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1. Introduction

Let H Denote the class of all analytic functions in the open unit disc ∆ =

{z ∈ C : |z| < 1}. For a positive integer n and a ∈ C, let H[a, n] and An denote

the following classes of analytic functions

An = {f ∈ H : f(z) = z + an+1z
n+1 + an+2z

n+2 + ..., z ∈ ∆}

and

H[a, n] = {f ∈ H : f(z) = a+ anz
n + an+1z

n+1 + ..., z ∈ ∆}.

Set A := A1.

Also let S denote the class of all univalent functions in A. We denote by S∗

the familiar class of functions in A which are starlike (with respect to origin).
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Suppose f and g belongs to H, we say that f(z) is subordinate to g(z);

written f ≺ g or f(z) ≺ g(z), if there exists an analytic function w such that

w(0) = 0, |w(z)| < 1 and f(z) = g(w(z)) on ∆. In particular, if g(z) is

univalent in ∆, then it is known that

f(z) ≺ g(z)⇐⇒ f(0) = g(0) and f(∆) ⊆ g(∆).

For α ∈ C, let Jα[f ] denote the nonlinear integral operator defined by

Jα[f ](z) =

∫ z

0

(
f(t)

t

)α
dt.

In [8], Kim and Merkes showed that Jα(S) = {Jα[f ] : f ∈ S} ⊆ S when

|α| < 1/4. Also Aksent’ev and Nezhmetdinov proved in [1] that Jα[S∗] ⊆ S

precisely when |α| < 1/2 or α ∈ [1/2, 1/3]. Also such results for other spaces

were investigated in [4, 10, 11].

For a constant β ∈ C, λ > 0 and σ ≥ 0 consider the classes U(β, λ) and

Uσ(n, λ) defined by

U(β, λ) = {f ∈ An : |zf ′′(z)− β(f ′(z)− 1)| < λ}
and

Uσ(n, λ) = {f ∈ U(n, λ) : |f (n+1)(0)| ≤ (n+ 1)!σ}.
Recently, the class U(β, λ) and Uσ(n, λ) have been studied by Miller and

Mocanu [9] and Kuroki and Owa [6]. It is shown that in [9], U(β, λ) ⊆ S∗ for

0 ≤ β < n and λ = n− β.

Let f : ∆ → C be analytic and locally univalent. The pre-Schwarzian

derivative Tf of f is defined by

Tf (z) =
f ′′(z)

f ′(z)
.

Also, the quantity

||f || = sup
z∈∆

(1− |z|2)|Tf (z)|

is called the norm of Tf .

In this paper we find some conditions on parameters β, λ, σ and α such that

Jα[U(β, λ)] ⊆ S and Jα[Uσ(n, λ)] ⊆ S.

For proving our results we need the following two lemmas.

Lemma 1.1. (see[2,3]) Let f be analytic and locally univalent in ∆. Then if

||f || < 1 then f is univalent, and the constant 1 is sharp.

Lemma 1.2. (see [5]) Let h(z) be a convex univalent function with h(0) = a

and let Reγ > 0. If p(z) ∈ H[a, n] and

p(z) +
zp′(z)

γ
≺ h(z),
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then

p(z) ≺ q(z) ≺ h(z),

where

q(z) =
γ

nzγ/n

∫ z

0

h(t)tγ/n−1dt.

This result is sharp.

2. Main Results

Theorem 2.1. Let λ, µ, σ be non-negative numbers with µ = σ+ λ
n+2 ≤ 1. For

a function f ∈ Uσ(n, λ), we have

||Jα[f ]|| ≤ 2|α|µ
1 +

√
1− µ2

. (2.1)

for every α ∈ C. In the case n = 1 the equality holds above precisely when

f(z) = z + az2 with a = µ < 1.

Proof. Taking a logarithmic differentiation, we obtain, TJα[f ](z) = αTJ1[f ](z)

and thus

||Jα[f ]|| = |α|||J1[f ]||.

Therefore it suffices to consider ||J1[f ]||. Let f(z) = z+an+1z
n+1 +an+2z

n+2 +

... be in Uσ(n, λ) and G(z) = J1[f ](z). If we set p(z) = f ′(z) − (1 + n) f(z)
z ,

then we have

p(z) = −n+ an+2z
n+1 + ...

and we observe that p(z) ∈ H[−n, n + 1]. Further it is easy to see that, f ∈
Uσ(n, λ) is equivalent to

p(z) + zp′(z) ≺ −n+ λz. (2.2)

Applying Lemma 1.2 to the (2.2), we obtain

p(z) ≺ 1

(n+ 1)z1/(n+1)

∫ z

0

[−n+ λt]t1/(n+1)−1dt = −n+
λ

n+ 2
z.

Hence

f ′(z)− (n+ 1)
f(z)

z
= −n+

λ

n+ 2
ω(z), (2.3)

where ω is an analytic function in ∆ with |ω(z)| ≤ 1 and ω(0) = ω′(0) = ... =

ω(n)(0) = 0. By setting g(z) = f(z)
z − 1, we may rewrite the relation (2.3) as

zg′(z)− ng(z) =
λ

n+ 2
ω(z).

Solving this differential equation we have

g(z) = an+1z
n +

λ

n+ 2

∫ 1

0

ω(tz)

tn+1
dt. (2.4)
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Since |an+1| + λ
n+2 ≤ µ, and in view of Schwarz’s lemma |ω(z)| ≤ |z|n+1 for

z ∈ ∆, (2.4) implies that

|g(z)| ≤ |z|n
(
|an+1|+

λ

n+ 2
|z|
)
< µ.

So F(z) := f(z)/z is subordinate to the function q(z) := 1+µz and this means

that F(z) = q(ω1(z)) where ω1(z) is Schwarz function. Hence

||G|| = sup
z∈∆

(1− |z|2)

∣∣∣∣F ′(z)F(z)

∣∣∣∣ = sup
z∈∆

(1− |z|2)
|q′(ω1(z))||ω′1(z)|
|q(ω1(z))|

But, by the Schwarz-Pick lemma, we know that

|ω′1(z)| ≤ 1− |ω1(z)|2

1− |z|2
.

Therefore we obtain

||G|| ≤ sup
z∈∆

(1− |z|2)
|q′(ω1(z))|(1− |ω1(z)|2)

(1− |z|2)|q(ω1(z))|
≤ sup
z∈∆

(1− |z|2)

∣∣∣∣q′(z)q(z)

∣∣∣∣ .
Since

q′(z)

q(z)
=

µ

1 + µz
,

some computations show that

sup
z∈∆

(1− |z|2)

∣∣∣∣q′(z)q(z)

∣∣∣∣ = µ sup
0<t<1

1− t2

1− µt
=

2µ

1 +
√

1− µ2
.

Thus inequality (2.1) follows. Now for function f(z) = z+az2 with 0 < a < 1

we have

||Jα[f ]|| = sup
z∈∆

(1− |z|2)
|α||a|
|1 + az|

.

But

(1− |z|2)
|α||a|
|1 + az|

≤ (1− |z|2)|α| |a|
1− |a||z|

,

and so

sup
z∈∆

(1− |z|2)
|α||a|
|1 + az|

≤ sup
z∈∆

(1− |z|2)
|α||a|

1− |a||z|
=

2|α|a
1 +
√

1− a2
.

We note that in the last equality sup has taken on the point |z| = 1−
√

1−a2
a .

On the other hand by putting z = t we obtain

|α|a 1− t2

1 + at
≤ sup
z∈∆

(1− |z|2)
|α||a|
|1 + az|

.

By putting t = 1−
√

1−a2
−a on the left hand side we have |α|a 1−t2

1+at = |α| 2a
1+
√

1−a2 .

Hence equality holds for the function f(z) = z + az2. �
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Corollary 2.2. Let λ, σ be non-negative numbers with σ+ λ
n+2 ≤ 1 and α ∈ C

satisfy the condition

|α| ≤
1 +

√
1− (σ + λ

n+2 )2

2(σ + λ
n+2 )

.

Then Jα(Uσ(n, λ)) ⊆ S.

Letting an+1 = 0 in the corollary 2.1, we obtain the following corollary.

Corollary 2.3. Let 0 < λ ≤ n+ 2 and α be complex number which satisfy the

condition

|α| ≤
n+ 2 +

√
(n+ 2)2 − λ2

2λ
.

Then Jα(U0(n, λ)) ⊆ S.

By putting λ = n+ 2 in the corollary 2.2 we obtain the following example.

Example 2.4. Let α, c be complex numbers with |c| < 1 and |α| ≤ 1/2. Then

the function

F (z) =

∫ z

0

(1 + cun+1)αdu

is univalent in ∆.

Example 2.5. Let the function f(z) = z+ an+1z
n+1 + an+2z

n+2 be such that

|an+1|+ |an+2| < 1 and α be complex number satisfy |α| ≤ 1/2 . Then function

G(z) =

∫ z

0

(1 + an+1u
n + an+2u

n+1)αdu

is univalent in ∆.

Theorem 2.6. Let β be a complex number with 0 ≤ Reβ < n and λ be non-

negative number which satisfy the condition 0 < λ ≤ (n − Reβ)(n + 1). For a

function f ∈ U(β, λ) and for any α ∈ C we have

||Jα[f ]|| ≤ 2|α|µ
1 +

√
1− µ2

, (2.5)

where µ = λ/(n + 1)(n − Reβ). If, in addition, λ < 2(1 − Reβ), then equality

holds for the case n = 1 when f(z) = z + az2 for a constant a with a = µ.

Proof. Suppose that f(z) = z + an+1z
n+1 + an+2z

n+2 + ... be in U(β, λ) and

set F = J1[f ]. By letting p(z) := f ′(z)− (1+β) f(z)
z = −β+(n−β)an+1z

n+ ...

it is obvious that p(z) ∈ H[−β, n].

Further, f ∈ U(β, λ) is seen to be equivalent to

p(z) + zp′(z) ≺ −β + λz. (2.6)

Applying lemma 1.2, to (2.6) we obtain

p(z) ≺ 1

nz
1
n

∫ z

0

(−β + λt)t
1
n−1dt,
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or equivalently

f ′(z)− (1 + β)
f(z)

z
≺ −β +

λ

n+ 1
z. (2.7)

We may write the last subordination as

f ′(z)− (1 + β)
f(z)

z
= −β +

λ

n+ 1
ω(z), (2.8)

where ω is an analytic function with ω(0) = ω′(0) = ... = ωn−1(0) = 0 and

|ω(z)| < 1 for z ∈ ∆.

If we consider g(z) = f(z)
z − 1, then (2.8) becomes

zg′(z)− βg(z) =
λ

n+ 1
ω(z).

An algebraic computation yields that

g(z) =
λ

n+ 1

∫ 1

0

ω(tz)

tβ+1
dt. (2.9)

Since ω(0) = ω′(0) = ... = ωn−1(0) = 0 and |ω(z)| < 1, Schwarz’s lemma gives

that |ω(z)| < |z|n for z ∈ ∆ and therefore∣∣∣∣f(z)

z
− 1

∣∣∣∣ < λ

(n+ 1)(n−Reβ)
|z|n < λ

(n+ 1)(n−Reβ)
= µ.

Now following the same as proof of Theorem 2.1 we get our result. �

By putting β = 0 in the Theorem 2.2 we obtain the following corollary.

Corollary 2.7. Let 0 < λ ≤ n(n+ 1). If f(z) ∈ An satisfy the condition

|zf ′′(z)| < λ,

then ||Jα[f ]|| ≤ 2|α|µ
1+
√

1−µ2
, where µ = λ

n(n+1) . The result is sharp in the case

n = 1 for the function f(z) = z + az2 with |a| = µ.

We remark that the special case of corollary 2.3 was obtained in [7]. (see

Theorem 2.7)

Corollary 2.8. Let 0 < λ ≤ (n−Reβ)(n+1) and α be a complex number with

|α| ≤
(n−Reβ)(n+ 1) +

√
(n−Reβ)2(n+ 1)2 − λ2

2λ
.

Then Jα(U(β, λ)) ⊆ S.

Let 0 ≤ Reβ < n and a function g(z) ∈ H satisfy the condition

|g(z)| ≤ 4(n+ 1)(n−Reβ)

5
.

Also let f(z) ∈ An satisfy the differential equation

zf ′′(z)− β(f ′(z)− 1) = zng(z). (2.10)
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Then, it is clear that

|zf ′′(z)− β(f ′(z)− 1)| = |z|n|g(z)| ≤ 4(n+ 1)(n−Reβ)

5
.

Hence, from corollary 2.4, we observe that for |α| ≤ 1, we have Jα[f ] ∈ S.

By letting α = 1 we have the following example

Example 2.9. Let β be a complex number with 0 ≤ Reβ < n and g(z) ∈ H
satisfy

|g(z)| ≤ 4(n+ 1)(n−Reβ).

Then the function F (z) ∈ An satisfying the differential equation

z2F ′′′(z) + (2− β)zF ′′(z)− βF ′(z) + β = zng(z) (2.11)

is univalent in ∆.

It is easy to see that the solution of (2.11) is

F (z) = z + zn+1

∫ 1

0

∫ 1

0

∫ 1

0

g(rstz)rn−β−1tnsndrdsdt.

So we may rewrite example 2.3 in the following equivalent form

Example 2.10. Let β be a complex number with 0 ≤ Reβ < n and g(z) ∈ H
satisfy

|g(z)| ≤ 4(n+ 1)(n−Reβ).

Then the function F (z) ∈ An defined by

F (z) = z + zn+1

∫ 1

0

∫ 1

0

∫ 1

0

g(rstz)rn−β−1tnsndrdsdt.

is univalent in ∆.
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