2)
Ax CAA(Ap 2o, C, 0 =h{(A-X) 20, A-C, 0 Chl(A-Az)-x0,C, 0 .

Hence
TA-z)=A- A =X-T(x).
Now, let © € C. Then, we have

(m=2)
Oeh(O-xo,C’, 0 )

It means that T(x) = 0, and the proof is completes. (]

Definition 3.17. Let V be an m-ary hypervector space and V; C V. We
say that Vy is called closed if for every sequence {x,} in Vi in such that
limy ooy, = x implies that x € V7.

Definition 3.18. Let V; and V2 be two normed hypervector space and T :
V1 — V5 be homomorphism. We define

‘T(”iH.U)H;wvev}.

Theorem 3.19. Let V be an additive m-ary hypervector space on R and T :
V' — R linear functional. Then, kerl T is closed subspace of V if and only if
T is continuous.

1T = sup {sup

Proof. Suppose that kerlT is a closed subspace of V' and T is not continues.
This implies that for every n € N there exists v,, € V such that

(o )| =

[[on]|
for every n € N. Hence there exists x,, € ”v—l” - vy, such that |T'(x,)] > n.

sup ,

(m=2)
Let z € h (:cl, 7;((:71)) < T, m() > Then there exists y € 77:((:;)) - &y, such that
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(m=-2)
r=nh (ml, -y, 0 ) This implies that

T(z) = h (T(:L'l), —1), "0 2)) e h (T(zl), T (g((;fi)) xn> 0 2)> =0.

C T(xy) (m=2)
This implies that h | x1, 7T(rc,1,,) “Zp, 0O C Kerl T. For every n € N, let

(m—2)

tn €h (xl, _g:((;,i)) “Zp, 0O ) Then,

(m=2) T (m—2) (m=2)
h tnaf‘rla mO S sup hi{h T1, — (xl) + Tn, mO , — 1, mO
T(xn>

e | D) T (1)
B p’mn) "=

So limy—oot, = x1. This is contradiction. Hence T is continuous.

Conversely, let {z,} be a sequence in kerlT. For any e€ > 0, there exists
n € N such that
T (z) = T(xn)| = [T(2)] <e.

This completes the proof. O

Theorem 3.20. Let Vi and V, be two normed m-ary hypervector space and
¥ Vi — Vo be a homomorphism such that for every convergent sequence
{zn} in V1, the sequence {(zy)} is a convergent sequence in V1. Then 1 is
continues.

Proof. Suppose that 1 is not continues. So for every n € N, there is z, € V}

such that
1
¥ (e )
[E

Hence there exists b, € ﬁ - &, such that ||3(b,)] > n, for every n € N.
Thus,

1/1(«%)

>n.
2

sup

—sup‘

2 |Zn |1

n
sup > — =/n.
s Vn
This implies that {¢)(b,,)} is not convergent. Moreover,
1 1
b < —=.
’ v T Ve
So {b, } is a convergent sequence in V4 but {t(b,)} is not convergent. Therefore,
1) is continuous. O

sup
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