# Application of the Norm Estimates for Univalence of Analytic Functions 

Rasoul Aghalary*<br>Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran.<br>E-mail: raghalary@yahoo.com, raghalary@urmia.ac.ir

Abstract. By using norm estimates of the pre-Schwarzian derivatives for certain family of analytic functions, we shall give simple sufficient conditions for univalence of analytic functions.

Keywords: Starlike functions, Differential subordination, Integral operators.

2000 Mathematics subject classification: Primary 30C45. Secondary 30 C 80 .

## 1. Introduction

Let $\mathcal{H}$ Denote the class of all analytic functions in the open unit disc $\Delta=$ $\{z \in \mathbb{C}:|z|<1\}$. For a positive integer $n$ and $a \in \mathbb{C}$, let $\mathcal{H}[a, n]$ and $\mathcal{A}_{n}$ denote the following classes of analytic functions

$$
\mathcal{A}_{n}=\left\{f \in \mathcal{H}: f(z)=z+a_{n+1} z^{n+1}+a_{n+2} z^{n+2}+\ldots, z \in \Delta\right\}
$$

and

$$
\mathcal{H}[a, n]=\left\{f \in \mathcal{H}: f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\ldots, z \in \Delta\right\}
$$

Set $\mathcal{A}:=\mathcal{A}_{1}$.
Also let $S$ denote the class of all univalent functions in $\mathcal{A}$. We denote by $S^{*}$ the familiar class of functions in $\mathcal{A}$ which are starlike (with respect to origin).

[^0]Received 15 January 2012; Accepted 19 October 2013

Suppose $f$ and $g$ belongs to $\mathcal{H}$, we say that $f(z)$ is subordinate to $g(z)$; written $f \prec g$ or $f(z) \prec g(z)$, if there exists an analytic function $w$ such that $w(0)=0,|w(z)|<1$ and $f(z)=g(w(z))$ on $\Delta$. In particular, if $g(z)$ is univalent in $\Delta$, then it is known that

$$
f(z) \prec g(z) \Longleftrightarrow f(0)=g(0) \quad \text { and } \quad f(\Delta) \subseteq g(\Delta)
$$

For $\alpha \in \mathbb{C}$, let $J_{\alpha}[f]$ denote the nonlinear integral operator defined by

$$
J_{\alpha}[f](z)=\int_{0}^{z}\left(\frac{f(t)}{t}\right)^{\alpha} d t
$$

In [8], Kim and Merkes showed that $J_{\alpha}(S)=\left\{J_{\alpha}[f]: f \in S\right\} \subseteq S$ when $|\alpha|<1 / 4$. Also Aksent'ev and Nezhmetdinov proved in [1] that $J_{\alpha}\left[S^{*}\right] \subseteq S$ precisely when $|\alpha|<1 / 2$ or $\alpha \in[1 / 2,1 / 3]$. Also such results for other spaces were investigated in $[4,10,11]$.

For a constant $\beta \in \mathbb{C}, \lambda>0$ and $\sigma \geq 0$ consider the classes $\mathcal{U}(\beta, \lambda)$ and $\mathcal{U}_{\sigma}(n, \lambda)$ defined by

$$
\mathcal{U}(\beta, \lambda)=\left\{f \in \mathcal{A}_{n}:\left|z f^{\prime \prime}(z)-\beta\left(f^{\prime}(z)-1\right)\right|<\lambda\right\}
$$

and

$$
\mathcal{U}_{\sigma}(n, \lambda)=\left\{f \in \mathcal{U}(n, \lambda):\left|f^{(n+1)}(0)\right| \leq(n+1)!\sigma\right\}
$$

Recently, the class $\mathcal{U}(\beta, \lambda)$ and $\mathcal{U}_{\sigma}(n, \lambda)$ have been studied by Miller and Mocanu [9] and Kuroki and Owa [6]. It is shown that in [9], $\mathcal{U}(\beta, \lambda) \subseteq S^{*}$ for $0 \leq \beta<n$ and $\lambda=n-\beta$.

Let $f: \Delta \rightarrow \mathbb{C}$ be analytic and locally univalent. The pre-Schwarzian derivative $\mathcal{T}_{f}$ of $f$ is defined by

$$
\mathcal{T}_{f}(z)=\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}
$$

Also, the quantity

$$
\|f\|=\sup _{z \in \Delta}\left(1-|z|^{2}\right)\left|\mathcal{T}_{f}(z)\right|
$$

is called the norm of $\mathcal{T}_{f}$.
In this paper we find some conditions on parameters $\beta, \lambda, \sigma$ and $\alpha$ such that

$$
J_{\alpha}[\mathcal{U}(\beta, \lambda)] \subseteq S \quad \text { and } \quad J_{\alpha}\left[\mathcal{U}_{\sigma}(n, \lambda)\right] \subseteq S
$$

For proving our results we need the following two lemmas.
Lemma 1.1. (see[2,3]) Let $f$ be analytic and locally univalent in $\Delta$. Then if $\|f\|<1$ then $f$ is univalent, and the constant 1 is sharp.

Lemma 1.2. (see [5]) Let $h(z)$ be a convex univalent function with $h(0)=a$ and let Re $>0$. If $p(z) \in \mathcal{H}[a, n]$ and

$$
p(z)+\frac{z p^{\prime}(z)}{\gamma} \prec h(z)
$$

then

$$
p(z) \prec q(z) \prec h(z)
$$

where

$$
q(z)=\frac{\gamma}{n z^{\gamma / n}} \int_{0}^{z} h(t) t^{\gamma / n-1} d t
$$

This result is sharp.

## 2. Main Results

Theorem 2.1. Let $\lambda, \mu, \sigma$ be non-negative numbers with $\mu=\sigma+\frac{\lambda}{n+2} \leq 1$. For a function $f \in \mathcal{U}_{\sigma}(n, \lambda)$, we have

$$
\begin{equation*}
\left\|J_{\alpha}[f]\right\| \leq \frac{2|\alpha| \mu}{1+\sqrt{1-\mu^{2}}} \tag{2.1}
\end{equation*}
$$

for every $\alpha \in \mathbb{C}$. In the case $n=1$ the equality holds above precisely when $f(z)=z+a z^{2}$ with $a=\mu<1$.

Proof. Taking a logarithmic differentiation, we obtain, $\mathcal{T}_{J_{\alpha}[f]}(z)=\alpha \mathcal{T}_{J_{1}[f]}(z)$ and thus

$$
\left\|J_{\alpha}[f]\right\|=|\alpha|\left\|J_{1}[f]\right\|
$$

Therefore it suffices to consider $\left\|J_{1}[f]\right\|$. Let $f(z)=z+a_{n+1} z^{n+1}+a_{n+2} z^{n+2}+$ $\ldots$ be in $\mathcal{U}_{\sigma}(n, \lambda)$ and $G(z)=J_{1}[f](z)$. If we set $p(z)=f^{\prime}(z)-(1+n) \frac{f(z)}{z}$, then we have

$$
p(z)=-n+a_{n+2} z^{n+1}+\ldots
$$

and we observe that $p(z) \in \mathcal{H}[-n, n+1]$. Further it is easy to see that, $f \in$ $\mathcal{U}_{\sigma}(n, \lambda)$ is equivalent to

$$
\begin{equation*}
p(z)+z p^{\prime}(z) \prec-n+\lambda z . \tag{2.2}
\end{equation*}
$$

Applying Lemma 1.2 to the (2.2), we obtain

$$
p(z) \prec \frac{1}{(n+1) z^{1 /(n+1)}} \int_{0}^{z}[-n+\lambda t] t^{1 /(n+1)-1} d t=-n+\frac{\lambda}{n+2} z
$$

Hence

$$
\begin{equation*}
f^{\prime}(z)-(n+1) \frac{f(z)}{z}=-n+\frac{\lambda}{n+2} \omega(z) \tag{2.3}
\end{equation*}
$$

where $\omega$ is an analytic function in $\Delta$ with $|\omega(z)| \leq 1$ and $\omega(0)=\omega^{\prime}(0)=\ldots=$ $\omega^{(n)}(0)=0$. By setting $g(z)=\frac{f(z)}{z}-1$, we may rewrite the relation (2.3) as

$$
z g^{\prime}(z)-n g(z)=\frac{\lambda}{n+2} \omega(z)
$$

Solving this differential equation we have

$$
\begin{equation*}
g(z)=a_{n+1} z^{n}+\frac{\lambda}{n+2} \int_{0}^{1} \frac{\omega(t z)}{t^{n+1}} d t \tag{2.4}
\end{equation*}
$$

Since $\left|a_{n+1}\right|+\frac{\lambda}{n+2} \leq \mu$, and in view of Schwarz's lemma $|\omega(z)| \leq|z|^{n+1}$ for $z \in \Delta$, (2.4) implies that

$$
|g(z)| \leq|z|^{n}\left(\left|a_{n+1}\right|+\frac{\lambda}{n+2}|z|\right)<\mu
$$

So $\mathcal{F}(z):=f(z) / z$ is subordinate to the function $q(z):=1+\mu z$ and this means that $\mathcal{F}(z)=q\left(\omega_{1}(z)\right)$ where $\omega_{1}(z)$ is Schwarz function. Hence

$$
\|G\|=\sup _{z \in \Delta}\left(1-|z|^{2}\right)\left|\frac{\mathcal{F}^{\prime}(z)}{\mathcal{F}(z)}\right|=\sup _{z \in \Delta}\left(1-|z|^{2}\right) \frac{\left|q^{\prime}\left(\omega_{1}(z)\right)\right|\left|\omega_{1}^{\prime}(z)\right|}{\left|q\left(\omega_{1}(z)\right)\right|}
$$

But, by the Schwarz-Pick lemma, we know that

$$
\left|\omega_{1}^{\prime}(z)\right| \leq \frac{1-\left|\omega_{1}(z)\right|^{2}}{1-|z|^{2}}
$$

Therefore we obtain

$$
\|G\| \leq \sup _{z \in \Delta}\left(1-|z|^{2}\right) \frac{\left|q^{\prime}\left(\omega_{1}(z)\right)\right|\left(1-\left|\omega_{1}(z)\right|^{2}\right)}{\left(1-|z|^{2}\right)\left|q\left(\omega_{1}(z)\right)\right|} \leq \sup _{z \in \Delta}\left(1-|z|^{2}\right)\left|\frac{q^{\prime}(z)}{q(z)}\right|
$$

Since

$$
\frac{q^{\prime}(z)}{q(z)}=\frac{\mu}{1+\mu z}
$$

some computations show that

$$
\sup _{z \in \Delta}\left(1-|z|^{2}\right)\left|\frac{q^{\prime}(z)}{q(z)}\right|=\mu \sup _{0<t<1} \frac{1-t^{2}}{1-\mu t}=\frac{2 \mu}{1+\sqrt{1-\mu^{2}}} .
$$

Thus inequality (2.1) follows. Now for function $f(z)=z+a z^{2}$ with $0<a<1$ we have

$$
\left\|J_{\alpha}[f]\right\|=\sup _{z \in \Delta}\left(1-|z|^{2}\right) \frac{|\alpha||a|}{|1+a z|}
$$

But

$$
\left(1-|z|^{2}\right) \frac{|\alpha||a|}{|1+a z|} \leq\left(1-|z|^{2}\right)|\alpha| \frac{|a|}{1-|a||z|}
$$

and so

$$
\sup _{z \in \Delta}\left(1-|z|^{2}\right) \frac{|\alpha||a|}{|1+a z|} \leq \sup _{z \in \Delta}\left(1-|z|^{2}\right) \frac{|\alpha||a|}{1-|a||z|}=\frac{2|\alpha| a}{1+\sqrt{1-a^{2}}}
$$

We note that in the last equality sup has taken on the point $|z|=\frac{1-\sqrt{1-a^{2}}}{a}$. On the other hand by putting $z=t$ we obtain

$$
|\alpha| a \frac{1-t^{2}}{1+a t} \leq \sup _{z \in \Delta}\left(1-|z|^{2}\right) \frac{|\alpha||a|}{|1+a z|}
$$

By putting $t=\frac{1-\sqrt{1-a^{2}}}{-a}$ on the left hand side we have $|\alpha| a \frac{1-t^{2}}{1+a t}=|\alpha| \frac{2 a}{1+\sqrt{1-a^{2}}}$.
Hence equality holds for the function $f(z)=z+a z^{2}$.

Corollary 2.2. Let $\lambda, \sigma$ be non-negative numbers with $\sigma+\frac{\lambda}{n+2} \leq 1$ and $\alpha \in \mathbb{C}$ satisfy the condition

$$
|\alpha| \leq \frac{1+\sqrt{1-\left(\sigma+\frac{\lambda}{n+2}\right)^{2}}}{2\left(\sigma+\frac{\lambda}{n+2}\right)}
$$

Then $J_{\alpha}\left(\mathcal{U}_{\sigma}(n, \lambda)\right) \subseteq S$.
Letting $a_{n+1}=0$ in the corollary 2.1, we obtain the following corollary.
Corollary 2.3. Let $0<\lambda \leq n+2$ and $\alpha$ be complex number which satisfy the condition

$$
|\alpha| \leq \frac{n+2+\sqrt{(n+2)^{2}-\lambda^{2}}}{2 \lambda}
$$

Then $J_{\alpha}\left(\mathcal{U}_{0}(n, \lambda)\right) \subseteq S$.
By putting $\lambda=n+2$ in the corollary 2.2 we obtain the following example.
Example 2.4. Let $\alpha, c$ be complex numbers with $|c|<1$ and $|\alpha| \leq 1 / 2$. Then the function

$$
F(z)=\int_{0}^{z}\left(1+c u^{n+1}\right)^{\alpha} d u
$$

is univalent in $\Delta$.
Example 2.5. Let the function $f(z)=z+a_{n+1} z^{n+1}+a_{n+2} z^{n+2}$ be such that $\left|a_{n+1}\right|+\left|a_{n+2}\right|<1$ and $\alpha$ be complex number satisfy $|\alpha| \leq 1 / 2$. Then function

$$
G(z)=\int_{0}^{z}\left(1+a_{n+1} u^{n}+a_{n+2} u^{n+1}\right)^{\alpha} d u
$$

is univalent in $\Delta$.
Theorem 2.6. Let $\beta$ be a complex number with $0 \leq \operatorname{Re} \beta<n$ and $\lambda$ be nonnegative number which satisfy the condition $0<\lambda \leq(n-\operatorname{Re} \beta)(n+1)$. For $a$ function $f \in \mathcal{U}(\beta, \lambda)$ and for any $\alpha \in \mathbb{C}$ we have

$$
\begin{equation*}
\left\|J_{\alpha}[f]\right\| \leq \frac{2|\alpha| \mu}{1+\sqrt{1-\mu^{2}}} \tag{2.5}
\end{equation*}
$$

where $\mu=\lambda /(n+1)(n-$ Re $\beta)$. If, in addition, $\lambda<2(1-R e \beta)$, then equality holds for the case $n=1$ when $f(z)=z+a z^{2}$ for a constant a with $a=\mu$.

Proof. Suppose that $f(z)=z+a_{n+1} z^{n+1}+a_{n+2} z^{n+2}+\ldots$ be in $\mathcal{U}(\beta, \lambda)$ and set $\mathcal{F}=J_{1}[f]$. By letting $p(z):=f^{\prime}(z)-(1+\beta) \frac{f(z)}{z}=-\beta+(n-\beta) a_{n+1} z^{n}+\ldots$ it is obvious that $p(z) \in \mathcal{H}[-\beta, n]$.

Further, $f \in \mathcal{U}(\beta, \lambda)$ is seen to be equivalent to

$$
\begin{equation*}
p(z)+z p^{\prime}(z) \prec-\beta+\lambda z . \tag{2.6}
\end{equation*}
$$

Applying lemma 1.2 , to (2.6) we obtain

$$
p(z) \prec \frac{1}{n z^{\frac{1}{n}}} \int_{0}^{z}(-\beta+\lambda t) t^{\frac{1}{n}-1} d t
$$

or equivalently

$$
\begin{equation*}
f^{\prime}(z)-(1+\beta) \frac{f(z)}{z} \prec-\beta+\frac{\lambda}{n+1} z . \tag{2.7}
\end{equation*}
$$

We may write the last subordination as

$$
\begin{equation*}
f^{\prime}(z)-(1+\beta) \frac{f(z)}{z}=-\beta+\frac{\lambda}{n+1} \omega(z) \tag{2.8}
\end{equation*}
$$

where $\omega$ is an analytic function with $\omega(0)=\omega^{\prime}(0)=\ldots=\omega^{n-1}(0)=0$ and $|\omega(z)|<1$ for $z \in \Delta$.

If we consider $g(z)=\frac{f(z)}{z}-1$, then (2.8) becomes

$$
z g^{\prime}(z)-\beta g(z)=\frac{\lambda}{n+1} \omega(z)
$$

An algebraic computation yields that

$$
\begin{equation*}
g(z)=\frac{\lambda}{n+1} \int_{0}^{1} \frac{\omega(t z)}{t^{\beta+1}} d t \tag{2.9}
\end{equation*}
$$

Since $\omega(0)=\omega^{\prime}(0)=\ldots=\omega^{n-1}(0)=0$ and $|\omega(z)|<1$, Schwarz's lemma gives that $|\omega(z)|<|z|^{n}$ for $z \in \Delta$ and therefore

$$
\left|\frac{f(z)}{z}-1\right|<\frac{\lambda}{(n+1)(n-\operatorname{Re} \beta)}|z|^{n}<\frac{\lambda}{(n+1)(n-\operatorname{Re} \beta)}=\mu
$$

Now following the same as proof of Theorem 2.1 we get our result.
By putting $\beta=0$ in the Theorem 2.2 we obtain the following corollary.
Corollary 2.7. Let $0<\lambda \leq n(n+1)$. If $f(z) \in \mathcal{A}_{n}$ satisfy the condition

$$
\left|z f^{\prime \prime}(z)\right|<\lambda
$$

then $\left\|J_{\alpha}[f]\right\| \leq \frac{2|\alpha| \mu}{1+\sqrt{1-\mu^{2}}}$, where $\mu=\frac{\lambda}{n(n+1)}$. The result is sharp in the case $n=1$ for the function $f(z)=z+a z^{2}$ with $|a|=\mu$.

We remark that the special case of corollary 2.3 was obtained in [7]. (see Theorem 2.7)

Corollary 2.8. Let $0<\lambda \leq(n-R e \beta)(n+1)$ and $\alpha$ be a complex number with

$$
|\alpha| \leq \frac{(n-\operatorname{Re} \beta)(n+1)+\sqrt{(n-\operatorname{Re} \beta)^{2}(n+1)^{2}-\lambda^{2}}}{2 \lambda}
$$

Then $J_{\alpha}(\mathcal{U}(\beta, \lambda)) \subseteq S$.
Let $0 \leq R e \beta<n$ and a function $g(z) \in \mathcal{H}$ satisfy the condition

$$
|g(z)| \leq \frac{4(n+1)(n-R e \beta)}{5}
$$

Also let $f(z) \in \mathcal{A}_{n}$ satisfy the differential equation

$$
\begin{equation*}
z f^{\prime \prime}(z)-\beta\left(f^{\prime}(z)-1\right)=z^{n} g(z) \tag{2.10}
\end{equation*}
$$

Then, it is clear that

$$
\left|z f^{\prime \prime}(z)-\beta\left(f^{\prime}(z)-1\right)\right|=|z|^{n}|g(z)| \leq \frac{4(n+1)(n-R e \beta)}{5}
$$

Hence, from corollary 2.4, we observe that for $|\alpha| \leq 1$, we have $J_{\alpha}[f] \in S$.
By letting $\alpha=1$ we have the following example
Example 2.9. Let $\beta$ be a complex number with $0 \leq \operatorname{Re} \beta<n$ and $g(z) \in \mathcal{H}$ satisfy

$$
|g(z)| \leq 4(n+1)(n-\operatorname{Re} \beta)
$$

Then the function $F(z) \in \mathcal{A}_{n}$ satisfying the differential equation

$$
\begin{equation*}
z^{2} F^{\prime \prime \prime}(z)+(2-\beta) z F^{\prime \prime}(z)-\beta F^{\prime}(z)+\beta=z^{n} g(z) \tag{2.11}
\end{equation*}
$$

is univalent in $\Delta$.
It is easy to see that the solution of (2.11) is

$$
F(z)=z+z^{n+1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} g(r s t z) r^{n-\beta-1} t^{n} s^{n} d r d s d t
$$

So we may rewrite example 2.3 in the following equivalent form
Example 2.10. Let $\beta$ be a complex number with $0 \leq \operatorname{Re} \beta<n$ and $g(z) \in \mathcal{H}$ satisfy

$$
|g(z)| \leq 4(n+1)(n-R e \beta)
$$

Then the function $F(z) \in \mathcal{A}_{n}$ defined by

$$
F(z)=z+z^{n+1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} g(r s t z) r^{n-\beta-1} t^{n} s^{n} d r d s d t
$$

is univalent in $\Delta$.

## Acknowledgments

The author wish to express his gratitude to the referee for his useful comments and suggestions that have improved the presentation of this paper.

## References

1. L. A. Aksentev, I. R. Nezhmetdinov, Sufficient conditions for univalence of certain integral representation, Trudy Sem. Kraev. Zadacham, 18, (1982), 3-11.
2. J. Becker, Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, J. Reine Angew. Math, 255, (1972), 23-43.
3. J. Becker, Ch. Pommerenke, Schlichtheitskriterien und Jordangebiete, J. Reine Angew. Math, 354, (1984), 74-94.
4. M. R. Eslachi, S. Amani, The best uniform polynomial approximation of two classes of rational functions, Iranian Journal of Mathematical Sciences and Informatics, $\mathbf{7}(2)$, (2012), 93-102.
5. D. J. Hallenbeck, St. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc, 52, (1975), 191-195.
6. K. Kuroki, S. Owa, Double integral operators concerning starlike of order $\beta$, International Journal of Differential Equations, (2009), 1-13.
7. Y. C. Kim, S. Ponnusamy, T. Sugawa, Geometric properties of nonlinear integral transforms of analytic functions, Proc. Japan Acad. Ser A, 80, (2004), 57-60.
8. Y. J. Kim, E. P. Merkes, On an integral of powers of a spirallike function, Kyungpook Math. J, 12, (1972), 249-253.
9. S. S. Miller, P. T. Mocanu, Double integral starlike operators, Integral Transforms and Special Functions, 19 (7-8), (2008), 591-597.
10. M. Obradovic, Simple sufficient conditions for univalence, Mat. Vesnik, 49, (1997), 241244.
11. A. Taghavi, R. Hosseinzadeh, Uniform boundedness principle for operators on hypervector spaces, Iranian Journal of Mathematical Sciences and Informatics, 7 (2), (2012), 9-16.

[^0]:    * Corresponding Author

