OD-characterization of Almost Simple Groups Related to $D_4(4)$

G. R. Rezaeezadeha*, M. R. Darafshehb, M. Bibaka, M. Sajjadia

aFaculty of Mathematical Sciences, Shahrekord University, P.O.Box:115, Shahrekord, Iran.
bSchool of Pure Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran.

E-mail: rezaeezadeh@sci.sku.ac.ir
E-mail: darafsheh@ut.ac.ir
E-mail: m.bibak62@gmail.com
E-mail: sajadi.mas@yahoo.com

ABSTRACT. Let G be a finite group and $\pi_e(G)$ be the set of orders of all elements in G. The set $\pi_e(G)$ determines the prime graph (or Grunberg-Kegel graph) $\Gamma(G)$ whose vertex set is $\pi(G)$. The set of primes dividing the order of G, and two vertices p and q are adjacent if and only if $pq \in \pi_e(G)$. The degree $\deg(p)$ of a vertex $p \in \pi(G)$, is the number of edges incident on p. Let $\pi(G) = \{p_1, p_2, ..., p_k\}$ with $p_1 < p_2 < ... < p_k$.

We define $D(G) := (\deg(p_1), \deg(p_2), ..., \deg(p_k))$, which is called the degree pattern of G. The group G is called k-fold OD-characterizable if there exist exactly k non-isomorphic groups M satisfying conditions $|G| = |M|$ and $D(G) = D(M)$. Usually a 1-fold OD-characterizable group is simply called OD-characterizable. In this paper, we classify all finite groups with the same order and degree pattern as an almost simple groups related to $D_4(4)$.

Keywords: Degree pattern, k-fold OD-characterizable, Almost simple group.

*Corresponding Author

Received 12 February 2013; Accepted 08 August 2013
©2015 Academic Center for Education, Culture and Research TMU
1. Introduction

Let G be a finite group, $\pi(G)$ the set of all prime divisors of $|G|$ and $\pi_e(G)$ be the set of orders of elements in G. The prime graph (or Grunberg-Kegel graph) $\Gamma(G)$ of G is a simple graph with vertex set $\pi(G)$ in which two vertices p and q are joined by an edge (and we write $p \sim q$) if and only if G contains an element of order pq (i.e. $pq \in \pi_e(G)$).

The degree $\deg(p)$ of a vertex $p \in \pi(G)$ is the number of edges incident on p. If $\pi(G) = \{p_1, p_2, ..., p_k\}$ with $p_1 < p_2 < ... < p_k$, then we define $D(G) := (\deg(p_1), \deg(p_2), ..., \deg(p_k))$, which is called the degree pattern of G, and leads a following definition.

Definition 1.1. The finite group G is called k-fold OD-characterizable if there exist exactly k non-isomorphic groups H satisfying conditions $|G| = |H|$ and $D(G) = D(H)$. In particular, a 1-fold OD-characterizable group is simply called OD-characterizable.

The interest in characterizing finite groups by their degree patterns started in [7] by M. R. Darafsheh and et. all, in which the authors proved that the following simple groups are uniquely determined by their order and degree patterns: All sporadic simple groups, the alternating groups A_p with p and $p - 2$ primes and some simple groups of Lie type. Also in a series of articles (see [4, 6, 8, 9, 14, 17]), it was shown that many finite simple groups are OD-characterizable.

Let A and B be two groups then a split extension is denoted by $A : B$. If L is a finite simple group and $\text{Aut}(L) \cong L : A$, then if B is a cyclic subgroup of A of order n we will write $L : n$ for the split extension $L : B$. Moreover if there are more than one subgroup of orders n in A, then we will denote them by $L : n_1$, $L : n_2$, etc.

Definition 1.2. A group G is said to be an almost simple group related to S if and only if $S \leq G \leq \text{Aut}(S)$, for some non-abelian simple group S.

In many papers (see [2, 3, 10, 13, 15, 16]), it has been proved, up to now, that many finite almost simple groups are OD-characterizable or k-fold OD-characterizable for certain $k \geq 2$.

We denote the socle of G by $\text{Soc}(G)$, which is the subgroup generated by the set of all minimal normal subgroups of G. For $p \in \pi(G)$, we denote by G_p and $\text{Syl}_p(G)$ a Sylow p-subgroup of G and the set of all Sylow p-subgroups of G respectively, all further unexplained notation are standard and can be found in [11].

In this article our main aim is to show the recognizability of the almost simple groups related to $L := D_4(4)$ by degree pattern in the prime graph and
Main Theorem Let M be an almost simple group related to $L := D_4(4)$. If G is a finite group such that $D(G) = D(M)$ and $|G| = |M|$, then the following assertions hold:

(a) If $M = L$, then $G \cong L$.
(b) If $M = L : 2_1$, then $G \cong L : 2_1$ or $L : 2_3$.
(c) If $M = L : 2_2$, then $G \cong L : 2_2$ or $\mathbb{Z}_2 \times L$.
(d) If $M = L : 2_3$, then $G \cong L : 2_3$ or $L : 2_1$.
(e) If $M = L : 3$, then $G \cong L : 3$ or $\mathbb{Z}_3 \times L$.
(f) If $M = L : 2^2$, then $G \cong L : 2^2$, $\mathbb{Z}_2 \times (L : 2_1)$, $\mathbb{Z}_2 \times (L : 2_2)$, $\mathbb{Z}_2 \times (L : 2_3)$, $\mathbb{Z}_4 \times L$ or $(\mathbb{Z}_2 \times \mathbb{Z}_2) \times L$.
(g) If $M = L : (D_6)_1$, then $G \cong L : (D_6)_1$, $L : 6$, $\mathbb{Z}_3 \times (L : 2_1)$, $\mathbb{Z}_3 \times (L : 2_3)$ or $(\mathbb{Z}_3 \times L).\mathbb{Z}_2$.
(h) If $M = L : (D_6)_2$, then $G \cong L : (D_6)_2$, $\mathbb{Z}_2 \times (L : 3)$, $\mathbb{Z}_3 \times (L : 2_2)$, $(\mathbb{Z}_3 \times L).\mathbb{Z}_2$, $(\mathbb{Z}_3 \times L).\mathbb{Z}_2$ or $D_6 \times L$.
(i) If $M = L : 6$, then $G \cong L : 6$, $L : (D_6)_1$, $\mathbb{Z}_3 \times (L : 2_1)$, $\mathbb{Z}_3 \times (L : 2_3)$ or $(\mathbb{Z}_3 \times L).\mathbb{Z}_2$.
(j) If $M = L : D_{12}$, then $G \cong L : D_{12}$, $\mathbb{Z}_2 \times (L : (D_6)_1)$, $\mathbb{Z}_2 \times (L : (D_6)_2)$, $\mathbb{Z}_2 \times (L : 6)$, $\mathbb{Z}_3 \times (L : 2^2)$, $(\mathbb{Z}_3 \times (L : 2_1)).\mathbb{Z}_2$, $(\mathbb{Z}_3 \times (L : 2_2)).\mathbb{Z}_2$, $(\mathbb{Z}_3 \times (L : 2_3)).\mathbb{Z}_2$, $\mathbb{Z}_4 \times (L : 3)$, $(\mathbb{Z}_2 \times \mathbb{Z}_2) \times (L : 3)$, $(\mathbb{Z}_4 \times L).\mathbb{Z}_3$, $(\mathbb{Z}_2 \times \mathbb{Z}_2) \times L).\mathbb{Z}_3$, $\mathbb{Z}_6 \times (L : 2_1)$, $\mathbb{Z}_6 \times (L : 2_2)$, $\mathbb{Z}_6 \times (L : 2_3)$, $(\mathbb{Z}_6 \times L).\mathbb{Z}_2$, $D_6 \times (L : 2_1)$, $D_6 \times (L : 2_2)$, $D_6 \times (L : 2_3)$, $\mathbb{Z}_{12} \times L$, $(\mathbb{Z}_2 \times \mathbb{Z}_6) \times L$, $(\mathbb{Z}_2 \times L).D_6$, $A_4 \times L$, $L.A_4$, $D_{12} \times L$ or $T \times L$.

2. Preliminary Results

It is well-known that $\text{Aut}(D_4(4)) \cong D_4(4) : D_{12}$ where D_{12} denotes the dihedral group of order 12. We remark that D_{12} has the following non-trivial proper subgroups up to conjugacy: three subgroups of order 2, one cyclic subgroup each of order 3 and 6, two subgroups isomorphic to $D_6 \cong S_3$ and one subgroup of order 4 isomorphic to the Klein’s four group denoted by 2^2. The field and the duality automorphisms of $D_4(4)$ are denoted by ψ_1 and ψ_2 respectively, and we set $2_3 = 2_1.2_2$ (field+duality which is called the diagonal automorphism).

Therefore up to conjugacy we have the following almost simple groups related to $D_4(4)$.

Lemma 2.1. If G is an almost simple group related to $L := D_4(4)$, then G is isomorphic to one of the following groups: $L, L : 2_1, L : 2_2, L : 2_3, L : 3, L : 2^2, L : (D_6)_1, L : (D_6)_2, L : 6, L : D_{12}$.

Lemma 2.2 ([5]). Let G be a Frobenius group with kernel K and complement H. Then:

(a) K is a nilpotent group.
(b) $|K| \equiv 1(\text{mod}|H|)$.
Let $p \geq 5$ be a prime. We denote by \mathcal{S}_p, the set of all simple groups with prime divisors at most p. Clearly, if $q \leq p$, then $\mathcal{S}_q \subseteq \mathcal{S}_p$. We list all the simple groups in class \mathcal{S}_{17} with their order and the order of their outer automorphisms in TABLE 1, taken from [12].

TABLE 1: Simple groups in \mathcal{S}_p, $p \leq 17$.

| S | $|S|$ | $|\text{Out}(S)|$ | S | $|S|$ | $|\text{Out}(S)|$ |
|-------|------------|------------------|------|------------|------------------|
| A_5 | $2^3 \cdot 3^2 \cdot 5$ | 2 | $G_2(3)$ | $2^6 \cdot 3^6 \cdot 7 \cdot 13$ | 2 |
| A_6 | $2^3 \cdot 3^2 \cdot 5^2$ | 4 | $3D_4(2)$ | $2^{12} \cdot 3^4 \cdot 7^2 \cdot 13$ | 3 |
| $S_4(3)$ | $2^6 \cdot 3^4 \cdot 5$ | 2 | $L_2(64)$ | $2^6 \cdot 3^2 \cdot 5 \cdot 7 \cdot 13$ | 6 |
| $L_2(7)$ | $3^3 \cdot 7$ | 2 | $U_4(5)$ | $2^7 \cdot 3^4 \cdot 5^6 \cdot 7 \cdot 13$ | 4 |
| $L_2(8)$ | $3^3 \cdot 3^2 \cdot 7$ | 3 | $L_3(9)$ | $2^7 \cdot 3^6 \cdot 5 \cdot 7 \cdot 13$ | 4 |
| $U_3(3)$ | $2^3 \cdot 3^{3} \cdot 7$ | 2 | $S_6(3)$ | $2^9 \cdot 3^5 \cdot 7 \cdot 13$ | 2 |
| A_7 | $2^3 \cdot 3^2 \cdot 5 \cdot 7$ | 2 | $O_7(3)$ | $2^9 \cdot 3^5 \cdot 7 \cdot 13$ | 2 |
| $L_2(9)$ | $2^3 \cdot 3 \cdot 5^2 \cdot 7^2$ | 4 | $G_2(4)$ | $2^{12} \cdot 3^3 \cdot 5^7 \cdot 7 \cdot 13$ | 2 |
| $U_5(5)$ | $2^3 \cdot 3^2 \cdot 5^3 \cdot 7$ | 6 | $S_8(8)$ | $2^{12} \cdot 3^4 \cdot 7^2 \cdot 13$ | 6 |
| $L_3(4)$ | $2^5 \cdot 3^3 \cdot 5 \cdot 7$ | 12 | $O_7^+(3)$ | $2^{12} \cdot 3^12 \cdot 5^2 \cdot 7 \cdot 13$ | 24 |
| A_8 | $2^6 \cdot 3^2 \cdot 5 \cdot 7$ | 2 | $L_5(3)$ | $2^9 \cdot 3^{10} \cdot 5 \cdot 7 \cdot 13$ | 2 |
| A_9 | $2^6 \cdot 3^4 \cdot 5 \cdot 7$ | 2 | A_{13} | $2^9 \cdot 3^5 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13$ | 2 |
| J_2 | $2^7 \cdot 3^3 \cdot 5^2 \cdot 7$ | 2 | A_{14} | $2^{10} \cdot 3^6 \cdot 7^2 \cdot 7 \cdot 11 \cdot 13$ | 2 |
| A_{10} | $2^7 \cdot 3^4 \cdot 5^2 \cdot 7$ | 2 | A_{15} | $2^{10} \cdot 3^5 \cdot 5^3 \cdot 7 \cdot 11 \cdot 13$ | 2 |
| $U_4(3)$ | $2^7 \cdot 3^6 \cdot 5 \cdot 7$ | 8 | $L_6(3)$ | $2^{11} \cdot 3^15 \cdot 5 \cdot 7 \cdot 11 \cdot 2 \cdot 13^2$ | 4 |
| $S_4(7)$ | $2^3 \cdot 3^2 \cdot 5^2 \cdot 7^4$ | 2 | SU_2 | $2^{13} \cdot 3^7 \cdot 5^2 \cdot 7 \cdot 11$ | 12 |
| $S_6(2)$ | $2^6 \cdot 3^4 \cdot 5 \cdot 7$ | 1 | A_{16} | $2^{14} \cdot 3^6 \cdot 5^3 \cdot 7^2 \cdot 11 \cdot 13$ | 2 |
| $O_7^+(2)$ | $2^{12} \cdot 3^6 \cdot 5^2 \cdot 7$ | 6 | F_{422} | $2^{17} \cdot 3^9 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13$ | 2 |
| $L_2(11)$ | $2^2 \cdot 3 \cdot 5 \cdot 11$ | 2 | $L_2(17)$ | $2^4 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13$ | 2 |
| M_{11} | $2^4 \cdot 3^4 \cdot 5 \cdot 11$ | 1 | $L_2(16)$ | $2^4 \cdot 3 \cdot 5 \cdot 11$ | 4 |
| M_{12} | $2^6 \cdot 3^3 \cdot 5 \cdot 11$ | 2 | $S_4(4)$ | $2^8 \cdot 3^2 \cdot 5^2 \cdot 7$ | 4 |
| $U_5(2)$ | $2^{10} \cdot 3^5 \cdot 5 \cdot 11$ | 2 | He | $2^{10} \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 17$ | 2 |
| M_{22} | $2^7 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11$ | 2 | $O_8^+(2)$ | $2^{12} \cdot 3^4 \cdot 5 \cdot 7 \cdot 17$ | 2 |
| A_{11} | $2^7 \cdot 3^4 \cdot 5 \cdot 7 \cdot 11$ | 2 | $L_4(4)$ | $2^{12} \cdot 3^4 \cdot 5^2 \cdot 7 \cdot 17$ | 2 |
| M^+L | $2^7 \cdot 3^6 \cdot 5^3 \cdot 7 \cdot 11$ | 2 | $S_6(2)$ | $2^{16} \cdot 3^5 \cdot 5^3 \cdot 7 \cdot 17$ | 1 |
| HS | $2^9 \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 11$ | 2 | $U_4(4)$ | $2^{12} \cdot 3^2 \cdot 5^3 \cdot 13 \cdot 17$ | 4 |
| A_{12} | $2^9 \cdot 3^5 \cdot 5 \cdot 7 \cdot 11$ | 2 | $U_5(17)$ | $2^6 \cdot 3^4 \cdot 7 \cdot 11 \cdot 17^3$ | 4 |
| $U_6(2)$ | $2^{15} \cdot 3^6 \cdot 5 \cdot 7 \cdot 11$ | 6 | $O_{16}^+(2)$ | $2^{20} \cdot 3^6 \cdot 5^2 \cdot 7 \cdot 11 \cdot 17$ | 2 |
| $L_3(3)$ | $2^4 \cdot 3^3 \cdot 13$ | 2 | $L_2(13)^2$ | $2^3 \cdot 5 \cdot 7 \cdot 13^2 \cdot 17$ | 4 |
| $L_2(25)$ | $2^3 \cdot 3 \cdot 5 \cdot 13$ | 4 | $S_4(3)$ | $2^6 \cdot 3^2 \cdot 5 \cdot 7 \cdot 2^2 \cdot 13^4 \cdot 17$ | 2 |
| $U_5(4)$ | $2^6 \cdot 3 \cdot 5 \cdot 13$ | 4 | $L_3(16)$ | $2^{12} \cdot 3^2 \cdot 5^2 \cdot 7 \cdot 13 \cdot 17$ | 24 |
| $S_4(5)$ | $2^6 \cdot 3 \cdot 5 \cdot 13$ | 2 | $S_6(4)$ | $2^{18} \cdot 3^4 \cdot 5 \cdot 7 \cdot 13 \cdot 17$ | 2 |
| $L_4(3)$ | $2^7 \cdot 3^6 \cdot 5 \cdot 13$ | 4 | $O_7^+(4)$ | $2^{24} \cdot 3^7 \cdot 5 \cdot 7 \cdot 13 \cdot 17^2$ | 12 |
| $2F_4(2)'$ | $2^{11} \cdot 3^3 \cdot 5 \cdot 13$ | 2 | $F_4(2)$ | $2^{24} \cdot 3^6 \cdot 5^2 \cdot 7^2 \cdot 13 \cdot 17$ | 2 |
| $L_2(13)$ | $2^2 \cdot 3 \cdot 7 \cdot 13$ | 2 | A_{17} | $2^4 \cdot 3^6 \cdot 5^3 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17$ | 2 |
| $L_2(27)$ | $2^5 \cdot 3^3 \cdot 7 \cdot 13$ | 6 | A_{18} | $2^{15} \cdot 3^8 \cdot 5^3 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17$ | 2 |
Definition 2.3. A completely reducible group will be called a CR-group. The center of a CR-group is a direct product of the abelian factor in the decomposition. Hence, a CR-group is centerless, that is, has trivial center, if and only if it is a direct product of non-abelian simple groups. The following Lemma determines the structure of the automorphism group of a centerless CR-group.

Lemma 2.3 ([11]). Let R be a finite centerless CR-group and write $R = R_1 \times R_2 \times \ldots \times R_k$, where R_i is a direct product of n_i isomorphic copies of a simple group H_i, and H_i and H_j are not isomorphic if $i \neq j$. Then $\text{Aut}(R) = \text{Aut}(R_1) \times \text{Aut}(R_2) \times \ldots \times \text{Aut}(R_k)$ and $\text{Aut}(R_i) \cong \text{Aut}(H_i) \wr S_{n_i}$, where in this wreath product $\text{Aut}(H_i)$ appears in its right regular representation and the symmetric group S_{n_i} in its natural permutation representation. Moreover, these isomorphisms induce isomorphisms $\text{Out}(R) \cong \text{Out}(R_1) \times \text{Out}(R_2) \times \ldots \times \text{Out}(R_k)$ and $\text{Out}(R_i) \cong \text{Out}(H_i) \wr S_{n_i}$.

3. OD-Characterization of Almost Simple Groups Related to $D_4(4)$

In this section, we study the problem of characterizing almost simple groups by order and degree pattern. Especially we will focus our attention on almost simple groups related to $L = D_4(4)$, namely, we will prove the Main Theorem of Sec. 1. We break the proof into a number of separate propositions. By assumption, we depict all possibilities for the prime graph associated with G by use of the variables for some vertices in each proposition. Also, we need to know the structure of $\Gamma(M)$ to determine the possibilities for G in some proposition, therefore we depict the prime graph of all extension of L in pages 18 to 20. Note that the set of order elements in each of the following propositions is calculated using Magma.

Proposition 3.1. If $M = L$, then $G \cong L$.

Proof. By TABLE 1 $|L| = 2^{24}.3^5.5^4.7.13.17^2$. $\pi_e(L) = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 17, 20, 21, 30, 34, 51, 63, 65, 85, 255\}$, so $D(L) = (3, 4, 4, 1, 1, 3)$. Since $|G| = |L|$ and $D(G) = D(L)$, we conclude that the prime graph of G has following form:

![Figure 3.1](attachment:image.png)

where $\{a, b\} = \{7, 13\}$.
We will show that G is isomorphic to $L = D_4(4)$. We break up the proof into several steps.

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is a $\{2, 3, 5\}$-group. In particular, G is non-solvable.

First we show that K is a $17'$-group. Assume the contrary and let $17 \in \pi(K)$. Then 17 dose not divide the order of K. Otherwise, we may suppose that T is a Hall $\{13, 17\}$-subgroup of K. It is seen that T is a nilpotent subgroup of order 13.17^i for $i = 1$ or 2. Thus, $13.17 \in \pi_e(K) \subseteq \pi_e(G)$, a contradiction. Thus $\{17\} \subseteq \pi(K) \subseteq \pi(G) - \{13\}$. Let $K_{17} \in \text{Syl}_{17}(K)$. By Frattini argument, $G = K\text{N}_G(K_{17})$. Therefore, $N_G(K_{17})$ contains an element x of order 13. Since G has no element of order 13.17, (x) should act fixed point freely on K_{17}, that is implying $(x)K_{17}$ is a Frobenius group. By Lemma 2.2(b), $|\langle x \rangle|/(|K_{17}| - 1)$. It follows that $13|17^i - 1$ for $i = 1$ or 2, which is a contradiction.

Next, we show that K is a p'-group for $p \in \{a, b\}$. Let $p||K|$ and $K_p \in \text{Syl}_p(K)$. Now by Frattini argument, $G = K\text{N}_G(K_p)$, so 17 must divide the order of $N_G(K_p)$. Therefore, the normalizer $N_G(K_p)$ contains an element of order 17, say x. So $(x)K_p$ is a cyclic subgroup of G of order $17.p$, and so $p \sim 17$ in $\Gamma(G)$, which is a contradiction. Therefore K is a $\{2, 3, 5\}$-group. In addition, since K is a proper subgroup of G, it follows that G is non-solvable.

Step 2. The quotient G/K is an almost simple group. In fact, $S \leq G/K \leq \text{Aut}(S)$, where S is a finite non-abelian simple group isomorphic to $L := D_4(4)$.

Let $\overline{G} = G/K$. Then $S := \text{Soc}(\overline{G}) = P_1 \times P_2 \times \ldots \times P_m$, where P_is are finite non-abelian simple groups and $S \leq \overline{G} \leq \text{Aut}(S)$. If we show that $m = 1$, the proof of Step 2 will be completed.

Suppose that $m \geq 2$. In this case, we claim that 13 does not divide $|S|$. Assume the contrary and let $13 \mid |S|$, on the other hand, $\{2, 3\} \subset \pi(P_i)$ for every i (by TABLE 1), hence $2 \sim 13$ and $3 \sim 13$, which is a contradiction. Now, by step 1, we observe that $13 \in \pi(\overline{G}) \subseteq \pi(\text{Aut}(S))$. But $\text{Aut}(S) = \text{Aut}(S_1) \times \text{Aut}(S_2) \times \ldots \times \text{Aut}(S_t)$, where the groups S_j are direct products of isomorphic P_i’s such that $S = S_1 \times S_2 \times \ldots \times S_t$. Therefore, for some j, 13 divides the order of an automorphism group of a direct product S_j of t isomorphic simple groups P_i. Since $P_i \in \mathcal{S}_{17}$, it follows that $|\text{Out}(P_i)|$ is not divisible by 13 (see TABLE 1). Now, by Lemma 2.3, we obtain $|\text{Aut}(S_j)| = |\text{Aut}(P_i)|^t \frac{t!}{t}$. Therefore, $t \geq 13$ and so 2^{26} must divide the order of G, which is a contradiction. Therefore $m = 1$ and $S = P_1$.

By TABLE 1 and Step 1, it is evident that $|S| = 2^\alpha 3^\beta 5^\gamma 7.13.17^2$, where $2 \leq \alpha \leq 24$, $1 \leq \beta \leq 5$ and $0 \leq \gamma \leq 4$. Now, using collected results contained in TABLE 1, we deduce that $S \cong D_4(4)$ and by Step 2, $L \leq G/K \leq \text{Aut}(L)$ is completed. As $|G| = |L|$, we deduce $K = 1$, so $G \cong L$ and the proof is completed. □
Proposition 3.2. If \(M = L : 2_1 \), then \(G \cong L : 2_1 \) or \(L : 2_3 \).

Proof. As \(|L : 2_1| = 2^{25}.3^5.5^4.7.13.17^2 \) and \(\pi_e(L : 2_1) = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 24, 30, 34, 40, 42, 51, 60, 63, 65, 68, 85, 102, 126, 130, 170, 255 \} \), then \(D(L : 2_1) = (4, 4, 2, 1, 3) \). Since \(|G| = |L : 2_1| \) and \(D(G) = D(L : 2_1) \), we conclude that there exist several possibilities for \(\Gamma(G) \):

![Figure 3.2](image)

where \(\{a, b, c\} = \{2, 3, 5\} \).

Step 1. Let \(K \) be the maximal normal solvable subgroup of \(G \). Then \(K \) is a \(\{2, 3, 5\} \)-group. In particular, \(G \) is non-solvable.

By a similar argument to that in Proposition 3.1, we can obtain this assertion.

Step 2. The quotient \(\frac{G}{K} \) is an almost simple group. In fact, \(S \leq \frac{G}{K} \leq \text{Aut}(S) \), where \(S \) is a finite non-abelian simple group.

The proof is similar to Step 2 of Proposition 3.1.

By TABLE 1 and Step 1, it is evident that \(|S| = 2^α.3^β.5^γ.7.13.17^2 \), where \(2 \leq α \leq 25, 1 \leq β \leq 5 \) and \(0 \leq γ \leq 4 \). Now, using collected results contained in TABLE 1, we conclude that \(S \cong D_4(4) \) and by Step 2, \(L \leq \frac{G}{K} \leq \text{Aut}(L) \). As \(|G| = |L : 2_1| = 2|L| \), we deduce \(|K| = 1 \) or \(2 \).

If \(|K| = 1 \), then \(G \cong L : 2_1, L : 2_2 \) or \(L : 2_3 \). Obviously, \(G \cong L : 2_1 \) or \(L : 2_3 \) because \(\text{deg}(2) = 5 \) in \(\Gamma(L : 2_2) \) (see page 16).

If \(|K| = 2 \), then \(K \leq Z(G) \) and so \(\text{deg}(2) = 5 \), which is a contradiction. \(\square \)

Proposition 3.3. If \(M = L : 2_2 \), then \(G \cong L : 2_2 \) or \(\mathbb{Z}_2 \times L \).

Proof. As \(|L : 2_2| = 2^{25}.3^4.5^4.7.13.17^2 \) and \(\pi_e(L : 2_2) = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 20, 21, 24, 26, 30, 34, 40, 42, 51, 60, 63, 65, 68, 85, 102, 126, 130, 170, 255 \} \), then \(D(L : 2_2) = (5, 4, 4, 2, 2, 3) \). By assumption \(|G| = |L : 2_2| \) and \(D(G) = D(L : 2_2) \), so the prime graph of \(G \) has following form:

![Figure 3.3](image)

where \(\{a, b\} = \{7, 13\} \).
Step1. Let K be the maximal normal solvable subgroup of G. Then K is a $\{2, 3, 5\}$-group. In particular, G is non-solvable. By similar arguments as in the proof of Step 1 in Proposition 3.1, we conclude that K is a $\{2, 3, 5\}$-group and G is non-solvable.

Step 2. The quotient $\frac{G}{K}$ is an almost simple group. In fact, $S \leq \frac{G}{K} \leq \text{Aut}(S)$, where S is a finite non-abelian simple group.

Let $\overline{G} = \frac{G}{K}$. Then $S := \text{Soc}(\overline{G})$, $S = P_1 \times P_2 \times \ldots \times P_m$, where P_i's are finite non-abelian simple groups and $S \leq \frac{G}{K} \leq \text{Aut}(S)$. We are going to prove that $m = 1$ and $S = P_1$. Suppose that $m \geq 2$. We claim a does not divide $|S|$. Assume the contrary and let $a \mid |S|$, we conclude that a just divide the order of one of the simple groups P_i's. Without loss of generality, we assume that $a || P_1|$. Then the rest of the P_i's must be $\{2, 3\}$-group (because only 2 and 3 are adjacent to a in $\Gamma(G)$), this is a contradiction because P_i's are finite non-abelian simple groups. Now, by Step 1, we observe that $a \in \pi(\overline{G}) \subseteq \pi(\text{Aut}(S))$. But $\text{Aut}(S) = \text{Aut}(S_1) \times \text{Aut}(S_2) \times \ldots \times \text{Aut}(S_t)$, where the groups S_j are direct products of isomorphic P_i's such that $S = S_1 \times S_2 \times \ldots \times S_t$. Therefore, for some j, a divides the order of an automorphism group of a direct product S_j of t isomorphic simple groups P_i. Since $P_i \in \mathcal{S}_{17}$, it follows that $|\text{Out}(P_i)|$ is not divisible by a (see TABLE 1), so a does not divide the order of $\text{Aut}(P_i)$. Now, by Lemma 2.3, we obtain $|\text{Aut}(S_j)| = |\text{Aut}(P_i)|^{t!}$, $t!$. Therefore, $t \geq a$ and so 3^a must divide the order of G, which is a contradiction. Therefore $m = 1$ and $S = P_1$.

By TABLE 1 and Step 1, it is evident that $|S| = 2^\alpha 3^\beta 5^\gamma 7.13.17^2$, where $2 \leq \alpha \leq 25$, $1 \leq \beta \leq 5$ and $0 \leq \gamma \leq 4$. Now, using collected results contained in TABLE 1, we conclude that $S \cong D_4(4)$ and by Step 2, $L \leq \frac{G}{K} \leq \text{Aut}(L)$. As $|G| = |L : 2_2| = 2|L|$, we deduce $|K| = 1$ or 2.

If $|K| = 1$, then $G \cong L : 2_1$, $L : 2_2$ or $L : 2_3$ because $|G| = 2|L|$. It is obvious that $G \cong L : 2_2$, because $\deg(13) = 1$ in $\Gamma(L : 2_1)$ and $\Gamma(L : 2_3)$ (see page 17).

If $|K| = 2$, then $G/K \cong L$ and $K \leq Z(G)$. It follows that G is a central extension of K by L. If G is a non-split extension of K by L, then $|K|$ must divide the Schur multiplier of L, which is 1. But this is a contradiction, so we obtain that G split over $|K|$. Hence $G \cong Z_2 \times L$.

\[\Box\]

Proposition 3.4. If $M = L : 2_3$, then $G \cong L : 2_3$ or $L : 2_1$.

Proof. As $|L : 2_3| = 2^{25} 3^2 5^4 7.13.17^2$ and $\pi_e(L : 2_3) = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 24, 30, 34, 51, 63, 65, 85, 255\}$, then $D(L : 2_3) = (4, 4, 4, 2, 1, 3)$. Since $|G| = |L : 2_3|$ and $D(G) = D(L : 2_3)$, we conclude that $\Gamma(G)$ has the following form similarly to Proposition 3.2:
Step 1. Let K be the maximal normal solvable subgroup of G. Then K is a $\{2, 3, 5\}$-group. In particular, G is non-solvable.

We can prove this by the similar way to that in Proposition 3.2.

Step 2. The quotient $\frac{G}{K}$ is an almost simple group. In fact, $S \leq \frac{G}{K} \lesssim \text{Aut}(S)$, where S is a finite non-abelian simple group.

By using a similar argument, as in the proof of Proposition 3.2, we can verify that $\frac{G}{K}$ is an almost simple group.

By TABLE 1 and Step 1, it is evident that $|S| = 2^\alpha 3^\beta 5^\gamma 7^2 13 17 2$, where $2 \leq \alpha \leq 25$, $1 \leq \beta \leq 5$ and $0 \leq \gamma \leq 4$. Now, using collected results contained in TABLE 1, we conclude that $S \cong D_4(4)$ and by Step 2, $L \leq \frac{G}{K} \lesssim \text{Aut}(L)$. As $|G| = |L : 2_3| = 2|L|$, we deduce $|K| = 1$ or 2.

If $|K| = 1$, then $G \cong L : 2_1$, $L : 2_2$ or $L : 2_3$ because $|G| = 2|L|$. Obviously, $G \cong L : 2_3$ or $L : 2_1$, because $\deg(2) = 5$ in $\Gamma(L : 2_2)$ (see page 16).

If $|K| = 2$, then $K \leq Z(G)$ and so $\deg(2) = 5$, which is a contradiction. □

Proposition 3.5. If $M = L : 3$, then $G \cong L : 3$ or $\mathbb{Z}_3 \times L$.

Proof. As $|L : 3| = 2^{24} 3^6 5^4 7 13 17^2$ and $\pi_c(L : 3) = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 17, 18, 20, 21, 24, 30, 34, 39, 45, 51, 63, 65, 85, 255\}$, then $D(L : 3) = \{3, 5, 4, 1, 2, 3\}$. Since $|G| = |L : 3|$ and $D(G) = D(L : 3)$, we conclude that $\Gamma(G)$ has the following form (like $\Gamma(L : 3)$):

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is a $\{2, 3\}$-group. In particular, G is non-solvable.

First, we show that K is a p-group for $p = 7, 13$ and 17. Since the proof is quite similar to the proof of Step 1 in Proposition 3.1, so we avoid here full explanation of all details.
Next we consider K is a $5'$-group. Assume the contrary, $5 \in \pi_e(K)$. Let $K_5 \in \text{Syl}_5(K)$. By Frattini argument, $G = K \cap G(K_5)$. Therefore, $N_G(K_5)$ has an element x of order 7. Since G has no element of order 5, $\langle x \rangle$ should act fixed point freely on K_5, implying $\langle x \rangle K_5$ is a Frobenius group. By Lemma 2.2(b), $\langle x \rangle \mid (|K_5| - 1)$, which is impossible. Therefore K is a $\{2,3\}$-group.

In addition since K is a proper subgroup of G, then G is non-solvable and the proof of this step is completed.

Step 2. The quotient $\frac{G}{K}$ is an almost simple group. In fact, $S \leq \frac{G}{K} \trianglelefteq \text{Aut}(S)$, where S is a finite non-abelian simple group.

In a similar way as in the proof of Step 2 in Proposition 3.1, we conclude that $\frac{G}{K}$ is an almost simple group.

By TABLE 1 and Step 1, it is evident that $|S| = 2^{26}.3^5.5^4.7.13.17^2$, where $2 \leq \alpha \leq 24$ and $1 \leq \beta \leq 6$. Now, using collected results contained in TABLE 1, we conclude that $S \cong D_4(4)$ and by Step 2, $L \leq \frac{G}{K} \trianglelefteq \text{Aut}(L)$. As $|G| = |L : 3| = 3|L|$, we deduce $|K| = 1$ or 3.

If $|K| = 1$, then $G \cong L : 3$.

If $|K| = 3$, then $G/K \cong L$. In this case we have $G/C_G(K) \cong \text{Aut}(K) \cong \mathbb{Z}_2$. Thus $|G/C_G(K)| = 1$ or 2. If $|G/C_G(K)| = 1$, then $K \leq Z(G)$, that is, G is a central extension of K by L. If G is a non-split extension of K by L, then $|K|$ must divide the Schur multiplier of L, which is 1. But this is a contradiction, so we obtain that G split over K. Hence $G \cong \mathbb{Z}_3 \times L$. If $|G/C_G(K)| = 2$, then $K \not\leq C_G(K)$ and $1 \neq C_G(K)/K \leq G/K \cong L$, which is a contradiction since L is simple.

Proposition 3.6. If $M = L : 2^2$, then $G \cong L : 2^2$, $\mathbb{Z}_2 \times (L : 2_1)$, $\mathbb{Z}_2 \times (L : 2_2)$, $\mathbb{Z}_2 \times (L : 2_3)$, $\mathbb{Z}_3 \times L$ or $(\mathbb{Z}_2 \times \mathbb{Z}_2) \times L$.

Proof. As $|L : 2^2| = 2^{26}.3^5.5^4.7.13.17^2$ and $\pi_e(L : 2^2) = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 24, 26, 30, 34, 42, 51, 60, 63, 65, 68, 85, 102, 126, 130, 170, 255\}$, then $D(L : 2^2) = (5, 4, 4, 2, 2, 3)$. Since $|G| = |L : 2^2|$ and $D(G) = D(L : 2^2)$, so the prime graph of G has following form similarly to Proposition 3.3:

![Figure 3.6](image_url)

where $\{a, b\} = \{7, 13\}$.
Step 1. Let K be the maximal normal solvable subgroup of G. Then K is a $\{2,3,5\}$-group. In particular, G is non-solvable.

According to Step 1 in Proposition 3.3, we have K is a $\{2,3,5\}$-group and G is non-solvable.

Step 2. The quotient G/K is an almost simple group. In fact, $S \leq G/K \leq \text{Aut}(S)$, where S is a finite non-abelian simple group.

We can prove this by the similar argument in Step 2 in Proposition 3.3.

By TABLE 1 and Step 1, it is evident that $|S| = 2^α.3^β.5^γ.7.13.17^2$, where $2 \leq α \leq 26$, $1 \leq β \leq 5$ and $0 \leq γ \leq 4$. Now, using collected results contained in TABLE 1, we conclude that $S \cong D_4(4)$ and by Step 2, $L \leq G/K \leq \text{Aut}(L)$. As $|G| = |L : 2^2| = 4|L|$, we deduce $|K| = 1, 2$ or 4.

If $|K| = 1$, then $G \cong L : 2^2$.

If $|K| = 2$, then $K \leq Z(G)$. In this case G is a central extension of \mathbb{Z}_2 by $L : 2_1$, $L : 2_2$ or $L : 2_3$. If G splits over K then $G \cong \mathbb{Z}_2 \times (L : 2_1)$, $\mathbb{Z}_2 \times (L : 2_2)$ or $\mathbb{Z}_2 \times (L : 2_3)$, otherwise we get a contradiction because $|K|$ must divide the Schur multiplier of $L : 2_1$, $L : 2_2$ and $L : 2_3$, which is impossible.

If $|K| = 4$, then $G/K \cong L$. In this case we have $G/C_G(K) \leq \text{Aut}(K) \cong \mathbb{Z}_2$ or S_3. Thus $|G/C_G(K)| = 1, 2, 3$ or 6. If $|G/C_G(K)| = 1$, then $K \leq Z(G)$, that is, G is a central extension of K by L. If G is a non-split extension of K by L, then $|K|$ must divide the Schur multiplier of L, which is 1, but this is a contradiction. Therefore G splits over K. Hence $G \cong K \times L$. So we have $G \cong \mathbb{Z}_4 \times L$ or $(\mathbb{Z}_2 \times \mathbb{Z}_2) \times L$ because $K \cong \mathbb{Z}_4$ or $\mathbb{Z}_2 \times \mathbb{Z}_2$. If $|G/C_G(K)| = 2, 3$ or 6, then $K < C_G(K)$ and $1 \neq C_G(K)/K \leq G/K \cong L$. Which is a contradiction, since L is simple.

Proposition 3.7. If $M = L : (D_6)_1$, then $G \cong L : (D_6)_1$, $L : 6$, $\mathbb{Z}_3 \times (L : 2_1)$, $\mathbb{Z}_3 \times (L : 2_2)$ or $(\mathbb{Z}_3 \times L).\mathbb{Z}_2$.

Proof. As $|L : (D_6)_1| = 2^{25}.3^6.5^4.7.13.17^2$ and $π_e(L : (D_6)_1) = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 24, 30, 34, 39, 42, 45, 51, 60, 63, 65, 85, 255\}$, then $D(L : (D_6)_1) = \{4, 5, 4, 2, 2, 3\}$. Since $|G| = |L : (D_6)_1|$ and $D(G) = D(L : (D_6)_1)$, we conclude that there exist several possibilities for $\Gamma(G)$:

![Figure 3.7](image-url)
where \(\{a, b\} = \{7, 13\} \).

Step 1. Let \(K \) be the maximal normal solvable subgroup of \(G \). Then \(K \) is a \(\{2, 3, 5\} \)-group. In particular, \(G \) is non-solvable.

By the similar argument to that in Step 1 in Proposition 3.1, we can obtain this assertion.

Step 2. The quotient \(\frac{G}{K} \) is an almost simple group. In fact, \(S \leq \frac{G}{K} \leq \text{Aut}(S) \), where \(S \) is a finite non-abelian simple group.

The proof is similar to Step 2 in Proposition 3.3.

By TABLE 1 and Step 1, it is evident that \(|S| = 2^a 3^b 5^c 7^d 13^{e} 17^f \), where \(2 \leq a \leq 25 \), \(1 \leq b \leq 6 \) and \(0 \leq \gamma \leq 4 \). Now, using collected results contained in TABLE 1, we conclude that \(S \cong D_4(4) \) and by Step 2, \(L \leq \frac{G}{K} \leq \text{Aut}(L) \). As \(|G| = |L : D_6|_1 = 6|L| \), we deduce \(|K| = 1, 2, 3 \) or 6.

If \(|K| = 1 \), then \(G \cong L : (D_6)_1, L : (D_6)_2 \) or \(L : 6 \) because \(|G| = 6|L| \).

Obviously, \(G \cong L : (D_6)_1 \) or \(L : 6 \) because \(\deg(2) = 5 \) in \(\Gamma(L : (D_6)_2) \).

If \(|K| = 2 \), then \(K \leq Z(G) \) and so \(\deg(2) = 5 \), which is a contradiction (see page 18).

If \(|K| = 3 \), then \(G/K \cong L : 2_1, L : 2_2 \) or \(L : 2_3 \). But \(G/C_G(K) \leq \text{Aut}(K) \cong Z_2 \). Thus \(|G/C_G(K)| = 1 \) or 2. If \(|G/C_G(K)| = 1 \), then \(K \leq Z(G) \), that is, \(G \) is a central extension of \(K \) by \(L : 2_1, L : 2_2 \) or \(L : 2_3 \). If \(G \) splits over \(K \), then \(G \cong Z_3 \times (L : 2_1) \) or \(Z_3 \times (L : 2_3) \) because in \(\Gamma(Z_3 \times (L : 2_2)) \) the degree of 2 is 5. Otherwise we get a contradiction because \(|K| \) must divide the Schur multiplier of \(L : 2_1, L : 2_2 \) and \(L : 2_3 \), which is impossible. If \(|G/C_G(K)| = 2 \), then \(K < C_G(K) \) and \(1 \neq C_G(K)/K \leq G/K \cong L : 2_1, L : 2_2 \) or \(L : 2_3 \), we obtain \(G/K \cong L \). Since \(K \leq Z(C_G(K)) \), \(C_G(K) \) is a central extension of \(K \) by \(L \). If \(C_G(K) \) splits over \(K \), then \(C_G(K) \cong Z_3 \times L \), otherwise we get a contradiction because \(|K| \) must divide the Schur multiplier of \(L \), which is impossible. Therefore, \(G \cong (Z_3 \times L).Z_2 \).

If \(|K| = 6 \), then \(G/K \cong L \) and \(K \cong Z_6 \) or \(D_6 \).

If \(K \cong Z_6 \), then \(G/C_G(K) \cong Z_2 \) and so \(|G/C_G(K)| = 1 \) or 2. If \(|G/C_G(K)| = 1 \), then \(K \leq Z(G) \). It follows that \(\deg(2) = 5 \), a contradiction. If \(|G/C_G(K)| = 2 \), then \(K < C_G(K) \) and \(1 \neq C_G(K)/K \leq G/K \cong L \), which is a contradiction because \(L \) is simple.

If \(K \cong D_6 \), then \(K \cap C_G(K) = 1 \) and \(G/C_G(K) \cong D_6 \). Thus \(C_G(K) \neq 1 \).

Hence, \(1 \neq C_G(K) \cong C_G(K)/K \leq G/K \cong L \). It follows that \(L \cong G/K \cong C_G(K) \) because \(L \) is simple. Therefore, \(G \cong D_6 \times L \), which implies that \(\deg(2) = 5 \), a contradiction.

Proposition 3.8. If \(M = L : (D_6)_2 \), then \(G \cong L : (D_6)_2, Z_2 \times (L : 3), Z_3 \times (L : 2_2), (Z_3 \times L).Z_2, Z_6 \times L \) or \(S_3 \times L \).
Proof. As \(|L : (D_6)_2| = 2^{25}.3^6.5^4.7.13.17^2\) and \(\pi_e(L : (D_6)_2) = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 20, 21, 24, 26, 30, 34, 39, 40, 42, 45, 51, 60, 63, 65, 68, 85, 102, 126, 130, 170, 255\}\), then \(D(L : (D_6)_2) = (5, 5, 4, 2, 3, 3)\). Since \(|G| = |L : (D_6)_2|\) and \(D(G) = D(L : (D_6)_2)\), we conclude that \(\Gamma(G)\) has the following form (like \(\Gamma(L : (D_6)_2)\)):

![Figure 3.8](image-url)

Step1. Let \(K\) be the maximal normal solvable subgroup of \(G\). Then \(K\) is a \(\{2, 3\}\)-group. In particular, \(G\) is non-solvable.

The proof is similar to Step 1 in Proposition 3.5.

Step 2. The quotient \(G/K\) is an almost simple group. In fact, \(S \leq G/K \trianglelefteq \mathrm{Aut}(S)\), where \(S\) is a finite non-abelian simple group.

Let \(G = G/K\). Then \(S := \mathrm{Soc}(G)\), \(S = P_1 \times P_2 \times \ldots \times P_m\), where \(P_i\)'s are finite non-abelian simple groups and \(S \leq G/K \trianglelefteq \mathrm{Aut}(S)\). We are going to prove that \(m = 1\) and \(S = P_1\). Suppose that \(m \geq 2\). By the same argument in Step 2 of Proposition 3.3 and considering \(7\) instead of \(a\), we get a contradiction. Therefore \(m = 1\) and \(S = P_1\).

By TABLE 1 and Step 1, it is evident that \(|S| = 2^\alpha.3^\beta.5^4.7.13.17^2\), where \(2 \leq \alpha \leq 25\) and \(1 \leq \beta \leq 6\). Now, using collected results contained in TABLE 1, we conclude that \(S \cong D_4(4)\) and by Step 2, \(L \leq G/K \trianglelefteq \mathrm{Aut}(L)\). As \(|G| = |L : D_6)_2| = 6|L|\), we deduce \(|K| = 1, 2, 3\) or \(6\).

If \(|K| = 1\), then \(G \cong L : (D_6)_1, L : (D_6)_2\) or \(L : 6\) because \(|G| = 6|L|\).

Obviously \(G \cong L : (D_6)_2\) because in \(\Gamma(L : (D_6)_1)\) and \(\Gamma(L : 6)\), we have \(\deg(13) = 2\) (see page 17).

If \(|K| = 2\), then \(K \leq Z(G)\) and \(G/K \cong L : 3\). Hence \(G\) is a central extension of \(K\) by \(L : 3\). If \(G\) splits over \(K\), then \(G \cong \mathbb{Z}_2 \times (L : 3)\). Otherwise we get a contradiction because \(|K|\) must divide the Schur multiplier of \(L : 3\), which is impossible.

If \(|K| = 3\), then \(G/K \cong L : 2_1, L : 2_2\) or \(L : 2_3\). But \(G/C_G(K) \cong \mathrm{Aut}(K) \cong \mathbb{Z}_2\). Thus \(|G/C_G(K)| = 1\) or \(2\). If \(|G/C_G(K)| = 1\), then \(|K| \cong Z(G)\), that is, \(G\) is a central extension of \(K\) by \(L : 2_1, L : 2_2\) or \(L : 2_3\). If \(G\) splits over \(K\), then only \(G \cong \mathbb{Z}_3 \times (L : 2_2)\) because \(2 \approx 13\) in \(\Gamma(\mathbb{Z}_3 \times (L : 2_1))\) and \(\Gamma(\mathbb{Z}_3 \times (L : 2_3))\). Otherwise we get a contradiction because \(|K|\) must divide the Schur multiplier of \(L : 2_1, L : 2_2\) and \(L : 2_3\), which is impossible. If
$|G/C_G(K)| = 2$, then $K < C_G(K)$ and $1 \neq C_G(K)/K \trianglelefteq G/K \cong L : 2_1, L : 2_2$ or $L : 2_3$, we obtain $C_G(K)/K \cong L$. Since $K \leq Z(C_G(K))$, $C_G(K)$ is a central extension of K by L. If $C_G(K)$ splits over K, then $C_G(K) \cong \mathbb{Z}_3 \times L$, otherwise we get a contradiction because $|K|$ must divide the Schur multiplier of L, which is impossible. Therefore, $G \cong (\mathbb{Z}_3 \times L).\mathbb{Z}_2$.

If $|K| = 6$, then $G/K \cong L$ and $K \cong \mathbb{Z}_6$ or D_6. If $K \cong \mathbb{Z}_6$, then $G/C_G(K) \leq \mathbb{Z}_2$ and so $|G/C_G(K)| = 1$ or 2. If $|G/C_G(K)| = 1$, then $K \leq Z(G)$ and $G/K \cong L$. Therefore G is a central extension of K by L. If G is a non-split extension of K by L, then $|K|$ must divide the Schur multiplier of L, which is 1. But this is a contradiction. So we obtain that G splits over K. Hence $G \cong \mathbb{Z}_6 \times L$. If $|G/C_G(K)| = 2$, then $K < C_G(K)$ and $1 \neq C_G(K)/K \leq G/K \cong L$, which is a contradiction because L is simple. If $K \cong D_6$, then $K \cap C_G(K) = 1$ and $G/C_G(K) \leq D_6$. Thus $C_G(K) \neq 1$. Hence, $1 \neq C_G(K) \cong C_G(K)/K \leq G/K \cong L$. It follows that $L \cong G/K \cong C_G(K)$ because L is simple. Therefore $G \cong D_6 \times L$.

\begin{proposition}
If $M = L : 6$, then $G \cong L : 6$, $L : (D_6)_1, \mathbb{Z}_3 \times (L : 2_1), \mathbb{Z}_3 \times (L : 2_3)$ or $(\mathbb{Z}_3 \times L).\mathbb{Z}_2$.
\end{proposition}

\begin{proof}
As $|L : 6| = 2^{25}.3^6.5^4.7.13.17^2$ and $\pi_e(L : 6) = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 24, 30, 34, 36, 39, 42, 45, 48, 51, 63, 65, 85, 255\}$, then $D(L : 6) = (4, 5, 4, 2, 2, 3)$. Since $|G| = |L : 6|$ and $D(G) = D(L : 6)$, there exist several possibilities for $\Gamma(G)$ similarly to Proposition 3.7:

\begin{center}
\begin{tikzpicture}
\node (a) at (0,0) {a};
\node (b) at (1,1) {b};
\node (c) at (1,-1) {c};
\node (d) at (2,0) {d};
\node (e) at (0,2) {e};
\node (f) at (2,2) {f};
\node (g) at (0,4) {g};
\node (h) at (4,0) {h};
\node (i) at (4,2) {i};
\node (j) at (4,4) {j};
\node (k) at (2,4) {k};
\node (l) at (2,6) {l};
\node (m) at (4,6) {m};
\node (n) at (6,4) {n};
\node (o) at (6,2) {o};
\node (p) at (6,0) {p};
\node (q) at (6,-2) {q};
\node (r) at (6,-4) {r};
\node (s) at (4,-4) {s};
\node (t) at (4,-6) {t};
\node (u) at (2,-6) {u};
\node (v) at (0,-6) {v};
\node (w) at (-2,-6) {w};
\node (x) at (-4,-6) {x};
\node (y) at (-4,-4) {y};
\node (z) at (-4,0) {z};
\node (a') at (0,0) {a'};
\node (b') at (1,1) {b'};
\node (c') at (1,-1) {c'};
\node (d') at (2,0) {d'};
\node (e') at (0,2) {e'};
\node (f') at (2,2) {f'};
\node (g') at (0,4) {g'};
\node (h') at (4,0) {h'};
\node (i') at (4,2) {i'};
\node (j') at (4,4) {j'};
\node (k') at (2,4) {k'};
\node (l') at (2,6) {l'};
\node (m') at (4,6) {m'};
\node (n') at (6,4) {n'};
\node (o') at (6,2) {o'};
\node (p') at (6,0) {p'};
\node (q') at (6,-2) {q'};
\node (r') at (6,-4) {r'};
\node (s') at (4,-4) {s'};
\node (t') at (4,-6) {t'};
\node (u') at (2,-6) {u'};
\node (v') at (0,-6) {v'};
\node (w') at (-2,-6) {w'};
\node (x') at (-4,-6) {x'};
\node (y') at (-4,-4) {y'};
\node (z') at (-4,0) {z'};
\end{tikzpicture}
\end{center}

Figure 3.9

where $\{a, b\} = \{7, 13\}$.

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is a $\{2, 3, 5\}$-group. In particular, G is non-solvable.

The proof is similar to that in Proposition 3.3.

Step 2. The quotient G/K is an almost simple group. In fact, $S \leq G/K \leq \text{Aut}(S)$, where S is a finite non-abelian simple group.

Again we refer to Step 2 of proposition 3.3 to get the proof.

By TABLE 1 and Step 1, it is evident that $|S| = 2^\alpha.3^\beta.5^\gamma.7.13.17^2$, where $2 \leq \alpha \leq 25, 1 \leq \beta \leq 6$ and $0 \leq \gamma \leq 4$. Now, using collected results contained
in TABLE 1, we conclude that $S \cong D_4(4)$ and by Step 2, $L \leq \frac{G}{K} \leq \text{Aut}(L)$. As $|G| = |L : 6| = 6|L|$, we deduce $[K] = 1, 2, 3$ or 6.

If $|K| = 1$, then $G \cong L : 6$, $L : (D_6)_1$ or $L : (D_6)_2$ because $|G| = 6|L|$. Obviously, $G \cong L : 6$ or $L : (D_6)_1$ because $\text{deg}(2) = 5$ in $\Gamma(L : (D_6)_2)$ (see page 18).

If $|K| = 2$, then $K \leq Z(G)$ and so $\text{deg}(2) = 5$, which is a contradiction.

If $|K| = 3$, then $G/K \cong L : 2_1, L : 2_2$ or $L : 2_3$. But $G/C_G(K) \leq \text{Aut}(K) \cong \mathbb{Z}_2$. Thus $|G/C_G(K)| = 1$ or 2. If $|G/C_G(K)| = 1$, then $K \leq Z(G)$, that is, G is a central extension of K by $L : 2_1, L : 2_2$ or $L : 2_3$. If G splits over K, then $G \cong \mathbb{Z}_3 \times (L : 2_1)$ or $\mathbb{Z}_3 \times (L : 2_2)$ because in $\Gamma(\mathbb{Z}_3 \times (L : 2_2))$ the degree of $Z(G)$ is 2 or 5. Otherwise we get a contradiction because $|K|$ must divide the Schur multiplier of $L : 2_1, L : 2_2$ and $L : 2_3$, which is impossible. If $|G/C_G(K)| = 2$, then $K < C_G(K)$ and $1 \neq C_G(K)/K \leq G/K \cong L : 2_1, L : 2_2$ or $L : 2_3$, we obtain $C_G(K)/K \cong L$. Since $K \leq Z(C_G(K))$, $C_G(K)$ is a central extension of K by L. If $C_G(K)$ splits over K, then $C_G(K) \cong \mathbb{Z}_3 \times L$, otherwise we get a contradiction because $|K|$ must divide the Schur multiplier of L, which is impossible. Therefore, $G \cong (\mathbb{Z}_3 \times L).\mathbb{Z}_2$.

If $|K| = 6$, then $G/K \cong L$ and $K \cong \mathbb{Z}_6$ or D_6. If $K \cong \mathbb{Z}_6$, then $G/C_G(K) \leq \mathbb{Z}_2$ and so $|G/C_G(K)| = 1$ or 2. If $|G/C_G(K)| = 1$, then $K \leq Z(G)$. It follows that $\text{deg}(2) = 5$, a contradiction. If $|G/C_G(K)| = 2$, then $K < C_G(K)$ and $1 \neq C_G(K)/K \leq G/K \cong L$, which is a contradiction because L is simple. If $K \cong D_6$, then $K \cap C_G(K) = 1$ and $G/C_G(K) \leq D_6$. Thus $C_G(K) \neq 1$. Hence, $1 \neq C_G(K) \cong C_G(K)/K \leq G/K \cong L$. It follows that $L \cong G/K \cong C_G(K)$ because L is simple. Therefore, $G \cong D_6 \times L$, which implies that $\text{deg}(2) = 5$, a contradiction.

\[\square\]

Proposition 3.10. If $M = L : D_{12}$, then $G \cong L : D_{12}$, $\mathbb{Z}_2 \times (L : (D_6)_1)$, $\mathbb{Z}_2 \times (L : (D_6)_2)$, $\mathbb{Z}_2 \times (L : (D_6)_3)$, $\mathbb{Z}_2 \times (L : 2^2)$, $(\mathbb{Z}_3 \times (L : 2_1)).\mathbb{Z}_2$, $(\mathbb{Z}_3 \times (L : 2_2)).\mathbb{Z}_2$, $(\mathbb{Z}_4 \times (L : 2_3)).\mathbb{Z}_2$, $(\mathbb{Z}_4 \times (L : 2_4)).\mathbb{Z}_2$, $(\mathbb{Z}_6 \times (L : 2_5)).\mathbb{Z}_2$, $(\mathbb{Z}_6 \times (L : 2_6)).\mathbb{Z}_2$, $(\mathbb{Z}_6 \times (L : 2_7)).\mathbb{Z}_2$, $\mathbb{Z}_2 \times (L : 2_1)$, $\mathbb{Z}_4 \times (L : 2_2)$, $\mathbb{Z}_4 \times (L : 2_3)$, $\mathbb{Z}_2 \times L$, $(\mathbb{Z}_2 \times \mathbb{Z}_6) \times L$, $D_{12} \times L$, $(\mathbb{Z}_2 \times L).D_6$, $A_4 \times L$, $L.A_4$ or $T \times L$.

Proof. As $|L : D_{12}| = 2^{26}.3^6.5^4.7.13.17^2$ and $\pi_e(L : (D_{12})) = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 24, 26, 30, 34, 39, 40, 42, 45, 48, 51, 60, 63, 65, 68, 85, 102, 126, 130, 170, 255\}$, then $D(L : D_{12}) = (5, 5, 4, 2, 3, 3)$. Since $|G| = |L : D_{12}|$ and $D(G) = D(L : D_{12})$, we conclude that $\Gamma(G)$ has the following form (like $\Gamma(L : D_{12})$):

\[\square\]
Step 1. Let K be the maximal normal solvable subgroup of G. Then K is a $\{2, 3\}$-group. In particular, G is non-solvable.

The proof is similar to Step 1 in Proposition 3.5.

Step 2. The quotient G/K is an almost simple group. In fact, $S \leq G/K \leq \text{Aut}(S)$, where S is a finite non-abelian simple group.

To get the proof, follow the way in the proof of Step 2 in Proposition 3.5.

By TABLE 1 and Step 1, it is evident that $|S| = 2^a \cdot 3^2 \cdot 5^4 \cdot 7 \cdot 13 \cdot 17^2$, where $2 \leq a \leq 26$ and $1 \leq \beta \leq 6$. Now, using collected results contained in TABLE 1, we conclude that $S \cong D_4(4)$ and by Step 2, $L \leq G/K \leq \text{Aut}(L)$. As $|G| = |L : D_{12}| = 12|L|$, we deduce $|K| = 1, 2, 3, 4, 6$ or 12.

If $|K| = 1$, then $G \cong L : D_{12}$.

If $|K| = 2$, then $G/K \cong L : (D_6)_1, L : (D_6)_2$ or $L : 6$ and $K \leq Z(G)$. It follows that G is a central extension of K by $L : (D_6)_1, L : (D_6)_2$ or $L : 6$. If G splits over K, then $G \cong \mathbb{Z}_2 \times (L : (D_6)_1), \mathbb{Z}_2 \times (L : (D_6)_2)$ or $\mathbb{Z}_2 \times (L : 6)$.

Otherwise $G \cong \mathbb{Z}_2 \times (L : (D_6)_1)$ or $\mathbb{Z}_2 \times (L : (D_6)_2)$.

If $|K| = 3$, then $G/K \cong L : 2^2$. But $G/C_G(K) \leq \text{Aut}(K) \cong \mathbb{Z}_2$. Thus $|G/C_G(K)| = 1$ or 2. If $|G/C_G(K)| = 1$, then $K \leq Z(G)$, that is, G is a central extension of K by $L : 2^2$. If G splits over K, then $G \cong \mathbb{Z}_3 \times (L : 2^2)$.

Otherwise we get a contradiction because $|K|$ must divide the Schur multiplier of $L : 2^2$, which is impossible. If $|G/C_G(K)| = 2$, then $K < C_G(K)$ and $1 \neq C_G(K)/K \cong G/K \cong L : 2^2$, and we obtain $C_G(K)/K \cong L : 2, L : 2_\text{a}$ or $L : 2_\text{b}$. Since $K \leq Z(C_G(K))$, $C_G(K)$ is a central extension of K by $L : 2_1, L : 2_2$ or $L : 2_3$. Thus $C_G(K) \cong \mathbb{Z}_3 \times (L : 2_1), \mathbb{Z}_3 \times (L : 2_2)$ or $\mathbb{Z}_3 \times (L : 2_3)$, otherwise we get a contradiction because 3 must divide the Schur multiplier of $L : 2_1, L : 2_2$ or $L : 2_3$, which is impossible. Therefore, $G \cong (\mathbb{Z}_3 \times (L : 2_1)), \mathbb{Z}_2, (\mathbb{Z}_3 \times (L : 2_2)), \mathbb{Z}_2$ or $Z_3 \times (L : 2_3)) \mathbb{Z}_2$.

If $|K| = 4$, then $G/K \cong L : 3$ and $K \cong \mathbb{Z}_4$ or $\mathbb{Z}_2 \times \mathbb{Z}_2$. In this case we have $G/C_G(K) \leq \text{Aut}(K) \cong \mathbb{Z}_2$ or S_3. Thus $|G/C_G(K)| = 1, 2, 3$ or 6. If $|G/C_G(K)| = 1$, then $K \leq Z(G)$, that is, G is a central extension of K by $L : 3$. If G splits over K by $L : 3$, then $G \cong \mathbb{Z}_4 \times (L : 3)$ or $(\mathbb{Z}_2 \times \mathbb{Z}_2) \times (L : 3)$. Otherwise we get a contradiction because $|K|$ must divide the Schur multiplier of $L : 3$, which is impossible. If $|G/C_G(K)| \neq 1$, since $|G/C_G(K)| = 2, 3$ or 6, it follows that $K < C_G(K)$. As L is simple, we conclude that $1 \neq C_G(K)/K$ must
be an extension of \(L \). Hence \(|G/C_G(K)| = 3 \) and therefore \(C_G(K)/K \cong L \).
Now, since \(K \leq Z(C_G(K)) \), we conclude that \(C_G(K) \) is a central extension of \(K \) by \(L \). Thus \(C_G(K) \cong \mathbb{Z}_4 \times L \), or \((\mathbb{Z}_2 \times \mathbb{Z}_2) \times L\), otherwise \(|K| \) must divide the Schur multiplier of \(L \), which is 1 and it is impossible. Therefore, \(G \cong (\mathbb{Z}_4 \times L) \cdot \mathbb{Z}_3 \) or \((\mathbb{Z}_2 \times \mathbb{Z}_2) \times L) \cdot \mathbb{Z}_3 \).

If \(|K| = 6 \), then \(G/K \cong L : 2 \), \(L : 2 \) or \(L : 2 \) and \(K \cong \mathbb{Z}_6 \) or \(D_6 \). If \(K \cong \mathbb{Z}_6 \), then \(G/C_G(K) \leq \mathbb{Z}_2 \) and so \(|G/C_G(K)| = 1 \) or 2. If \(|G/C_G(K)| = 1 \), then \(K \leq Z(G) \), that is \(G \) is a central extension of \(\mathbb{Z}_6 \) by \(L : 2 \), \(L : 2 \) or \(L : 2 \). If \(G \) splits over \(K \), we obtain \(G \cong \mathbb{Z}_6 \times (L : 2) \), \(\mathbb{Z}_6 \times (L : 2) \) or \(\mathbb{Z}_6 \times (L : 2) \), otherwise we get a contradiction because \(|K| \) must divide the Schur multiplier of \(L \), which is 1 and it is impossible. If \(|G/C_G(K)| = 2 \), then \(K < C_G(K) \) and \(1 \neq C_G(K)/K \leq G/K \cong L : 2 \), \(L : 2 \) or \(L : 2 \), and we obtain \(C_G(K)/K \cong L \). Since \(K \leq Z(C_G(K)) \), \(C_G(K) \) is a central extension of \(K \) by \(L \). Thus \(C_G(K) \cong \mathbb{Z}_6 \times L \), otherwise we get a contradiction because \(|K| \) must divide the Schur multiplier of \(L \). Therefore \(G \cong (\mathbb{Z}_6 \times L) \cdot \mathbb{Z}_2 \). If \(K \cong D_6 \), then \(G/C_G(K) \leq D_6 \) and so \(|G/C_G(K)| = 1, 2, 3 \) or 6. If \(|G/C_G(K)| = 1 \), then \(K \leq Z(G) \), that is a contradiction. If \(|G/C_G(K)| = 2 \), then we have \(|K C_G(K)| = 6, |G|/2 = 3|G| \) because \(K \cap C_G(K) = 1 \), which is a contradiction. If \(|G/C_G(K)| = 3 \), then we have \(|K C_G(K)| = 6, |G|/3 = 2|G| \) because \(K \cap C_G(K) = 1 \), which is a contradiction. If \(|G/C_G(K)| = 6 \), then \(G/C_G(K) \cong D_6 \) and \(C_G(K) \neq 1 \). Hence, \(K \cong C_G(K) \cong C_G(K) K/K \leq G/K \cong L : 2, L : 2 \) or \(L : 2 \). It follows that \(C_G(K) \cong L : 2, L : 2 \) or \(L : 2 \) because \(L \) is simple. Therefore, \(G \cong D_6 \times (L : 2) \), \(D_6 \times (L : 2) \) or \(D_6 \times (L : 2) \).

Before processing the last case, we recall the following facts.

There exist five non-isomorphic groups of order 12. Two of them are abelian and three are non-abelian. The non-abelian groups are: alternating group \(A_4 \), dihedral group \(D_{12} \) and the dicyclic group \(T \) with generators \(a \) and \(b \), subject to the relations \(a^6 = 1, a^3 = b^2 \) and \(b^{-1}ab = a^{-1} \).

If \(|K| = 12 \), then \(G/K \cong L \) and \(K \cong \mathbb{Z}_{12}, \mathbb{Z}_2 \times \mathbb{Z}_6, D_{12}, A_4 \) or \(T \). But \(C_G(K) K/K \leq G/K \cong L \). If \(C_G(K) K/K = 1 \), then \(C_G(K) \leq K \) and hence \(|L| = |G/K||G/C_G(K)||\text{Aut}(K)| \). Thus \(|L| |\text{Aut}(K)| \), a contradiction.

Therefore, \(C_G(K)/K \neq 1 \) and since \(L \) is simple group, we conclude that \(G = C_G(K) K \) and hence, \(G/C_G(K) \cong K/Z(K) \). Now, we should consider the following cases:

If \(K \cong \mathbb{Z}_{12} \) or \(\mathbb{Z}_2 \times \mathbb{Z}_6 \), then \(G/C_G(K) = 1 \). Therefore \(K \leq Z(G) \), that is \(G \) is a central extension of \(\mathbb{Z}_{12} \) or \(\mathbb{Z}_2 \times \mathbb{Z}_6 \) by \(L \). If \(G \) splits over \(K \), we obtain \(G \cong \mathbb{Z}_{12} \times L \) or \((\mathbb{Z}_2 \times \mathbb{Z}_6) \times L\), otherwise we get a contradiction because \(|K| \) must divide the Schur multiplier of \(L \), which is 1 and it is impossible.
If $K \cong D_{12}$, then $G = K.L$ and $G/C_G(K) \cong D_6$. Since $C_G(K)/Z(K) \cong G/K \cong L$ and $Z(K) \leq Z(C_G(K))$, we conclude that $C_G(K)$ is a central extension of $Z(K) \cong \mathbb{Z}_2$ by L. If $C_G(K)$ is a non-split extension, then 2 must divide the Schur multiplier of L, which is 1 and it is impossible. Thus $C_G(K) \cong \mathbb{Z}_2 \times L$ and hence, G is a split extension of K by L. Now, since $\text{Hom}(L, \text{Aut}(D_{12}))$ is trivial, we have $G \cong D_{12} \times L$.

If $K \cong A_4$, then $G/C_G(K) \cong A_4$. As $G = C_G(K)K$, It follows that $C_G(K) \cong L$. Therefore $G \cong L \times A_4$ or $L.A_4$.

If $K \cong T$, then By the similar way in case $K \cong D_{12}$, we can conclude that G is a split extension of K by L. Also, since $\text{Hom}(L, \text{Aut}(T))$ is trivial, we have $G \cong T \times L$. □

According to what we said before the proof, here we depict $\Gamma(M)$ by $|M|$ and $\pi_e(M)$, where M is an almost simple group related to $L = D_4(4)$.

\begin{center}
\begin{tikzpicture}[scale=0.8]
\node (1) at (0,0) {13};
\node (2) at (1,0) {17};
\node (3) at (2,1) {5};
\node (4) at (2,-1) {3};
\node (5) at (0,2) {7};
\node (6) at (2,2) {7};
\node (7) at (2,-2) {3};
\node (8) at (0,-2) {3};
\draw (1) -- (2);
\draw (2) -- (3);
\draw (3) -- (4);
\draw (4) -- (5);
\draw (5) -- (6);
\draw (6) -- (7);
\draw (7) -- (8);
\draw (8) -- (4);
\end{tikzpicture}
\end{center}

$\Gamma(L)$

\begin{center}
\begin{tikzpicture}[scale=0.8]
\node (1) at (0,0) {13};
\node (2) at (1,0) {17};
\node (3) at (2,1) {5};
\node (4) at (2,-1) {3};
\node (5) at (0,2) {7};
\node (6) at (2,2) {7};
\node (7) at (2,-2) {3};
\node (8) at (0,-2) {3};
\draw (1) -- (2);
\draw (2) -- (3);
\draw (3) -- (4);
\draw (4) -- (5);
\draw (5) -- (6);
\draw (6) -- (7);
\draw (7) -- (8);
\draw (8) -- (4);
\end{tikzpicture}
\end{center}

$\Gamma(L : 2_1)$

\begin{center}
\begin{tikzpicture}[scale=0.8]
\node (1) at (0,0) {13};
\node (2) at (1,0) {17};
\node (3) at (2,1) {5};
\node (4) at (2,-1) {2};
\node (5) at (0,2) {7};
\node (6) at (2,2) {7};
\node (7) at (2,-2) {3};
\node (8) at (0,-2) {3};
\draw (1) -- (2);
\draw (2) -- (3);
\draw (3) -- (4);
\draw (4) -- (5);
\draw (5) -- (6);
\draw (6) -- (7);
\draw (7) -- (8);
\draw (8) -- (4);
\end{tikzpicture}
\end{center}

$\Gamma(L : 2_2)$
OD-characterization of Almost Simple Groups Related to $D_4(4)$

\[\Gamma(L : 2^3)\]

\[\Gamma(L : 3)\]

\[\Gamma(L : 2^2)\]

\[\Gamma(L : (D_6)_1)\]
4. Acknowledgments

The authors would like to thank professor Derek Holt for sending us the set of element orders of all possible extensions of $D_4(4)$ by subgroups of the outer automorphism. The first author would like to thank Shahrekord University for financial support.
OD-characterization of Almost Simple Groups Related to $D_4(4)$

REFERENCES

