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Abstract. The homotopy perturbation method is a powerful device for

solving a wide variety of problems arising in many scientific applications.

In this paper, we investigate several integral equations by using T-stability

of the Homotopy perturbation method investigates for solving integral

equations. Some illustrative examples are presented to show that the

Homotopy perturbation method is T-stable for solving Fredholm integral

equations.
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1. Introduction

Various kinds of analytical methods and numerical methods were used to

solve integral equations [2,14]. Recently the Homotopy perturbation method [8]

has been used by many authors to handle a wide variety of scientific and engi-

neering applications to solve various functional equations. In this method, the

solution is considered as the sum of an infinite series, which converges rapidly

to exact solutions. Using the homotopy technique in topology, a homotopy is

constructed with an embedding parameter p ∈ [0, 1] which is considered as a

”small parameter”. It can be said that He’s homotopy perturbation method

is a universal one, and it is able to solve various kinds of nonlinear functional

equations [1, 3, 5–7, 9, 11, 13, 15]. In this paper several integral equations are
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solved by Homotopy perturbation method after that we show T-Stability of

Homotopy perturbation method for solving integral equations.

First we recall T-Stability of Picards iteration and a theorem from [10]:

Let (X, ‖.‖) be a Banach space and T a self-map of X . Let xn+1 = f(T, xn)

be some iteration procedure. Suppose that F (t) the fixed point set of T , is

nonempty and that xn converges to a point q ∈ F (t). Let {yn} ⊆ X and define

εn = ‖yn+1 − f(T, yn)‖. If lim ε = 0 implies that lim yn = q, then the iteration

procedure xn+1 = f(T, xn) is said to be T -stable. Without loss of generality,

we may assume that {yn} is bounded, if {yn} is not bounded, then it cannot

possibly converge. If these conditions hold for xn+1 = Txn, that is, Picards

iteration, then we will say that Picards iteration is T-stable.

Theorem 1.1. [10] Let (X, ‖.‖) be a Banach space and T a self-map of X

satisfying

‖Tx− Ty‖ ≤ L ‖x− Tx‖+ α ‖x− y‖ , (1.1)

for all x, y ∈ X, where L ≥ 0, 0 ≤ α ≤ 1. Suppose that T has a fixed point p.

Then, T is Picard T -stable.

2. Homotopy perturbation method

To convey an idea of the Homotopy perturbation method (HPM), we

consider a general equation of the type

L(u) = 0, (2.1)

where L is an integral or differential operator. We define a convex homotopy

H(u, p) by

H(u, p) = (1− p)F (u) + pL(u) = 0, (2.2)

where F (u) is a functional operator with known solutions v0 which can be

obtained easily. It is clear that, when

H(u, p) = 0, (2.3)

we have H(u, 0) = F (u) and H(u, 1) = L(u). This shows that H(u, p) con-

tinuously traces an implicitly defined curve from a starting point H(v0, 0) to

a solution H(u, 1). The embedding parameter p monotonously increases from

zero to one as the trivial problem F (u) = 0, continuously deforms to original

problem L(u) = 0. The embedding parameter p ∈ [0, 1] can be considered as

an expanding parameter to obtain

u = u0 + pu1 + p2u2 + · · · . (2.4)

When p → 1, Eq.(2.3) corresponds to Eq.(2.1) and becomes the approximate

solution of Eq.(2.1), i.e.,

U = lim
p−→1

u = u0 + u1 + u2 + · · · . (2.5)
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The series (2.5) is convergent for most cases and the rate of convergence depends

on L(u) [8].

3. Fredholm integral equation of the second kind

Now we consider the Fredholm integral equation of the second kind in general

case, which reads

u(x) = f(x) + λ

∫ b

a

k(x, t)u(t)dt, (3.1)

where k(x, t) is the kernel of the integral equation. There is a simple iteration

formula for (3.1) in the form

un+1(x) = f(x) + λ

∫ b

a

k(x, t)un(t)dt. (3.2)

Now, we show that the nonlinear mapping T , defined by

un+1(x) = T (un(x)) = f(x) + λ

∫ b

a

k(x, t)un(t)dt, (3.3)

is T -stable in L2[a, b]. First, we show that the nonlinear mapping T has a fixed

point. For m,n ∈ N we have

‖T (um(x)) − T (un(x))‖ = ‖um+1(x)− un+1(x)‖

=

∥∥∥∥∥λ
∫ b

a

k(x, t)(um(t)− un(t))dt

∥∥∥∥∥ (3.4)

≤ |λ|
[∫ b

a

∫ b

a

k2(x, t)dxdt

]1/2

‖um(x) − un(x)‖ .

Therefore, if

|λ| <
[∫ b

a

∫ b

a

k2(x, t)dxdt

]−1/2

, (3.5)

then the nonlinear mapping T has a fixed point.

Second, we show that the nonlinear mapping T satisfies (1.1) and so (3.3) holds.

Putting L = 0 and α = |λ|
[∫ b

a

∫ b

a
k2(x, t)dxdt

]1/2
shows that (1.1) holds for

the nonlinear mapping T . All of the conditions of Theorem 1 hold for the

nonlinear mapping T and hence it is T -stable. As a result, we can state the

following theorem.

Theorem 3.1. Consider the iteration scheme

u0(x) = f(x),

un+1(x) = T (un(x)) = f(x) + λ

∫ b

a

k(x, t)un(t)dt, (3.6)
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for n = 0, 1, 2, ... to construct a sequence of successive iterations {un(x)} to the

solution of (3.2). In addition, let

|λ| <
[∫ b

a

∫ b

a

k2(x, t)dxdt

]−1/2

, (3.7)

L = 0 and α = |λ|
[∫ b

a

∫ b

a k2(x, t)dxdt
]1/2

. Then the nonlinear mapping T , in

the norm of L2(a, b), is T -stable.

In view of Eq.(2.2), we define following convex homotopy H(u, p) for (3.1)

(1− p)[u(x)− f(x)] + p[u(x)− f(x)− λ

∫ b

a

k(x, t)u(t)dt] = 0, (3.8)

or

u(x) = f(x) + pλ

∫ b

a

k(x, t)u(t)dt. (3.9)

Substituting Eq.(2.4) into Eq.(3.9), and equating the terms with identical pow-

ers of p, we have

p0 : u0 = f(x),

p1 : u1 = λ

∫ b

a

k(x, t)(u0)dt,

p2 : u2 = λ

∫ b

a

k(x, t)(u1)dt,

p3 : u3 = λ

∫ b

a

k(x, t)(u2)dt,

...

Therefore, we obtain iteration formula for Eq.(3.1) as follow:

u0(x) = f(x),

um(x) = λ

∫ b

a

k(x, t)um−1(t)dt, m > 0, (3.10)

according to Eq.(3.10), we define partial sum as follow:

s0(x) = f(x),

sn(x) =

n∑
i=0

ui(x), (3.11)

in view of Eqs.(3.10) and (3.11) we have

s0(x) = f(x),

sn+1(x) = f(x) + λ

∫ b

a

k(x, t)sn(t)dt.
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Definition 3.2. Let u1, u2, u3, ... be a sequence of functions. The series
∑∞

n=1 un

is said to converge to u if the sequence {sn} of partial sums defined by

sn(x) =

∞∑
k=1

uk(x), (3.12)

converges to u [12].

We now recall a theorem from [4].

Theorem 3.3. [4] Consider the iteration scheme

s0(x) = f(x),

sn+1(x) = f(x) + λ

∫ b

a

k(x, t)sn(t)dt,

for n = 0, 1, 2, ... to construct a sequence of successive iterations sn(x) to the

solution of Eq. (3.1). In addition, let∫ b

a

∫ b

a

k2(x, t)dxdt = B2 < ∞, (3.13)

and assume that f(x) ∈ L2(a, b). Then, if |λ| < 1
B , the above iteration converges

in the norm of L2(a, b) to the solution of Eq. (3.1).

Corollary Consider the iteration scheme

s0(x) = f(x),

sn+1(x) = T (sn(x)) = f(x) + λ

∫ b

a

k(x, t)sn(t)dt,

for n = 0, 1, 2, ... If

|λ| <
[∫ b

a

∫ b

a

k2(x, t)dxdt

]−1/2

, (3.14)

L = 0 and α = |λ|
[∫ b

a

∫ b

a
k2(x, t)dxdt

]1/2
, then stability of the nonlinear map-

ping T is a coefficient condition for the above iteration to converge solution of

(3.1) in the norm of L2(a, b).

4. Test Examples

In this section, we present some test examples to show that the stability of

the HPM for solving integral equations. In fact the stability interval is a subset

of converges interval.

Example 4.1. [11] Consider the integral equation

u(x) =
√
x+ λ

∫ 1

0

xtu(t)dt. (4.1)
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Its iteration formula reads

sn+1(x) =
√
x+ λ

∫ 1

0

(xt)sn(t)dt, (4.2)

and

u0(x) =
√
x.

In view of Eq.(3.9), we obtain

u(x) =
√
x+ pλ

∫ 1

0

xtu(t)dt. (4.3)

Substituting Eq. (2.4) into Eq. (4.3), we have the following results:

p0 : u0(x) =
√
x,

p1 : u1(x) = λ

∫ 1

0

xt
√
tdt =

2λx

5
,

p2 : u2(x) = λ

∫ 1

0

xt
2λt

5
dt =

2λ2

15
x,

p3 : u3(x) = λ

∫ 1

0

xt
2λ2

15
tdt =

2λ3

45
x,

...

Continuing in this way, we obtain

sn(x) =
√
x+ [

2

5.30
λ+

2

5.31
λ2 +

2

5.32
λ3 + · · · ] = √

x+ [
6

5

n∑
i=1

(
λ

3
)ix]. (4.4)

The above sequence is convergent if |λ| < 3 .

On the other hand, we have[∫ b

a

∫ b

a

k2(x, t)dxdt

] 1
2

=

[∫ 1

0

∫ 1

0

(xt)2dxdt

] 1
2

=
1

3
. (4.5)

Then, if |λ| < 3 for mapping

sn+1(x) = T (sn(x)) =
√
x+ λ

∫ 1

0

xtsn(t)dt,

we have

‖T (sm(x)) − T (sn(x))‖ = ‖sm+1(x)− sn+1(x)‖

=

∥∥∥∥λ
∫ 1

0

xt(sm(x) − sn(x))dt

∥∥∥∥ (4.6)

≤ |λ|
[∫ 1

0

∫ 1

0

(xt)2dxdt

]1/2
‖sm(x) − sn(x)‖

≤ |λ|
3

‖sm(x)− sn(x)‖ ,
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which implies that T has a fixed point. Also, putting L = 0 and α = |λ|
3 shows

that (1.1) holds for the nonlinear mapping T . All of the conditions of Theorem

1.1 hold for the nonlinear mapping T and hence it is T -stable.

Example 4.2. [11]Consider the integral equation

u(x) = x+ λ

∫ 1

0

(1 − 3xt)u(t)dt, (4.7)

whose iteration formula reads

sn+1(x) = x+ λ

∫ 1

0

(1 − 3xt)sn(t)dt, (4.8)

and

u0(x) = x.

In view of Eq. (3.9), we obtain

u(x) = x+ pλ

∫ 1

0

(1− 3xt)u(t)dt. (4.9)

Substituting Eq.(2.4) into Eq. (4.9), we obtain the following results:

p0 : u0(x) = x,

p1 : u1(x) = λ

∫ 1

0

(1− 3xt)tdt =
λ

2
− λx,

p2 : u2(x) = λ

∫ 1

0

(1− 3xt)(
λ

2
− λt)dt =

λ2

4
x,

p3 : u3(x) = λ

∫ 1

0

(1− 3xt)
λ2

4
tdt =

λ3

8
− λ3

4
x,

...

Continuing in this way, we obtain

sn(x) = (1−λ)x+
λ2

4
(1−λ)x+

λ

2
+
λ3

8
+... =

n∑
i=0

[(
λ2

4
)iλ(

1

2
−x)+(

λ2

4
)i]+(1+(−1)n)

λ2n+2

22n+3
x.

(4.10)

The above sequence is convergent if |λ2 | < 1, that is, −2 < λ < 2 .

On the other hand, we have[∫ b

a

∫ b

a

k2(x, t)dxdt

] 1
2

=

[∫ 1

0

∫ 1

0

(1− 3xt)2dxdt

] 1
2

=
1√
2
. (4.11)

Then if |λ| ≤ √
2, for mapping

sn+1(x) = T (sn(x)) = x+ λ

∫ 1

0

(1− 3xt)sn(t)dt,
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we have

‖T (sm(x)) − T (sn(x))‖ = ‖sm+1(x) − sn+1(x)‖

=

∥∥∥∥λ
∫ 1

0

(1− 3xt)(sm(x) − sn(x))dt

∥∥∥∥ (4.12)

≤ |λ|
[∫ 1

0

∫ 1

0

(1 − 3xt)2dxdt

]1/2
‖sm(x)− sn(x)‖

≤ |λ|√
2
‖sm(x)− sn(x)‖ ,

which implies that T has a fixed point. Also, putting L = 0 and α = |λ|√
2
shows

that (1.1) holds for the nonlinear mapping T . All of the conditions of Theorem

1.1 hold for the nonlinear mapping T and hence it is T -stable.

Example 4.3. Consider the integral equation

u(x) = sinax+ λ
a

2

∫ π
2a

0

cos(ax)u(t)dt, (4.13)

with its iteration formula

sn+1(x) = sinax+ λ
a

2

∫ π
2a

0

cos(ax)sn(t)dt, (4.14)

and

u0(x) = sinax.

In view of Eq. (3.9), we obtain

u(x) = sinax+ pλ
a

2

∫ π
2a

0

cos(ax)un(t)dt, (4.15)

Substituting Eq.(2.4) into Eq. (4.15), we have

p0 : u0(x) = sinax,

p1 : u1(x) = λ
a

2

∫ π
2a

0

cos(ax)sin(at)dt =
λ

2
cos(ax),

p2 : u2(x) = λ
a

2

∫ π
2a

0

cos(ax)
λ

2
cos(at)dt =

λ2

4
cos(ax),

p3 : u3(x) = λ
a

2

∫ π
2a

0

cos(ax)
λ2

4
cos(at)dt =

λ3

8
cos(ax),

...

Continuing in this way, we obtain

sn(x) = sinax+
λ

2
cos(ax) +

λ2

4
cos(ax) +

λ3

8
cos(ax) + · · · (4.16)

= sinax+ cos(ax)
∞∑
i=1

(
λ

2
)i.
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The above sequence is convergent if |λ2 | < 1, that is, −2 < λ < 2 .

On the other hand, we have[∫ b

a

∫ b

a

k2(x, t)dxdt

] 1
2

=

[∫ π
2a

0

∫ π
2a

0

(
a

2
cos(ax))2dxdt

] 1
2

=

√
π2

32
. (4.17)

Then if |λ| < 1√
π2

32

∼= 1.800, for mapping

sn+1(x) = T (sn(x)) = x+ λ
a

2

∫ π
2a

0

cos(ax)sn(t)dt,

we have

‖T (sm(x)) − T (sn(x))‖ = ‖sm+1(x)− sn+1(x)‖

=

∥∥∥∥∥λ
∫ π

2a

0

a

2
cos(ax)(sm(x)− sn(x))dt

∥∥∥∥∥ (4.18)

≤ |λ|
[∫ π

2a

0

∫ π
2a

0

(
a

2
cos(ax))2dxdt

]1/2

‖sm(x) − sn(x)‖

≤ |λ|
√

π2

32
‖sm(x) − sn(x)‖ ,

which implies that T has a fixed point. Also, putting L = 0 and α = |λ|
√

π2

32

shows that (1.1) holds for the nonlinear mapping T . All of the conditions of

Theorem 1.1 hold for the nonlinear mapping T and hence it is T -stable.

5. Conclusion

In this work, we considered T-stability definition according to Qing and

Rhoades [10] and we showed that the HPM was T-stable for solving integral

equations. The sufficient condition for convergence of the method was pre-

sented and the examination of this condition for the integral equations and

integro-differential equation was illustrated by presenting examples.
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